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Abstract

We prove that R, C, (6, H, ]ﬁl, O and (*)) are the only third-power
associative absolute valued real algebras with a nonzero weak central
element. We show also that if A is a third-power associative absolute
valued real algebra with a nonzero alternative element, then A is power-
associative, and isomorphic to R, C, H or O.
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1 Introduction

By definition, an absolute-valued algebra is an algebra A over K(= R or C)
endowed with an absolute value, i.e. a norm || - || on the vector space of A
satisfying ||zy|| = ||z|/||y|| for all x,y € A. The classical algebras R, C, H
(Hamilton’s quaternions) and O (Cayley’s octonions) are the only absolute
valued unital real algebras [8].

Let A € {C,H, O}. We recall that *A, f& and A* are obtained by endowing
the normed space A with the products -y = 2*y, -y = 2*y* and x -y = zy*,
respectively, where x — z* means the standard involution.

El-Mallah and Micali show that if A is a flexible absolute valued real al-
gebra, then A is finite-dimensional [6]. In 1983, El-Mallah proves that if A is
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a third-power associative pre-Hilbert absolute valued real algebra, then A is
finite-dimensional [4]. In 1990, El-Mallah shows that if A is a finite-dimensional
third-power associative absolute valued real algebra, then A is flexible, and

isomorphic to R, C, (*j, H, ]If]I, 0O, O or P [5]. We can also find in [1] a classifi-
cation of absolute valued algebras satisfy the identity (z,x,z) = 0 and contain

a nonzero flexible algebraic element [1]. Cuenca shows that R, C, (Ej, H, }ﬁl, O

*
and O are the only third-power associative absolute valued real algebras with
one idempotent commuting with all the idempotents [2, Theorem 4.1]. Kandé
and Rochdi show that if A is a third-power associative absolute valued real

algebra with nonzero central element, then A is isomorphic to either R, C, (*j,
* *
H, H, O or O [3, Theorem 1].

In this work, we show that R, C, ((*j, H, ]If]l, O and (6) are the only third-power
associative absolute valued real algebras containing a nonzero weakly central
element (Theorem 3.2) and R, C, H and O are the only third-power asso-
ciative absolute valued real algebras containing a nonzero alternative element
(Theorem 3.6).

2 Notations and Preliminary

Let A be an algebra over any field of zero characteristic. Given elements
a,b,cin A, we set (a,b,c) := (ab)c — a(bc) for the associator of a, b and ¢;
[a,b] := ab — ba for the commutator of a and b; and a e b := $(ab+ ba) for the
symmetrized product of a and b.

Recall that A is said to be third-power associative if it satisfies the identity
(z,z,2) = 0, which can also be rewritten as [x?, ] = 0. Linearizing we get the
identity

(y,x,x)—f—(x,y,x)—l—(a:,x,y) =0, (21)

which can also be rewritten as
2%, y] + [2z @ y, 2] = 0 (2.2)

The algebra A is said to be (121)-power associative whenever A satisfies the
identity (z,z% x) = 0. Every third-power associative algebra is (121)-power
assoclative.

Recall also that an element e in A is called central (respectively, flexible)
if [e, x] = 0 (respectively, (e, z,e) = 0) for every z in A, and e is called square
root of central element if R? = L?. An element e in A is called weak central
element if e is flexible and square root of central element. It is clear that any
central element is a weak central element.
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Let A € {C,H,O}. We precise that 1 is a nonzero weak central element in
*A and A*, but 1 is not central in *A and A*. We also specify that the algebras
*A and A* do not contain a nonzero central element.

An element e in A is called alternative if e(ex) = e*x and (ze)e = xe? for
every r € A.

If an absolute valued algebra A contains a nonzero element e such that e
is central and alternative, then A has a unit element [8, Theorem 2.

If A contains a nonzero flexible idempotent e, then e is a nonzero central
idempotent in B := (A, ) where z -y = (ex)(ye) [1].

Lemma 2.1. Let A be a (121)-power associative real algebra containing a
nonzero alternative element e. If e is flexible, then the set {e,e* €3} is com-
mutative.

Proof. Tt is clear that [e?,e] = 0 and [63,6] = (e,e*,e) = 0. We have also
e?e? = e(ee?) = e(e’e) = ee3e and e3e? = (e3e)e = (ee®)e = ecde, and hence
e?e3 = e3e?. So the set {e,e?, e} is commutatlve O

Lemma 2.2. Let A be a (121)-power associative real algebra containing a
nonzero alternative element e. If e is flexible, then [e*e3, e] = 0.

Proof. Linearizing (z, 2% x) = 0, we obtain

(z,2%,y) + (v, 2y + yx,z) + (y, 2% x) = 0. (2.3)
Taking z = e and y = €? in (2.3) and keeping in mind that e is flexible and ¢?
commutes with €3, we have

0 = (e,e*e®)+ (e,ee® +ede,e) + (e, €%, e)
(e,e?,e®) + (e, €% e)
= (%) —e(e’e®) + (e’e)e — (¢7)?
(63 2) (6263)
<€2€3> (6263)
]

Lemma 2.3. Let A be a (121)-power associative real algebra containing a
nonzero alternative element e. If e is flexible, then the equalities [e?, e’e] = 0

and €%, e?e®] = 0 holds.
Proof. Keeping in mind Lemma 2.1 and 2.2, we have
e’ (e’e’) = e(e(e’e®)) = e((e*c®)e) = (e(e’e®))e = ((e*c®)e)e = (e%e”)e?,
and
e’(e’e) = e(e(e’e)) = e((ee®)e) = e((e’e)e) = (e(e’e))e = ((e€”)e)e = (ee®)e® = (e’e)e’.
[
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3 Main results

Proposition 3.1. Let A be a third-power associative absolute valued real al-
gebra containing a nonzero flexible idempotent e. Then A is isomorphic to R,

C, (é, H, ﬁ, O, O orP.

Proof. The normed space of A becomes an absolute valued algebra with nonzero
central idempotent e under the product = - y = (ex)(ye). Then the absolute
value of A derives from an inner product [5, Theorem 3.6] and A is finite-
dimensional [4, Theorem 2.13]. The result follows from [5, Theorem 4.1]. [

Theorem 3.2. Let A be a third-power associative absolute valued real algebra
containing a nonzero weak central element e. Then A is isomorphic to R, C,

é, H, ]f—il, O or 0.

Proof. Taking x = e and y = x in (2.2) we obtain

0 = e, z] + [2c o0z, €]
= [é*,z] + [ex + we, €]
= [e*, 7] + (ex)e + (ze)e — e(ex) — e(we)
= [e?, 2] + (ex)e — e(xe)
= [e? 2]

and so e? is central. Therefore, by [3, Theorem 1], A is isomorphic to R, C, (*j,
H, T, O or O. 0

Lemma 3.4 is proven in [1]. Nevertheless, for the sake of completeness, we
give here a proof.

Remark 3.3. If A is an absolute valued real algebra containing a norm-one
central algebraic element, then A is a pre-Hilbert space. An effect, as A(a) is
finite-dimensional, so there ezists (norm-one) b € A(a) such that a = R,2(b) =
ba?. Since normed space of A becomes an absolute valued real algebra with
nonzero central idempotent element a under the product x -y = b(zxy), then A
is a pre-Hilbert space [5, Theorem 3.6].

Lemma 3.4. Let A be an absolute valued real algebra containing a nonzero
flexible element e such that A(e) is isomorphic to C. Then A is a pre-Hilbert
space.

Proof. We can assume, without lost of generality that ||e|| = 1. It is clear that
there exists a € A(e) such that ae = ea = e. The normed space of A becomes
an absolute valued real algebra B with nonzero central element a under the
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product x -y = (ex)(ye). Since the subalgebra B(a) of B generated by a
is contained in A(e), so B(a) is finite-dimensional, and hence a is a central
algebraic element in B. The result follows from Remark 3.3. m

Remark 3.5. Let A be a third-power associative real algebra containing a
nonzero alternative element e. Taking x = e and y = x in (2.1) and keeping
in mind that e is alternative, we have 0 = (e,e,x) + (e,z,¢e) + (x,e,e) =
(e,xz,€), so e is a nonzero flexible element. Since e is alternative, we have
ee? = e(ee) = e%e, (e*e)e = (%)? and e(ee?) = (€%)?, and so ec® = 636 = (e?)?.
Taking x = €* and y = € in (2.2), we obtain 0 = [(€?)?, €*] + 2[e?e?, €?], and
hence [(€?)?,€3] = 0 because of Lemmas 2.1 and 2.3. Taking also v = e* and
y = e in (2.2) and keeping in mind that [e®,e] = 0, we get

0 = [(€*)? €] + 2[ee, €]
= [(e")? e] +2[(e*)*, €”]
[(e)?,e],
(

and taking v = e and y = (¢3)? in (2.1) and keeping in mind that e is flexible
and [(€*)?,e] = 0, we obtain

0 = (e,e, (63)2) + (e, (63)2,6) + ((63)2, e, e)
= (e, (%)) + ((€°)?, e, e)
= e’(e’)? —e(e(e’)?) + ((€*)%e)e — (€)%
= (") —e((e*)2e) + (e(e¥)D)e — ()¢
— 62 63)2 - (63)262
= [e% (")

The following result is an extension of [8, Theorem 2].

Theorem 3.6. Let A be a third-power associative absolute valued real algebra
containing a nonzero alternative element e. Then A is isomorphic to R, C, H

or Q.

Proof. We can assume, without lost of generality that |le| = 1. We will dis-
tinguish the following cases:

First case. If ¢ is collinear to €. Then e¢* = )e, where A € R\{0}.
By putting, ey = A7'e, we have e = e5. Since e is a nonzero alternative
element, so ey is an alternative nonzero idempotent, and hence ey(epz) = egx
and (xeg)ep = xeg for all z in A. So egz = wey = x for every z in A, because
A has no nonzero divisor of zero. The result follows from [8, Theorem 1].

Second case. Suppose that e is not collinear to e and keeping in mind the
preliminary lemmas and Remark 3.5. Since the set {e, e?, e} is commutative,
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so the vector subspace Re + Re? + Re? is an inner-product space [8, Lemma
1]. Suppose that dim(Re + Re? + Re®) = 3. There exists a norm-one ey €
Re + Re? 4+ Re? orthogonal to e and e?, we obtain

leg = €*[l = Il(eo = e)(eo +€)ll = lleo —elllleo +ef =2,
and e?e? = efe?, and hence €3 + ¢ = 0 [8, Lemma 3]. Furthermore, since
lleg = (e*)?11 = [l(eo — €*)(eo + €)= Jleo = €®[[lleo + €| = 2,

and (e?)%eZ = e3(e?)?, so €3 + (e*)? = 0 by [8, Lemma 3]. We deduce that
(e?)? —e? = (e* — €)(e* + e) = 0 and keeping in mind that A has no nonzero
divisors of zero, we have e? = e or e? = —e, absurd because e is not collinear
to 2. We realize that dim(Re + Re? + Re?) = 2, so ¢* € Re + Re?. Since
(€2, e®] = 0, by [2, Corollary 2.3], we obtain (e?)? € Re?+Re?, and hence (€2)? €
Re + Re? because Re? + Re? C Re + Re?. We obtain A(e) = Re + Re?, so the

commutative two-dimensional absolute valued real algebra A(e) is isomorphic
*

to C or C [8, Theorem 3], and consequently A(e) is isomorphic to C, because
C not contains a nonzero alternative element.

This implies that A is a pre-Hilbert space because of Lemma 3.4, so A is
finite-dimensional [4, Theorem 2.13] and hence A is flexible [5, Corollary 4.2].
Since A contains C, therefore by [6, Théoreme 3.3], A is isomorphic to C, H
or O. O
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