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Abstract. In this paper we continue the study of Artin Schelter regular
categories, initiated by the authors in [7], [8], having in mind applications
to the representation theory of finite dimensional algebras. We will prove
the existence of Serre duality for these categories along the lines of [5]. As
an application we will get that for a finite dimensional algebra the quotient
category of the category of functors of a stable Auslander-Reiten component
module the category of functors of finite length will be a category with Serre
duality and homological dimension one.

In [5] it was implicitly assumed that all graded simple have the same projec-
tive dimension n and that there exists a fixed integer m such that for all graded
simple generated in degree zero the n-transpose defined in [7] is generated in
degree m. We will see here that this condition is not needed.
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In this paper we continue the study of Artin Schelter regular categories,
initiated by the authors in [7, 8], having in mind applications to the repre-
sentation theory of finite dimensional algebras. We will prove the existence of
Serre duality for these categories along the lines of [5]. As an application we
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will get that for a finite dimensional algebra the category of functors of a sta-
ble Auslander-Reiten component module the functors of finite length satisfies
Serre duality. In the case this category is of type A∞ , A∞

∞ or D∞ we get a
noetherian category with Serre duality and homological dimension one.

The paper will be divided in three sections, in the first one we recall basic
definitions and we prove some homological properties of Artin-Schelter regular
categories which will led us to a categorical version of the local cohomology
theorem of commutative algebra. The second section will be dedicated to
prove a corresponding version of Serre duality. In the last section we give the
application to finite dimensional algebras.

1. A local cohomology theorem for Artin-Schelter regular
categories

In this paper we will use freely the notions developed in [6, 7, 8]. We recall
the definition of a graded category.

Definition 1.1. Let K be a field, C an additive K -category, we say C is
graded if for each pair of objects, C and D we have a decomposition

HomC(C,D) = ⊕i∈�HomC(C,D)i

as Z- gradedK -vector spaces, and if f ∈ HomC(C,C ′)i and g ∈ HomC(C ′, D)j,
then gf ∈ HomC(C,D)i+j. In particular the identity maps are in degree zero.

Example 1.2. Let Λ = ⊕i≥0Λi be a positively graded K-algebra. For a
graded module M , denote by M [i] the shifted module defined byM [i]j = Mi+j .
Denote by Gr(Λ)0 the category of graded modules and degree zero maps, and
by Gr(Λ) the category of graded modules and maps given by

HomGr(Λ)(M,N) = ⊕i∈Z HomGr(Λ)0(M,N [i]).

Then Gr(Λ) is a graded category.

Example 1.3. Let C be an additive K-category and denote by rad the radical
of C which we know is given by

rad(C,D) = {f ∈ HomC(C,D) | gf ∈ radEndC(C) for all g ∈ HomC(D,C)}
= {f ∈ HomC(C,D) | fh ∈ radEndC(D) for all h ∈ HomC(D,C)}

Hence, rad C = rad Cop. Define inductively radn = rad · radn−1.
Then the associated category Agr(C) has the same objects as C and maps

given by

HomAgr(C)(C,D) = ⊕i≥0 radi(C,D)/ radi+1(C,D).

Example 1.4. Let C be an abelian K-category. The Yoneda or Ext category
E(C) has the same objects as C and maps given by

HomE(C)(A,B) = ⊕k≥0 ExtkC(A,B).
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By K we will denote a fixed base field and by C a positively graded Krull-
Schmidt K-category, generated in degrees zero and one, that is, the Jacobson
radical rad(−,−) satisfies rad(−,−) = ⊕i>0 HomC(−,−)i. We assume further
C is locally finite, this means that for each i and each pair of objects X and
Y we have dimK HomC(X, Y )i <∞.

Denote by Gr(C) the category of contravariant graded functors F : Cop →
GrK, from C to the category of graded K-vector spaces. We saw in [6] that un-
der these conditions there exists a contravariant functor D : Gr(C)→ Gr(Cop)
given by

D(F )i(X) = HomK(F (X)i, K)

and there exists a natural monomorphism η : F → D2(F ). Moreover, if we
denote by lfGr(C), lfGr(Cop) the full subcategories of locally finite functors of
Gr(C) and Gr(Cop), respectively, then D : lfGr(C)→ lfGr(Cop) is a duality and
D sends finitely generated functors, to finitely cogenerated functors. projective
to injective, simple functors to simple, and it preserve functors of finite length.

We denote by HomC(Y,X)i the vector space consisting of all maps in degree
i and by HomC(Y,X) = ⊕i∈Z HomC(Y, Z)i, the graded vector space of all maps
in all degrees, sometimes we will write (−, X) instead of HomC(−, X). In a
similar way, ExtkC(Y,X)i is the vector space consisting of all k-extensions in
degree i and ExtkC(Y,X) = ⊕i∈Z ExtkC(Y, Z)i is the graded vector space of all
k-extensions in all degrees.

Definition 1.5. Throughout this paper an Artin-Schelter regular category
will be a graded K-category satisfying the above conditions and in addition

i) There is a positive integer n such that all simple functors S have projective
dimension n.

ii) For each simple functor S and each objectX in C and ExtiC(S, (−, X)) = 0
for 0 ≤ i ≤ n− 1.

iii) There is a bijection between the simple functors in Gr(C) and the simple
functors in Gr(Cop) given by S → ExtnC(S, (−,−)).

For the applications we have in mind, we are mostly interesting in C being
the associated graded category of a stable component of the Auslander-Reiten
quiver of a finite dimensional algebra.

Theorem 1.6. Let C be an Artin-Schelter regular K-category, M a C-functor
of finite length. By PC and PCop we will denote the categories of projective
C-functors, (Cop), respectively. Then there exists a functor σ′ : PC → PCop and
a natural isomorphism: ExtnC(M, (−, X)) � HomC(M,D(σ′(−, X))) for all
(−, X) in PC.

Proof. The proof will be divided in several steps.
Step 1: Assume X is indecomposable. We have in Gr(C) a minimal injective

coresolution of (−, X):

0→ (−, X)→ I0 → I1 → ...In−1 → In → 0
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Let SC be a simple corresponding to an indecomposable object C ∈ C. By
hypothesis, ExtiC(S, (−, X)) = 0 for 0 ≤ i ≤ n− 1. Then

HomC(SC , (−, X)) = HomC(SC , I0) = 0,

hence,

HomC(SC ,Ω
−1(−, X)) = Ext1

C(S, (−, X)) = 0.

By induction, HomC(SC ,Ω
−i(−, X)) = 0 for 0 ≤ i ≤ n− 1.

By the long homology sequence, the exact sequence

0→ Ω−1(−, X)→ In−1 → In → 0

induces an exact sequence.

0→ HomC(SC ,Ω
−n+1(−, X))→ HomC(SC , In−1)→

HomC(SC , In)→ ExtnC(Sc, (−, X))→ 0

and

HomC(SC ,Ω
−n+1(−, X)) = HomC(SC , In−1) = 0.

It follows that HomC(SC , In) = ExtnC(Sc, (−, X)) � σ(SC)(X)[mX ], where
σ is the bijection on the simple functors and [mX ] is a shift of the simple
functor σ(SC) depending on X. The bijection SC → σ(SC) induces a bijection
σ : indC → indCop given by σ(SC) = Sσ(C)

Let σ′ be the inverse of σ. Then we have: HomC(SC , In) =

{
0, if X �= σC

K, if X = σC

It follows that HomC(SC , In) = Sσ′X(C)[mX ].
Extend the definition of σ′ to projective objects by letting

σ′(−X) = (σ′X−)[−mX ].

Therefore In = D(σ′X,−)[mX ]⊕ I ′n, where I ′n has zero socle.
It follows ExtnC(SC , (−, X)) � HomC(SC , D(σ′(−, X))).
Once we know the structure of In it follows, by induction, that for all functors

of finite length M ,

ExtnC(M, (−, X)) � HomC(M,D(σ′(−, X))).

This completes the first step.
Step 2: We will prove that the map on projective objects σ′ extends to a

functor σ′ : PC → PCop .
Let f : X → Y be a map in degree k. We have a commutative exact diagram:

*)

0 �� (−, X) ��

(−,f)
��

I0 ��

f0
��

I1 ��

f1
��

· · · �� In−1
��

fn−1

��

D(σ′(−, X))⊕ I ′n ��

fn

��

0

0 �� (−, Y )[k] �� J0[k] �� J1[k] �� · · · �� Jn−1[k] �� D(σ′(−, Y ))⊕ J ′
n[k] �� 0
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Since J ′
n has no socle, fn = Ω−n(−, f) has triangular form: fn =

(
ψ ν
0 ρ

)
.

The map ψ does not depend on the lifting. Let f ′
0,f

′
1, f

′
2, . . . ,f ′

n =
(
ψ′ ν′
0 ρ′

)
be

another lifting of (−, f). Then f0−f ′
0, f1−f ′

1, f2−f ′
2, . . . , fn−f ′

n are homotopic

to zero and
(
ψ−ψ′ ν−ν′

0 ρ−ρ′
)

factors through Jn−1[k]. Since Jn−1[k] has no socle, it

follows ψ−ψ′ = 0. By duality, there exists a map ϕ : σ′(−, Y )[−k]→ σ′(−, X)
such that D(ϕ) = ψ. It is clear that the assignment f 	→ ϕ is functorial.

This induces a functor σ′ : PC → PCop as follows.
On objects σ′(−X) = (σ′X−)[−mX ] and given a map (−, f) : (−X) →

(−, Y )[k], that is, f : X → Y a map in degree k, and σ′(−f) =
ϕ : σ′(−Y )[−k] → σ′(−X). By Yoneda’s Lemma, there exists a map
σ′(f) : σ′(X)→ σ′(Y ) in degree mY −mX + k, such that (σ′f,−) = ϕ.

Before continuing with the proof we need the following definition.

Definition 1.7. Let C be a small graded K-category and τ : objC → Z,
τ(X) = mX a function from the objects of C to the integers, we call τ the
twist and a category with twist (C, τ) to the category with the same objects
as C and maps Hom(C,τ)(X, Y ) = HomC(X, Y )[mY −mX ].

Step 3: We have induced a graded functor σ′ : ind C → (ind C, τ), ind C
the full subcategory of C consisting of indecomposable objects. We prove
next that with this functor the isomorphisms given in Step 1, become natural
equivalences.

Let x ∈ ExtnC(M, (−, X)) be a n-fold extension. We have an induced map
of exact sequences: ∗∗)

0 �� (−, X) �� E0
��

��

E1
��

��

· · · �� En−1
��

��

M ��

( η0 )
��

0

0 �� (−, X) �� I0 �� I1 �� · · · �� In−1
�� D(σ′X,−)⊕ I ′n[mX ] �� 0

where η : M → D(σ′X,−)[mX ] is a natural transformation.
Let f : X → Y be a map. As above we have the exact commutative diagram

∗). But we can also take the big pushout to obtain an exact commutative
diagram: �)

x : 0 �� (−, X)

(−,f)
��

�� E0
��

��

E1
��

��

· · · �� En−1
��

��

M �� 0

y : 0 �� (−, Y ) �� L0
�� L1

�� · · · �� Ln−1
�� M �� 0
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y induces an exact commutative diagram: ��)

0 �� (−, Y )[k] �� L0
��

��

L1
��

��

· · · �� Ln−1
��

��

M ��

( γ0 )
��

0

0 �� (−, Y )[k] �� J0[k] �� J1[k] �� · · · �� Jn−1[k] �� D(σ′Y,−)⊕ J ′
n[mY + k] �� 0

composing the diagrams ∗) and ∗∗) we obtain the following commutative exact
diagram.

0 �� (−, X)

(−,f)
��

�� E0
��

��

E1
��

��

· · · �� En−1
��

��

M ��

�
D(σ′f)η

0

�

��

0

0 �� (−, Y )[k] �� J0[k] �� J1[k] �� · · · �� Jn−1[k] �� D(σ′Y,−)⊕ J ′
n[mY + k] �� 0

Composing the diagrams �) and ��) we obtain the following diagram.

0 �� (−, X)

(−,f)
��

�� E0
��

��

E1
��

��

· · · �� En−1
��

��

M ��

( γ0 )
��

0

0 �� (−, Y )[k] �� J0[k] �� J1[k] �� · · · �� Jn−1[k] �� D(σ′Y,−)⊕ J ′
n[mY + k] �� 0

By the uniqueness of the lifting we obtain: γ = D(σ′f)η. We have proved the
following diagram commutes.

ExtnC(M, (−, X))

Extn
C(M,(−,f))

��

HomC(M,D(σ′(−, X)))

HomC(M,D(σ′(−,f)))
��

ExtnC(M, (−, Y ))[k] HomC(M,D(σ′(−, Y ))[k]

Let β : N →M be a natural transformation between functors of finite length.
Taking the big pull back βx of x by β we obtain a diagram that we can glue
with ∗∗) as follows.

βx : 0 �� (−, X) �� F0
��

��

F1
��

��

· · · �� Fn−1
��

��

N ��

β

��

0

x : 0 �� (−, X) �� E0
��

��

E1
��

��

· · · �� En−1
��

��

M ��

( η0 )
��

0

0 �� (−, X) �� I0 �� I1 �� · · · �� In−1
�� D(σ′X,−)⊕ I ′n[mX ] �� 0
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The composition of diagrams has in the last column the map
(
ηβ
0

)
. We obtain

the following commutative diagram.

ExtnC(M, (−, X))

Extn
C (β,(−,X))

��

HomC(M,D(σ′(−, X)))

HomC(β,D(σ′(−,X)))
��

ExtnC(N, (−, X)) HomC(N,D(σ′(−, X))

Proving the naturality of the isomorphism in Step 1. In a similar way we
consider covariant functors of finite length N : C → GrK and obtain a natural
equivalence

ExtnCop(N, (−, X)) � HomCop(N,D(σ(−, X)).

Now we prove the following.

Proposition 1.8. For any functor of finite length M there exists a natural
equivalence ρM : M →Mσ′σ.

Proof. Since for every simple functor Sc the functor ExtnC(Sc, (−,−)) is simple,
for any functor of finite length M , the functor ExtnC(M, (−,−)) is of finite
length. It follows for any functor of finite length M ,

ExtiCop(ExtnC(M, (−,−), (−,−))) = 0

for 0 ≤ i ≤ n− 1 and ExtnCop(ExtnC(M, (−,−), (−,−))) �M .
The functor σ : PCop → PC is an equivalence. The isomorphism

ExtnC(Sc, (−, X)) � Sσ′C [mX ](X) induces an isomorphism.

ExtnCop(ExtnC(SC , (−,−)), (−,−)) � ExtnCop(Sσ′C [mX ], (−,−))

� Sσσ′C [mX ][m′
X ] � SC

It follows that the twist τ ′ : obj C → Z corresponding to σ is −τ , where
τ : obj C → Z is the twist corresponding to σ′.

We have functors σ′ : ind C → (ind C, τ) and σ : ind C → (ind C, τ ′), com-
posing them we obtain a functor σσ′ : ind C → ind C and we like to prove that
it is isomorphic to the identity.

For every functor M of finite length we have natural equivalences.

M � HomCop(HomC(M,D(σ′(−, ∗)), D(σ(−,−)).
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Evaluating in an indecomposable object X gives

M(X) � HomCop(HomC(M,D(σ′(−, ∗)), D(σX,−))[−mX ])

� HomCop(HomC(M,D(σ′(−, ∗)), D(σX,−)))[−mX ]

� HomC((σX,−), DHomC(M,D(σ′(−, ∗)), )[−mX ]

� DHomC(M,D((−, σ′σX))[−mX ])[−mX ]

� DHomC(M,D((−, σ′σX)))[mX ][−mX ]

� DHomC(M,D((−, σ′σX))

� DHomCop(((−, σ′σX)), D(M))

� D2(M)(σ′σX) �M(σ′σX)

Therefore we obtain that M �Mσ′σ. We have proved that for any functor of
finite length M there is a natural equivalence ρM : M →Mσ′σ.

In a similar way, for any functor of finite length N : C → GrK, there is a
natural equivalence ρ′N : N → Nσσ′.

The above proposition can be strengthen as follows.

Proposition 1.9. The family of maps ρ = {ρM} give a natural isomorphism
ρ : 1→ σ′σ in the category of functors of finite length.

Proof. Let 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 and 0 → Qn →
Qn−1 → · · · → Q1 → Q0 → N → 0 be a minimal graded projective resolutions
of the modules of finite length M and N , respectively and η : M → N a natural
transformation. It induces the following commutative exact diagram.

0 �� Pn ��

ηn

��

Pn−1
��

ηn−1

��

· · · �� P1
��

η1

��

P0
��

η0

��

M ��

η

��

0

0 �� Qn
�� Qn−1

�� · · · �� Q1
�� Q0

�� N �� 0

Each Pi is of the form, Pi = HomC(−, Ci). We denote by P ∗
i to the projective

Hom(HomC(−, Ci),HomC(−, C−)) � HomC(Ci,−). After dualizing we obtain
the following commutative exact diagram.

0 �� Q∗
0

��

η∗0
��

Q∗
1

��

η∗1
��

· · · �� Qn−1
��

η∗n−1

��

Qn
��

η∗n
��

ExtnC(N, (−,−)) ��

Extn
C (η,(−,−))

��

0

0 �� P ∗
0

�� P ∗
1

�� · · · �� P ∗
n−1

�� P ∗
n

�� ExtnC(M, (−,−)) �� 0

Dualizing again we obtain the following commutative exact diagram.

0 �� Pn ��

ηn

��

Pn−1
��

ηn−1

��

· · · �� P1
��

η1

��

P0
��

η0

��

ExtnCop(ExtnC(M, (−,−)), (−,−)) ��

Extn(Extn(η,(−,−)),(−,−))
��

0

0 �� Qn
�� Qn−1

�� · · · �� Q1
�� Q0

�� ExtnCop(ExtnC(N, (−,−)), (−,−)) �� 0
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Hence we have isomorphisms θ making the diagram below commute.

M
θ ��

η

��

ExtnCop(ExtnC(M, (−,−)), (−,−))

Extn
Cop (Extn

C(η,(−,−)),(−,−))

��

N
θ �� ExtnCop(ExtnC(N, (−,−)), (−,−))

But the isomorphisms ExtnCop(ExtnC(M, (−,−)), (−,−)) � Mσ′σ are natural.
Therefore we obtain that ρ : 1→ σ′σ is a natural isomorphism in the category
of functors of finite length.

Remark 1.10. Similarly, ρ′ : 1 → σσ′ is a natural isomorphism in the cate-
gory of functors of finite length.

We use the fact that graded categories are complete, as claimed in the fol-
lowing result. The proof is a natural extension of the one given in [5], and we
leave it to the reader.

Lemma 1.11. Let C be a positively graded K-category and M a bounded below
functor. Then there is a natural isomorphism: lim←−M/M≥k �M .

Corollary 1.12. Let C be an Artin-Schelter regular category. Then the iso-
morphism ρ : 1→ σ′σ given in previous proposition extends to an isomorphism
in the category of locally finite bounded below functors.

Proof. The isomorphisms θj : M/M≥j → M/M≥jσ′σ obtained in the proposi-
tion are natural, by the above lemma, they induce isomorphisms in the inverse
limits: θ : M →Mσ′σ.

Proposition 1.13. The functors

σ : ind C → (ind C, τ ′)
and

σ′ : ind C → (ind C, τ),
induce inverse equivalences

ind C σ−→ (ind C, τ ′) σ′−→ ind C
and

ind C σ′−→ (ind C, τ) σ−→ ind C.
Proof. By the above corollary, for any indecomposable module X we have a
natural isomorphism: θ : (−, X)→ (−X)σ′σ, where θ is a degree zero map.

Then θX : (X,X)→ (σσ′X,X) sends 1X to a map θX(1X) : σ′σX → X, but
since we are assuming rad(−,−) = ⊕i≥1 HomC(−,−)i and σσ′X is indecom-
posable, it follows θX(1X) = u is an isomorphism.
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Let f : X → Y be a degree i map. We have the following commutative
diagram.

(X,X)
θX ��

(f,X)
��

(σσ′X,X)

(σσ′f,X)
��

(X, Y )
θY �� (σσ′Y,X)

Then θY (f) = uσ′σ(f), hence σ′σ(f) = 0 implies θY (f) = 0, and θY an
isomorphism implies f = 0. We have proved σ′σ is faithful.

Let g : σ′σY → σ′σX be a map. Taking the composition ug and using the
fact θY is onto, we find a map f : Y → X with θY (f) = ug = uσ′σ(f). But u
an isomorphism implies g = σ′σ(f). We have proved σ′σ is an equivalence.

We need the following.

Lemma 1.14. Let C be any category and M a functor of projective dimension
n, and assume M has a minimal projective resolution consisting of finitely
generated projective functors. Then there is a natural isomorphism

ExtnC(M,L) � ExtnC(M, (−,−))⊗C L.

Proof. By dimension shift, ExtnC(M,L) � ExtnC(Ω
n−1M,L). Let

0→ Pn → Pn−1 → Ωn−1M → 0

be a minimal projective presentation of Ωn−1M . The long homology sequence
induces the exact sequence

0→ HomC(Ωn−1M,L)→ HomC(Pn−1, L)→ HomC(Pn, L)→ ExtnC(M,L)→ 0

But Pn−1 = HomC(−, Cn−1) and Pn = HomC(−, Cn). Then we have natural
isomorphisms

HomC(Pn−1, L) �� HomC(Pn, L)

L(Cn−1) �� L(Cn)

HomC(Cn−1,−)⊗C L �� HomC(Cn,−)⊗C L

We get an isomorphism of exact sequences:

HomC(Pn−1, L) �� HomC(Pn, L) �� ExtnC(M,L) �� 0

P ∗
n−1 ⊗C L �� P ∗

n ⊗C L �� ExtnC(M, (−,−))⊗C L �� 0

and the claim follows.

We can prove our first important theorem
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Theorem 1.15 (Local Cohomology). Let C be an Artin Schelter regular cat-
egory of global dimension n. Then for any locally bounded below functor
M : GrCop → GrK and any graded functor L : GrCop → GrK there exists
natural isomorphisms

HomK(lim−→Extn−iC (M/M≥k, L), K) � ExtiC(L,Mσ′)[τ ].

For 0 ≤ i < n, σ′ : ind Cop → (ind Cop, τ) is the isomorphism induced by σ′ in
the opposite category and τ is the twist.

Proof. By Lemma 1.14, there are isomorphisms:

ExtnC(M/M≥k, L) � ExtnC(M/M≥k, (−,−))⊗
C
L

and

ExtnC(M/M≥k, (−, X)) � HomC(M/M≥k, D(σ′(−, X))

� HomCop((σ′(−, X), D(M/M≥k))

� HomCop(((−, σ′X)[−mX ], D(M/M≥k))

� D(M/M≥k(σ′X))[mX ]

Therefore we have that ExtnC(M/M≥k, L) � D(M/M≥kσ′)⊗C L[τ ′], with τ ′ the
twist. Then we have an isomorphism

lim−→ k ExtnC(M/M≥k, L) � lim−→ kD(M/M≥kσ′)⊗C L[τ ′].

From this isomorphism it follows there exists a chain of isomorphisms

HomK(lim−→ k Extn−iC (M/M≥k, L), K) � HomC(L[τ ′],HomK(lim−→ kD(M/M≥kσ′), K)

� HomC(L[τ ′], lim←− kD
2(M/M≥kσ′))

� HomC(L[τ ′], lim←− k(M/M≥kσ′))

� HomC(L[τ ′],Mσ′))

� HomC(L,Mσ′[τ ])

We have proved the claim for n = 0.
Assume the result is true for 0 ≤ i < n. Then

HomK(lim−→Extn−iC (M/M≥k, L), K) � ExtiC(L,Mσ′)[τ ].

Let 0 → ΩL → P → L → 0 be exact with P , a not necessary, finitely
generated projective. By the long homology sequence we have the following
exact sequence

Extn−i−1
C (M/M≥k, P )→ Extn−i−1

C (M/M≥k, L)→
Extn−i−1

C (M/M≥k,ΩL)→ Extn−iC (M/M≥k, P )
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But Extn−i−1
C (M/M≥k, P ) = 0, since M/M≥k is of finite length. Taking limits

and dualizing we obtain the following exact sequence

D(lim−→ k Extn−iC (M/M≥k, P ))→ D(lim−→ k Extn−iC (M/M≥k,ΩL))→
D(lim−→ k Extn−i−1

C (M/M≥k, L))→ 0.

For each i ≥ 0, we have the following exact sequence

ExtiC(P,Mσ′)[τ ]→ ExtiC(ΩL,Mσ′)[τ ]→ Exti+1
C (L,Mσ′)[τ ]→ 0

By induction hypothesis we have natural isomorphisms

D(lim−→Extn−iC (M/M≥k, P )) � ExtiC(P,Mσ′)[τ ]

and

D(lim−→Extn−iC (M/M≥k,ΩL)) � ExtiC(ΩL,Mσ′)[τ ].

It follows we have natural isomorphisms

D(lim−→Extn−iC (M/M≥k, L)) � ExtiC(L,Mσ′)[τ ]

as claimed.

The next section is dedicated to prove a version of Serre duality for Artin-
Schelter regular categories.

2. Quotient Categories

By C we denote a positively graded locally finite Krull Schmidt K-category
with radical r(−,−) = ⊕i≥1 HomC(−,−)i.

As we remarked before, Gr(C) is abelian with enough projective and injec-
tive objects. We denote by Fin C the full subcategory of Gr(C) consisting of all
functors with finite minimal projective resolutions consisting of finitely gen-
erated projectives. We assume further that the simple functors are in Fin C.
Observe that these conditions are satisfied, both in the Artin-Schelter regular
and in the Koszul cases.

By Tors we denote the full subcategory of Gr(C) of all torsion functors, that
is, functors F with t(F ) = F and t(F ) =

∑
L∈L L, where L = {L ⊂ F |

L of finite length}.
We proved in [7], that t is an idempotent radical and it is easy to see Tors

forms a Serre category, this means: given an exact sequence of functors 0 →
L→ M → N → 0, the functor M ∈ Tors if and only if L and N are in Tors.

We consider the quotient category: QGr(C) = Gr(C)/Tors. The category
has the same objects as Gr(C) and maps

HomQGr(C)(F,G) = lim−→ (F ′,G′)∈L HomC(F ′, G/G′)

where L = {(L,M) | L ⊂ F,M ⊂ G and F/L,M torsion}.
Let π : Gr(C)→ QGr(C) be the canonical projection. Then it is known (see

[3, 9]) that QGr(C) is abelian with enough injectives and π is exact. In fact,
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if I is a torsion free injective, then π(I) is injective. The Ext-functors are the
derived functors of HomQGr(C)(F,−).

The set L′ = {(F ′, t(G) | F/F ′ is torsion} is cofinal in L, then

HomQGr(C)(F,G) = lim−→ (F ′,t(G))∈L′ HomC(F ′, G/t(G)).

Lemma 2.1. Let Gr(C) be a Krull Schmidt category and assume all simple
objects are in Fin C. Then for any finitely generated functor M in Fin C and
any k, M≥k is also in Fin C.
Proof. We have the following exact commutative diagram.

0

��

0

��
0 �� Ω(M) ��

��

Ω(M/M≥k) ��

��

M≥k �� 0

P

��

P

��
0 �� M≥k �� M ��

��

M/M≥k ��

��

0

0 0

The module M≥k is finitely generated, by the Horseshoe Lemma, we have the
following exact sequence

0→ Ω2M → Ω2(M/M≥k)⊕Q→ Ω(M≥k)→ 0,

with Q a finitely generated projective, hence, Ω(M≥k) is finitely generated.
It follows by induction, M≥k has a projective resolution consisting of finitely
generated projective.

Lemma 2.2. Assume C satisfies the conditions above. Let M ∈ Gr(C) be a
torsion functor and assume N is in Fin C. Then lim−→ n HomC(N≥n,M) = 0.

Proof. Changing M [k] for M , it will be enough to prove

lim−→HomGr(C)(N≥n,M) = 0.

By Lemma 2.1, any truncationN≥k is in Fin C, on the other hand,M = lim−→Mα,
with Mα a functor of finite length.

Then

HomGr(C)(N≥n, lim−→Mα) = lim−→HomGr(C)(N≥n,Mα).

Therefore we have that

lim−→ n HomGr(C)(N≥n,M) = lim−→ n HomGr(C)(N≥n, lim−→ αMα)

= lim−→ n lim−→ α HomGr(C)(N≥n,Mα)

= lim−→ α lim−→ n HomGr(C)(N≥n,Mα) = 0

This completes the proof.
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Proposition 2.3. Let C be a locally finite positively graded Krull-Schmidt cat-
egory with radical r(−.−) = ⊕

i≥1
HomC(−.−)i. If N is finitely generated and M

an arbitrary functor, then

HomQGr(C)(πN, πM) = lim−→HomGr(C)(N≥n,M/t(M))).

Furthermore, if we assume all graded simple are in Fin C, then we have natural
isomorphisms

lim−→ExttC(N≥k,M) = lim−→ExttC(N≥k,M/t(M))

for all t ≥ 0.

Proof. Let N ′ be a subfunctor of N such that N/N ′ is torsion. Since N is
finitely generated, N/N ′ is actually of finite length and (N/N ′)≥k = 0 for large
enough k. This implies N≥k ⊂ N ′ for large enough k. We have proved that
the set {(N≥k, t(M))} is cofinal in L′ . Therefore we have that

HomQGr(C)(πN, πM) = lim−→HomGr(C)(N≥n,M/t(M))).

We proved in Lemma 2.1, that for any k, the functor N≥k is in Fin C. For
each k we have an exact sequence of finitely generated objects

∗) 0→ Ωt(N≥k)→ P
(k)
t−1 → ...P

(k)
1 → P

(k)
0 → N≥k → 0.

For any P
(k)
s and j < k, we have (P

(k)
s )j = 0. Hence, for j < k we have

(Ωt(N≥k))j = 0. The inclusion map N≥k → N≥k−1 it induces maps of projec-

tive functors P
(k)
s → P

(k−1)
s and maps Ωs(N≥k)→ Ωs(N≥k−1). The short exact

sequence

0→ Ωt(N≥k)→ P
(k)
t−1 → Ωt−1(N≥k)→ 0

induces the following exact sequence of direct systems

0→ HomC(Ωt−1(N≥k), t(M))→ HomC(P
(k)
t−1, t(M))→

HomC(Ωt(N≥k), t(M))→ ExttC(N≥k, t(M))→ 0

Since direct limit of directed system is exact, we obtain the epimorphism

lim−→ k HomC(Ωt(N≥k), t(M))→ lim−→ k ExttC(N≥k, t(M))→ 0.

By an argument similar to the one used in Lemma 2.2,

lim−→ k HomC(Ωt(N≥k), t(M)) = 0.

It follows that lim−→ k ExttC(N≥k, t(M)) = 0. Therefore we have that

lim−→ k ExttC(N≥k,M) = lim−→ k ExttC(N≥k,M/t(M)).
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Proposition 2.4. Let C be a positively graded Krull Schmidt locally finite K-
category with radical r(−,−) = ⊕i≥1 HomGr(C)(−,−)i. Assume that all graded
simple are in Fin C. Then given functors M,N in Fin C, we have an iso-
morphism πM � πN if and only if there exists some integer n such that
M≥n � N≥n.

Proof. Since πM � πM≥n and πN � πN≥n, then it is clear that M≥n � N≥n
implies πM � πN .

Assume πM � πN . Then it is clear that there is a map f : N≥k → M
such that π(f) is an isomorphism. It follows that Ker f and Coker f are tor-
sion, M/ Im f of finite length implies that for some integer � the restriction
f : N≥� → M≥� is an epimorphism. Since N≥� and M≥� are in Fin C they are
in particular finitely presented and it follows Ker f is of finite length. Then
there exists some n such that f : N≥n →M≥n is an isomorphism.

Proposition 2.5. Let C be a positively graded Krull-Schmidt locally finite K-
category with radical r(−,−) = ⊕i≥1 HomGr(C)(−,−)i. Assume all graded sim-
ple are in Fin C. If L is a functor in Fin C then for any functor M there are
isomorphisms

ExtkQGr(C)(πL, πM) = lim−→ t ExtkC(L≥t,M).

Proof. We prove the claim by induction on k. The case k = 0 has been already
proved. Assume Extk−1

QGr(C)(πL, πM) = lim−→ t Extk−1
C (L≥t,M). The injective

envelope of a torsion free functor is torsion free. Let

∗)0→M/t(M)→ I → Ω−1(M/t(M))→ 0

be exact with I the injective envelope of M/t(M). Applying π we have the
following exact sequence.

∗∗) 0→ π(M/t(M))→ π(I)→ π(Ω−1(M/t(M)))→ 0.

It follows by [9] that π(I) is injective. The exact sequence ∗∗) induces by the
long homology sequence the following exact sequence.

Extk−1
QGr(C)(πL, πI)→ Extk−1

QGr(C)(πL, π(Ω−1(M)/t(M)))→
ExtkQGr(C)(πL, π(M/t(M)))→ 0.

Applying the long homology sequence to ∗) and taking direct limits we obtain
the exact sequence

lim−→ t Extk−1
C (L≥t, I)→ lim−→ t Extk−1

C (L≥t,Ω−1(M/t(M))→
lim−→ t Extk−1

C (L≥t,M/t(M))→ 0.

By induction we have natural isomorphisms

lim−→ t Extk−1
C (L≥t, I) � Extk−1

QGr(C)(πL, πI)

and

lim−→ t Extk−1
C (L≥t,Ω−1(M/t(M)) � Extk−1

QGr(C)(πL, π(Ω−1(M)/t(M))).
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It follows

lim−→ t ExtkC(L≥t,M/t(M)) � ExtkQGr(C)(πL, π(M/t(M))).

But we have proved

lim−→ t ExtkC(L≥t,M/t(M)) � lim−→ t ExtkC(L≥t,M)

and π(M/t(M)) � π(M). Therefore we have that

lim−→ t ExtkC(L≥t,M) � ExtkQGr(C)(πL, π(M)).

Corollary 2.6. Let C and L be as in the proposition and M a torsion functor.
Then lim−→ t ExtkC(L≥t,M) = 0 for all k ≥ 0.

Lemma 2.7. Let C be a positively graded Krull-Schmidt locally finite K-category
with radical ⊕i≥1 HomGr(C)(−,−)i and {Mα}α∈I , {Nα}α∈I , {Lα}α∈I direct sys-
tems of graded locally finite functors. Then given an exact sequence of systems

0→ Lα →Mα → Nα → 0,

taking inverse limits, the sequence

0→ lim←−Lα → lim←−Mα → lim←−Nα → 0

is exact.

Proof. Dualize the sequence to obtain direct systems, hen take direct limits
and dualize again.

Theorem 2.8. Let C be an Artin Schelter regular category of global dimension
n. Let M,L be torsion free functors , M,L ∈ Fin C. Then for all integers
0 ≤ i ≤ n− 1, there exists natural homomorphisms

μM,L : lim−→ k ExtiC(M≥k, L)→ HomK(lim−→ � Extn−1−i
C (L≥�,Mσ′[τ ], K)

and if M = (−, X), then μM,L is an isomorphism.

Proof. We apply the long homology sequence to 0→ M≥k → M →M/M≥k →
0 to obtain a connecting map ExtiC(M≥k, L) → Exti+1

C (M/M≥k, L). Taking
direct limits we obtain a natural map

lim−→ k ExtiC(M≥k, L)→ lim−→ k Exti+1
C (M/M≥k, L).

By local cohomology we have a natural isomorphism

lim−→ k Exti+1
C (M/M≥k, L) � HomK(Extn−1−i

C (L,Mσ′[τ ], K).

Substituting L≥� for L we obtain maps

lim−→ k ExtiC(M≥k, L≥�)→ HomK(Extn−1−i
C (L≥�,Mσ′[τ ], K).

Consider the exact sequence 0→ L≥� → L→ L/L≥� → 0 and apply the long
homology sequence to obtain the following exact sequence.

Exti−1
C (M≥k, L/L≥�)→ ExtiC(M≥k, L≥�)→ ExtiC(M≥k, L)→ ExtiC(M≥k, L/L≥�).
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Taking direct limits and using Corollary 2.6, we get an isomorphism

lim−→ k ExtiC(M≥k, L≥�) � lim−→ k ExtiC(M≥k, L).

Composing with the above homomorphisms, we obtain a natural homomor-
phism

lim−→ k ExtiC(M≥k, L)→ HomK(Extn−1−i
C (L≥�,Mσ′[τ ], K).

Finally, taking inverse limits over � and the fact that the dual of a direct limit
is an inverse limit we get a natural homomorphism

μM,L : lim−→ k ExtiC(M≥k, L)→ HomK(lim−→ � Extn−1−i
C (L≥�,Mσ′[τ ], K).

It remains to prove that when M = (−, X) the homomorphism becomes an
isomorphism. Since L is torsion free, HomC((−, X)/rk(−, X), L) = 0. The
exact sequence

0→ rk(−, X)→ (−, X)→ (−, X)/rk(−, X)→ 0

induces the following exact sequence

0→ HomC((−, X), L)→ HomC(rk(−, X), L)→
Ext1

C((−, X)/rk(−, X), L)→ 0

Changing L for L≥� we obtain exact sequences

0→ L≥�(X)→ HomC(rk(−, X), L≥�)→ Ext1
C((−, X)/rk(−, X), L≥�)→ 0.

Taking direct limits and composing with the natural isomorphism

lim−→ k Ext1
C((−, X)/rk(−, X), L≥�) � HomK(Extn−1

C (L≥�, (−, X)σ′[τ ]), K),

we obtain the exact sequence

0→ L≥�(X)→ lim−→ k HomC(rk(−, X), L≥�)→ D(Extn−1
C (L≥�, (−, X)σ′[τ ]))→ 0.

As above, there is a natural isomorphism

lim−→ k HomC(rk(−, X), L≥�) � lim−→ k HomC(rk(−, X), L).

Hence we obtain the exact sequence

0→ L≥�(X)→ lim−→ k HomC(rk(−, X), L)→ D(Extn−1
C (L≥�, (−, X)σ′[τ ]))→ 0.

Taking inverse limits and using the fact lim←− �L≥� � ∩L≥� = 0, we get that

lim−→ k HomC(rk(−, X), L) � lim←− � HomK(Extn−1
C (L≥�, (−, X)σ′[τ ]), K).

It follows that

lim−→ k HomC(rk(−, X), L) � HomK(lim−→ � Extn−1
C (L≥�, (−, σ′X)[τ ]), K).

We have proved μM,L is an isomorphism for i = 0. We now prove that μM,L is
an isomorphism for i > 0. We have the exact sequence

ExtiC((−, X), L)→ ExtiC(r
k(−, X), L)→

Exti+1
C ((−, X)/rk(−, X), L)→ Exti+1

C ((−, X), L)
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with ExtiC((−, X), L) � Exti+1
C ((−, X), L) = 0. Taking direct limits and using

local cohomology we obtain the isomorphisms

lim−→ k ExtiC(r
k(−, X), L) � lim−→ k Exti+1

C ((−, X)�rk(−, X), L)

� HomK(Extn−i−1
C (L, (−, X)σ′[τ ]), K).

Changing as above L≥� for L, we obtain the isomorphisms

lim−→ k ExtiC(r
k(−, X), L≥�) � HomK(Extn−i−1

C (L≥�, (−, X)σ′[τ ]), K).

We obtain by a similar argument as above the exact sequence

lim−→ k Exti−1
C (rk(−, X), L/L≥�)→ lim−→ k ExtiC(r

k(−, X), L≥�)→
lim−→ k ExtiC(r

k(−, X), L)→ lim−→ k ExtiC(r
k(−, X), L/L≥�)

But we proved

lim−→ k Exti−1
C (rk(−, X), L�L≥�) = lim−→ k ExtiC(r

k(−, X), L/L≥�) = 0.

It follows that

lim−→ k ExtiC(r
k(−, X), L) � HomK(Extn−i−1

C (L≥�, (−, X)σ′[τ ]), K).

Finally taking inverse limits over � and commuting with the duality we obtain
the natural isomorphisms

lim−→ k ExtiC(r
k(−, X), L) � HomK(lim−→ � Extn−i−1

C (L≥�, (−, X)σ′[τ ]), K).

Remark 2.9. Observe that if we assume C locally finite positively graded but
not necessary generated in degree 0, 1, the above arguments would give natural
isomorphisms

lim−→ k ExtiC((−, X)≥k, L) � HomK(lim−→ � Extn−i−1
C (L≥�, (−, X)σ′[τ ]), K).

We can generalize the previous theorem to get the following formula.

Theorem 2.10. Let C be an Artin Schelter regular category of global dimen-
sion n. Let M,L be torsion free functors, M,L ∈ Fin C. Then for all integers
0 ≤ i ≤ n− 1, there exists a natural isomorphisms

ExtiQGr(C)(πM, πL) � D(Extn−1−i
QGr(C)(πL, πMσ′[τ ]).

Proof. We prove the theorem by induction on the projective dimension of M ,
the case M being projective was proved in the previous theorem. So we may
assume that M has projective dimension k, and that the claim has been proved
for all functors of projective dimension less than k.

Consider the exact sequence 0→ ΩM → P →M → 0, with P the projective
cover of M . For any integer s, we obtain the truncated exact sequence

0→ ΩM≥s → P≥s → M≥s → 0,
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which induces an exact sequence

ExtiC(P≥s, L)→ ExtiC((ΩM)≥s, L)→
Exti+1

C (M≥s, L)→ Exti+1
C (P≥s, L)→ Exti+1

C ((ΩM)≥s, L)

Taking direct limits we obtain the exact sequence

lim−→ s ExtiC(P≥s, L)→ lim−→ s ExtiC((ΩM)≥s, L)→
lim−→ s Exti+1

C (M≥s, L)→ lim−→ s Exti+1
C (P≥s, L)→ lim−→ s Exti+1

C ((ΩM)≥s, L)

On the other hand, the exact sequence

0→ ΩMσ′[τ ]→ Pσ′[τ ]→Mσ′[τ ]→ 0

induces for each k the exact sequence

→ Extn−i−2
C L≥k, (ΩMσ′[τ ])→ Extn−i−2

C (L≥k, Pσ′[τ ])→
Extn−i−2

C (L≥k,Mσ′[τ ])→→ Extn−i−1
C (L≥k,ΩMσ′[τ ])→

Extn−i−1
C (L≥k, Pσ′[τ ])→

Taking limits and dualizing we the exact sequence

D(lim−→ k Extn−i−1
C (L≥k, Pσ′[τ ]))→ D(lim−→ k Extn−i−1

C (L≥k,ΩMσ′[τ ]))→
→ D(lim−→ k Extn−i−2

C (L≥k,Mσ′[τ ]))→ D(lim−→ k Extn−i−2
C (L≥k, Pσ′[τ ]))→

→ D(lim−→ k Extn−i−2
C L≥k, (ΩMσ′[τ ]))

By induction hypothesis we have the following isomorphisms

lim−→ s ExtiC(P≥s, L) � D(lim−→ k Extn−i−1
C (L≥k, Pσ′[τ ])), lim−→ s ExtiC((ΩM)≥s, L)

� D(lim−→ k Extn−i−1
C (L≥k,ΩMσ′[τ ])), lim−→ s Exti+1

C (P≥s, L)

� D(lim−→ k Extn−i−2
C (L≥k, Pσ′[τ ])), lim−→ s Exti+1

C ((ΩM)≥s, L)

� D(lim−→ k Extn−i−2
C (L≥k,Mσ′[τ ])).

Using Proposition 2.8 and Five’s Lemma, it follows that

lim−→ s Exti+1
C (M≥s, L) � D(lim−→ k Extn−i−2

C (L≥k,Mσ′[τ ])).

Therefore we have proved that

Exti+1
QGr(C)(πM, πL) � D(Extn−2−i

QGr(C)(πL, πMσ′[τ ]).
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3. Applications to finite dimensional algebras

We recall the following notions and results from [7, 8]. Let A be a finite di-
mensional K-algebra, modA the category of finitely generated A-modules, and
let C be a stable Auslander-Reiten component, Agr(C) is Artin Schelter regular
of global dimension 2. Applying the above results we obtain generalizations
of the results on preprojective algebras concerning local cohomology and Serre
duality [5]. We have proved in [8] we also have similar results on noetherianess
and Gelfand-Kirillov dimension [4, 1, 2]. We recall results from [8].

Theorem 3.1 ([8]). Let C be a regular Auslander-Reiten component of the
finite dimensional algebra Λ and E(S(C)) the associated Ext category. Then
the following statements are true:

1) E(S(C)) is a Frobenius category of radical cube zero.
2) The categories E(S(C))/ socE(S(C)), Cop/r2 are equivalent and

Gr(Cop/r2) is stably equivalent to Gr(S), where Gr(S) decomposes as a
product of sections Gr(S) =

∏
Gr(Sj)×Gr(Sop

j ) and each Sj is an hered-
itary category, such that Sj and Si have the same quiver Q but Sj and
Sop
j have opposite quivers.

3) If the quiver Q of Sj is finite, then Sj is of infinite representation type.

Definition 3.2. Let C be a graded K-category, a graded functor F such that
the functors Fi defined by Fi(X) = F (X)i, have finite support. The growth of
F is the function φF : Z → Z given by φF (i) =

∑
X∈sup pF

dimK F (X)i.

Definition 3.3. Define the Gelfand Kirillov dimension of F as

GKdim(F ) = lim
n→∞

logn(

n∑
k=0

φF (k)).

Theorem 3.4 ([8]). Let C be a regular Auslander-Reiten component of the
finite dimensional algebra Λ. Assume the quiver Q of the sections Sj of E(S(C
)) is infinite and is not of type A∞, D∞ or A∞

∞.

1) Then any finitely presented functor F ∈ gr(Agr(C)) is either of finite
length or it has infinite Gelfand Kirillov dimension.

2) The category of finitely presented functors gr(Agr(C)) is not noetherian.
3) If E(S(C)) has sections of type A∞, D∞ or A∞

∞, then gr(Agr(C)) is noe-
therian of Gelfand-Kirillov dimension 1 or 2.

We obtain the following application of the results for Section 2.

Theorem 3.5 ([8]). Let C be a regular Auslander-Reiten component of the
finite dimensional algebra Λ. Assume E(S(C)) has sections of type A∞, D∞
or A∞

∞. Then the quotient category of the finitely presented functors modulo
the functors of finite length, Qgr(Agr(C)) is noetherian, of dimension one, with
Serre duality.
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If the sections of E(S(C)) are infinite not of type A∞, D∞ or A∞
∞, then

Qgr(Agr(C)) is not noetherian, but the category Qgr(Fin(C)) satisfies Serre
duality.
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