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Abstract
We extend the Theory of Differentially δ-Uniform Functions in its

various confines, now its influence is multiplied; we provide a special
collection of K-Algebras. This solves hot challenges, e.g.: 1). We gen-
eralize for the second time Dillon’s switching method in the (general)
differentially uniform context. 2). With a singular style, we develop the
analysis of Differential Equations exclusively for Galois fields (Section
9.4: an in-depth discussion, plus questions that require immediate ac-
tion); on which there is hardly any research done and in a completely
different sense, where the investigated functions have co-domain that
is never the structure Fpn . Besides, we generalize the elegant BDC of
Steinbach-Posthoff, and construct fascinating Chain Complexes. We in-
troduce the Fpn-Schrödinger equation (and the newest Black-Scholes).
3). We obtain the novel Fundamental Theorem of Calculus associated
with a derivative order type other than the famous Fractional. Further,
we conduct the corresponding Algebraic Attack on the functions that
currently offer the best resistance, and identify the survivors.
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1 Introduction

(Continued) 4). We solve the theoretical-concrete problem posed by Courtois
and Pieprzyk about finding any non-linear S-box F not equivalent to the mul-
tiplicative inverse function, admitting a type of so many implicit equations
Q(x1, . . . , xn, y1, . . . , yn) = 0, where Q has a low algebraic degree. 5-6). Re-
garding the prominent conjecture stated by Budaghyan, Carlet, and Leander
concerning the CCZ-inequivalence between their exotic function Fn and power
functions—which we show to be true for all known power APNs—we deter-
mine the form of the mappings applied by them and by us. This also allows us
to ensure that the protagonist function we conceive, J(ni)∞i=0

, answers the prob-
lem of finding an APN family that is not CCZ-equivalent to the existing ones
(where APN is being the optimal in terms of differential attacks, and is optimal
in the sense that every derivative of it minimizes the sum of squares portion
of the Walsh-Hadamard coefficients

∑
λ∈F2n

W 2
∆af

(0, λ)); furthermore J(ni)∞i=0

is exceptional APN. 7). We contribute to the powerful problem of Méaux and
Roy of finding Boolean functions whose derivative also has a high algebraic de-
gree. 8). Finding powerful S-boxes that are resistant to differential attacks has
been a priority for the past 30 years, especially when the field degree is even
(the case in most applications). We make a significant contribution to an open
problem staten by Bracken and Leander, by constructing an infinite class of
differentially 4-uniform functions (also covering the next cases, δ = 6, 8). As for
the criteria of choosing an S-box as a component for an iterated block cipher,
Blondeau, Canteaut, and Charpin emphasize that it should be differentially 4-
uniform whose differential spectrum contains a small |{b ∈ F2n ; δf (a, b) = 4}|.
Our permutations Ĩx̃0,0 and Ĩx̃0 satisfy this requirement. 9). We show that
the pioneering infinite class of highly nonlinear functions of R. Carranza Call

2;n−1

owns all algebraic degrees including the optimum.
In the vast cosmos of applications based upon discrete objects, the field of

even characteristic F2n is ubiquitous, and is the one to which we shall pay most
attention. To provide randomness, major symmetric cryptosystems are using
functions from F2n to itself, called S-boxes, which are required to show a low
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differential uniformity (to provide protection against differential cryptanalysis
and to its variants) and a high nonlinearity (to protect against linear cryptan-
alytic attacks) (see [104, 11, 109], and [52]). A secure S-box in a substitution-
permutation network should be a permutation with a high algebraic degree
to protect against higher order differential attacks and the Berlekamp-Massey
attack (see [87, 88, 17, 33], and [31]). We must take a short break to point out
that, in addition, we propose problems that will require a certain recognizable
mental caliber, those New Representative Open Problems are: 3, 4B, 5,
8, 11, 13, 17, 19, 21, and 23 to 33.

The Advanced Encryption Standard (AES) uses the multiplicative inverse
function, which is a differential 4-uniform function. Finding infinite classes of
APN (even differential 4 or 6-uniform) permutations with high nonlinearity
on even degree field extensions is a current challenge. In [18], Bracken and
Leander listed this as an open problem. To know more about a class of sporadic
binomials permutations with low differential uniformity (δ = 4, 6), see the
article of Charpin and Kyureghyan (2017) in [39]. Then Qu, Tan, How Tan,
and Li [109] gives us a survey of differentially 4-uniform permutation families,
even without the requirement of high nonlinearity (see Carlet [32], and Zha
[138]).

Note that we can identify the field F2n with the vector space Fn2 over F2, de-
pending on how much algebraic structure is needed. We construct new families
of δ-uniform permutations in even degree field extensions (also for odd degree
extensions), where δ can be 4, 6, and 8. Our functions are represented via
an explicit formula in univariate polynomial representation, the more desired
representation. In this process, we obtain new general and practical theorems
that can be widely applied in any finite field, e.g., to construct new S-Boxes.

We had the privilege of discovering results of unusual advantage and ap-
plicability, on which the construction of our functions is based; we talk about
several powerful results such as, for example, the Partition of Finite Fields by
Affine Functions, Theorem 4.9. A sort of infinite classes of functions such as the
subclass Ki,n−k(x) = x2

2i−2i+1+(x2
2i−2i +x2

2i−(2)2i+1+x2
2i−(2)2i +x2

2i−(3)2i+1+

x2
2i−(3)2i + . . .+x2

i+1+x2
i
+x+1)Tr1n(a1x) . . . T r

1
n(an−kx) is granted by bases

of the underlying structure of vector space. For this reason we shall call this
generatrix method as follows: generatrix granted by the underlying space Fn2 .
Suggested Problem 1: investigate this method for the complementary case,
that is, for Fpn—identifying it with its corresponding underlying vector space
Fnp—for odd characteristic p. The generatrix granted by the underlying space
Fn2 is a powerful generator; for each function F , this method is able to gener-
ate a family of functions f , of the form f = Fo(Id + Pr), with cryptographic
strengths very similar to those held by F ; in the case where, for example, F
is a power function, possible limitations in the implementation cost are cir-
cumvented by our f . The way how we change the affine subspace (a kn,r-flat),
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delineated mainly by the equation |Ua1 ∩ · · · ∩Uar | = 2n−r, which in an special
case can be made of a few points distributed by an internal symmetry, leads
us to exceptional results (consult Subsection 4.1). We dedicate Section 5 to
the analysis of the algebraic degree of this stellar family. The algebraic degree
is a main aspect in the construction of any function classified as powerful,
we develop this idea by pre-visualizing fascinating and diverse mathemati-
cal constructions; this will be the centerpiece that will allow, for example, to
develop the analysis of Differential Equations properly for Fpn in its most gen-
eral context, refer to Section 9. We also cover the Boundary Value Problem on
the Évariste Galois Field, the time-dependent Fpn-Schrödinger-type equation
−µ∇2

(
Ψ
)
+ V (X,T )Ψ = γ∂T=H̄(Ψ), and the newest Black-Scholes model.

Almost all of the diff. 4-uniform permutations that have been found are
only of algebraic degree n− 1, and functions with that quality are now abun-
dant. Each of the current functions may be interesting in their formulation
and present a certain degree of non-vulnerability to a particular type of at-
tack. Furthermore, it is inevitable to carry out a comparison between them;
it is worth noting that in Subsection 8.1 we present the advantages and weak-
nesses in the race to design the strongest S-box. Taking into account the set of
cryptographic qualities of interest (in Section 8 we provide a list of these quali-
ties), our functions achieve definitely remarkable and widely diverse outcomes,
belonging to the almost empty select subset with top-tier quality within the
existing families. In this competition, the well-known power functions (which
are diff. 4-uniform when the degree of the field is even), which were the first
to appear, have been taken into account. We carry out this comprehensive
comparison in a side-by-side format in a tabular form (see Tables 3 to 7).
Much of the research community presents their constructions of differentially
4-uniform permutations by modifying the image values in different ways. Al-
most all of them rely on the function used by AES, thus interconnecting the
different points of view within this portion of the topic, which is known to
be competitive, attracting people of proven brilliance. One can start with
the desire to make a fairly general statement, but sometimes some properties
are lost, asking ourselves: specifically, regarding the final result, which
family or families of S-Boxes are the most efficient?. We list them in
Sub-section 8.1. Our method produces in both fields (whose degree is even,
but also includes those of odd degree), families in each of the top three cat-
egories, that is, permutations f for ∆(f) = 4, ∆(f) = 6, and ∆(f) = 8, in
addition, this class has all possible algebraic degrees. The functions built by
the different authors present interesting architectures that can be used in more
than one application.

World-scale leaders whose outlook is in common with ours are the fol-
lowing: Claude Shannon Institute, למדע! !Nויצמ !Nמכו (Weizmann Institute of
Science), IBM, Eidgenössische Technische Hochschule Zürich (ETH Zurich),
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Centre National de la Recherche Scientifique (CNRS), Universitetet i Bergen,
Army Research Office, among a few other top institutions. In order to pro-
vide complete coverage of this deepening of the discipline, the author believes
it convenient to retain part of his Ph.D. thesis [111]. Specifically, our fertile
research has reached a priceless development by touching on hot topics of the
highest applicability. The following is strongly related to ours, a discrete dy-
namical system is defined as the pair (f,X) made up of a function f : X −→ X,
where X is a finite set. An artificial neural network is a special case that, due
to its applications, is worth mentioning. The dynamics of f is given by the se-
quence of compositions: (including the identity idX and f itself), fof , fofof ,
etc. This immediately produces the directed graph whose vertex set is X and
the edge set is the set of a→ b such that b = f(a) (there may be edges of the
form a→ a); it can be observed that from this graph all state transitions of f
can be deduced, meaning that this graph (called the state space of f) is a way
of representing the dynamics of f . Our functions are also discrete dynamical
systems, and may be useful in that framework [121, 129].

A large constituent of the universe has a discrete configuration. It is a must
to describe discrete objects, R, with some finite cardinality |R|, of course, this
is done for infinite pairs (R, |R|). We will focus on the abstraction of the widely
applicable Z, that is, we will consider rings (R,+,×) that are commutative
with multiplicative identity, and where the cancellation property (Theorem
1.2; making R an integral domain) can be applied. Let us look at the situation
of the ring of square matrices with n rows with entries in R. Overall, this
matrix ring, Mn×n(R), is not commutative, consider n > 1 and R(̸= {0})
commutative; meanwhile, the matrix product in Mn×n(R) is defined following
a row-column algorithm via the operations on the commutative ring R. In this
senseMn×n(R) is not so non-commutative, it works closely connected with the
commutative. Then the same applies to the so-called general linear group, of
n × n invertible matrices, GL(n,R), also to its subgroup of all matrices with
determinant 1, SL(n,R) = ker(det : GL(n,R) → R∗) (recall that if R is a field
with multiplicative group R∗, then GL(n,R) can be expressed in terms of its
SL(n,R), as the semidirect product GL(n,R) = SL(n,R)⋉ R∗). Everything
is going splendidly, since such an integral domain turns out to be a Field; at
this point R acquires the old natural feature belonging to the physical world
of having quite a bit of cyclicity, more precisely, R without a point (0) is
cyclic. Theorem 1.3 is a pinnacle fact, putting our exclusive attention on finite
fields. We want that when we manipulate the polynomial functions (channels
that communicate-transform the elements of one ring into those of another;
isomorphisms and any ring homomorphism are examples of this) on R we have
the division algorithm (i.e. R[X]: a Euclidean domain). The structure R[X]
(see Theorem 1.6) is just an integral domain, and the struggle to understand
how it works is not over. First, we introduce some notations.
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Theorem 1.1 [65]. The following facts apply to an ideal:
1). Every ideal is the kernel of a ring homomorphism and vice versa.
2). Assume R is a commutative ring with identity. The ideal (in R) M is

a maximal ideal if and only if the quotient ring R/M is a field.
3). If R is a field, the maximal ideals in R[x] are the ideals ⟨f(x)⟩ generated

by irreducible polynomials f(x).

Theorem 1.2 [65] (Cancellation Property). Let R be a commutative ring
with identity. Then R is an integral domain if and only if for every b, c in R,
and every nonzero element a ∈ R such that ab = ac, we have b = c.

Theorem 1.3 [65]. Finite Fields are the only finite Integral Domains.

Let p be a prime number. Let us define the category Ga(char=p) consisting

of the collection of objects of the form ob(Ga(char=p))
def
= {GF (p),GF (pl1),

GF (pl1l2),GF (pl1l2l3), . . .} and whose collection of morphisms from A to B, for
each A,B ∈ ob(Ga(char=p)) we delimit it through:

HomGa(char=p)
(A,B)

def
=

{
Hom(A,B), if A ⩽ B,

{0(x)}, if A ⩽̸ B

so that Theorem 1.5 is respected; Hom(A,B) denotes the collection of ho-
momorphisms from A to B. It is noteworthy that ob(Ga(char=p)) consists
of almost cyclic objects, see Theorem 1.4; in general, for (R,+,×) not iso-
morphic to the prime field Zp, the additive group (R,+) (⊇ (R∗,+)) can-
not be cyclic (more generally, as an Abelian group, (R,+) is isomorphic to
the direct product of cyclic groups Zpα1 × Zpα2 × · · · × Zpαn , where every
αi = 1). Throughout the article, we shall deal with classes of functions be-
yond morphisms in HomGa(char=p)

(A,B), i.e. a variety of non-homomorphisms

in the category Ca(char=p) consisting of ob(Ca(char=p))
def
= ob(Ga(char=p)) and

HomCa(char=p)
(A,B) = H̃omGa(char=p)

(A,B)
def
= HomSet(A,B), where Set, writ-

ten in bold, represents the category of sets. By the way, regarding category
theory one can look at Tom Leinster’s book [90].

Theorem 1.4 Let R be a finite field. The nonzero elements in R form
the group under multiplication (R∗,×), which is also isomorphic to the cyclic
group Zpn−1, where R has size equal to pn.

Theorem 1.5 [65]. If R is a field then any nonzero ring homomorphism
from R into another ring, R′, can only be an injection.

Theorem 1.6 [65]. The following sequence of facts about the ring R[x]
holds:
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1). If R is a ring (if it is commutative), then R[x] is a ring (commutative
too). In such a case, if both f(x), g(x) ∈ R[x], then deg(fg) ≤ deg(f)+deg(g).

2). If R is an integral domain, then R[x] is an integral domain. If both
f(x), g(x) ∈ R[x] ∖ {0}, then deg(fg) = deg(f) + deg(g). The units of R[x]
are just the units of R.

(Note: there will be times when we denote a function F by its image F (x)).
3). If R is a field, then R[x] is (still) an integral domain.
4). If R is a commutative ring such that R[x] is a Euclidean Domain (i.e.,

an integral domain equipped with a Division Algorithm), then R is necessarily
a field. Part (4) also works when R[x] is a Principal Ideal Domain.

Theorem 1.7 [65]. Let K a field. The polynomial ring K[x] is a Eu-
clidean Domain. Specifically, if τ(x) and κ(x) are polynomials in K[x] with
κ(x) nonzero, then there are unique q(x) and r(x) in K[x] such that τ(x) =
q(x)κ(x) + r(x) with r(x) = 0 or deg(r(x)) < deg(κ(x)).

Theorem 1.8 [94] (Hermite-Dickson’s Criterion (1897)) f ∈ Fpn is a per-
mutation polynomial of Fpn if and only if the following conditions hold:

1). f has exactly one root in Fpn;
2). for each integer t with 1 ≤ t ≤ pn−2 and t ̸= 0 mod (p), the reduction

of f t(x) mod (xp
n − x) has degree ≤ pn − 2.

Definition 1.9 [31] F : Fn2 → Fn2 is linear if F is a linearized polynomial
over F2n, that is, F (x) =

∑n−1
i=0 cix

2i , where ci ∈ F2n. For any c ∈ F2n, F + c
is called affine (Definition 1.11 generalizes this classic definition). A core type

is the mapping Trmn (x) =
∑n/m−1

i=0 x2
im
, called the trace function from F2n onto

its subfield F2m (note that some authors denote it by Trnm(x) instead).

Definition 1.10 ([31, 26]). Let the functions F,G, P1, P2, A0 : F2n → F2n,
where P1, P2 are affine permutations, and A0 is affine, then:

1). G and P1oGoP2 are called affine equivalent (A-E also AE).
2). G and P1oGoP2 + A0 are called extended affine equivalent (EA-E also

EAE).
3). F and G are called Carlet-Charpin-Zinoviev equivalent (CCZ-E) if their

graphs GF and GG are affine equivalent.

Any permutation is CCZ-equivalent to its inverse. EA-equivalence implies
CCZ-equivalence, but not vice versa [24].

Definition 1.11 [27] Every function F : F2n → F2n has a unique repre-
sentation as a univariate polynomial over F2n of degree at most 2n − 1, i.e.,
F (x) =

∑2n−1
i=0 cix

i, ci ∈ F2n. Every integer i ∈ [0, 2n − 1], has unique a
binary expansion i =

∑n−1
s=0 is2

s, is ∈ {0, 1}. The algebraic degree of F is
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denoted (as opposed to its degree which is denoted as deg(F )) and defined as
d0(F ) = max{ω2(i); i is the exponent of a term in F , with nonzero coefficient},
where ω2(i) =

∑n−1
s=0 is is the 2-adic weight of i. A function of algebraic degree

d0(F ) ≤ 1, resp. d0(F ) = 2, resp. d0(F ) = 3 is called affine, resp. quadratic,
resp. cubic.

The simple definition that follows extends the algebraic degree initially
defined for the ring F2n [x], to the ring Fpn [x], which will fit perfectly in the
subsequent results.

Definition 1.12 (Generalized Algebraic Degree) Every function F : Fpn →
Fpn has a unique representation as a univariate polynomial over Fpn of degree at

most pn−1, i.e., F (x) =
∑pn−1

i=0 cix
i, where ci ∈ Fpn. Every integer i ∈ [0, pn−

1] has unique a expansion in base p, i =
∑n−1

s=0 isp
s, where is ∈ {0, 1, · · · , p−1}.

The algebraic degree of F is denoted and defined as d0(F ) = max{ωp(i); i is the
exponent of a term in F}, where ωp(i) =

∑n−1
s=0 is. Of course, if T is a term in

F , then it cannot have coefficient equal to zero.

Definition 1.13 Let r ≥ 1. Let us call Fd0=rpn [X] (respectively, by Fd
0≤r
pn [X])

the set of functions (in the variable X running Fpn) whose formulas belong to
Fpn [X] mod (Xpn −X) whose terms have algebraic degree equal to r (respec-
tively, they have algebraic degree at most r, but including the set of all constant
functions over Fpn).

Definition 1.14 ([31, 26]). Let f : F2n → F2n, a, b ∈ F2n, the Walsh-
Hadamard Coefficient is given by: Wf (a, b) =

∑
x∈F2n

(−1)Tr
1
n(bf(x)+ax), where

Tr1n(x) =
∑n−1

i=0 x
2i is the trace function from F2n into F2. The set Wf =

{Wf (a, b); a, b ∈ F2n , b ̸= 0} is called the Walsh (Walsh-Hadamard) spectrum
of f . The set {|Wf (a, b)|; a, b ∈ F2n , b ̸= 0} is called the extended Walsh
spectrum of f.

Definition 1.15 (Reed-Muller Codes) ([97, 43, 42]). Let v = (v1, v2,
. . . , vn) denote a vector which ranges over Fn2 , and f the vector of length 2n

obtained from a Boolean function f(v1, v2, · · · , vn) over Fm2 . The r-th order
binary Reed-Muller code RM(r, n) of length N = 2n, for 0 ≤ r ≤ n, is the set
of all vectors f, where f(v1, v2, · · · , vn) is the corresponding Boolean function
which is a polynomial of degree at most r.

Theorem 1.16 ([97]). The weight distribution of the coset of RM(1, n)
which contains f is 1

2
{2n± F̂ (u)} for u ∈ Fn2 , where F̂ is the Hadamard trans-

form of the real vector F of 1′s and −1′s, and the component of F in the place
corresponding to u is F (u) = (−1)f(u).
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The weight distribution of the coset containing f is thus determined by the
Hadamard transform of F.

Definition 1.17 (Nonlinearity) ([43, 60]). The nonlinearity of a Boolean
function f , is defined to be NL(f) = d(f,RM(1, n)) (i.e. the distance of f
from RM(1, n)). Therefore it is also the weight of the coset f + RM(1, n).
And it also equal to the value attained in Theorem 1.16.

We say that f is highly nonlinear whenever the amount NL(f) is high enough
with respect to the required security level, and close enough to one of the
known bounds.

Corollary 1.18 The covering radius of the Reed-Muller code RM(1, n),
ρ(RM(1, n)) = maxf NL(f), where f varies over all Boolean function of order
≤ n.

If the algebraic degree is r, it means that the Boolean function belongs
to the r-th Reed-Muller code RM(r, n). The algebraic degree of functions
f : F2n → F2n with d0(f) ≥ 2 is invariant under EA-equivalence, but not
under CCZ-equivalence (see [35]). The nonlinearity can be expressed in terms
of the Walsh spectrum: NL(f) = 2n−1 − 1

2
max(a,b)∈F2n×F∗

2n
|Wf (a, b)|.

Therefore, the nonlinearity is bounded by the covering radius of the cor-
responding Reed-Muller code. This problem has been investigated by coding
theorists for decades with important results ([43]).

Definition 1.19 [104, 112, 58]. Let G1 and G2 be finite Abelian groups.
A function f : G1 → G2 is differentially δ-uniform if ∀a ∈ G1 − {0} and
b ∈ G2, the equation ∆af(x) = b admits at most δ solutions, where ∆af(x) :=
f(x+a)−f(x) (derivative of f at the point x in the direction a). For δ = 2 (the
optimal situation), the function f is called APN (almost perfect non-linear).
We are mainly interested in the scenario G1 = G2 = F2n. Four equivalent
definitions for APN function (going to the context of finite groups, Abelian or
not, Robert Coulter and Marie Henderson call it semi-planar function [46])
are:

1). The function x −→ f(x+ a)− f(x) is 2-to-1 for all a ̸= 0.
2). f(a)+f(b)+f(c)+f(d) ̸= 0, ∀ distinct a, b, c, d ∈ F2n with a+b+c+d =

0.
3). (Kaisa Nyberg; Thierry Pierre Berger, Anne Canteaut, Pascale Charpin,

and Yann Laigle-Chapuy [105, 20]) For all a ̸= 0,
∑

λ∈F2n

W 2
∆af

(0, λ) = 22n+1.

4). (Refer to the French article by François Rodier [115]) A polynomial map
f is APN iff the affine surface f(x0)+ f(x1)+ f(x2)+ f(x0+x1+x2) = 0 has
all of its rational points contained in the surface (x0+x1)(x1+x2)(x0+x2) = 0.
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The set {δf (a, b); a ∈ G1 − {0}, b ∈ G2} is called the differential spectrum
of f , where δf (a, b) denotes the size |{x ∈ G1; ∆af(x) = b}|. In addition,
∆(f) = ∆f := δ = max

a∈G1−{0}, b∈G2

δf (a, b). If f is APN on infinitely many

extensions of F2n, it is called exceptional APN.

Lemma 1.20 ([23, 24, 34]). The differential spectrum and extended Walsh
spectrum are CCZ-invariants. Consequently, the differential uniformity and
nonlinearity of functions, f : F2n → F2n, are preserved.

1.1 Towards the Derivative in the Fpn Context

The (point-wise) derivative is one of the tools par excellence in the analysis of
a function, f , whose fundamental notion is that it informs about the change
that f undergoes around a point, this change being determined by the points
neighboring the point. The Fréchet derivative considers functions from one
normed vector space (over R or C) to another, f : V → W . All V,W , and
their norm functions are tied to R; given any v ̸= 0 in V , there always exists
ϵv in V for ϵ as close (under the usual topology of R) to 0 as desired. Then,
when the derivative exists (at a point x) it becomes natural to associate to
it a (bounded) linear transformation Lx : V → W , where it makes sense to
approximate f locally by Lx on some open ball B∥.∥V (x; ϵ), such that Lx is the
derivative of f at x; similarly it happens with the Gâteaux differentiability
(weaker than Fréchet differentiability), but the following well-known fact also
takes place: if the Fréchet derivative exists, then the Gâteaux derivative also
exists, and both coincide. In the beautiful terrain of a function f : M →
N , where M (and N) are differentiable manifolds with dimensions m (and
n), taking advantage of charts (φM,α : Uα → Rm, Uα) of M around x and

(φN,β : Ũβ → Rn, Ũβ) of N around f(x), we can translate the derivative
of f at x (if it exists) as the derivative at φM,α(x) of the induced function
φN,βofoφ

−1
M,α : Rm → Rn (M is defined so that there is independence with

respect to the chart around x that is applied). The derivative of f at x is
the linear transformation between tangent spaces dfx : TxM → Tf(x)N such
that dfx(v) = (foλ)′(0), where v is the equivalence class ∼= of some curve λ on
M (Two curves are equivalent according to ∼=, λ1 ∼= λ2: if they pass through
x, i.e. x = λ1(0) = λ2(0), and the quantity d

dt
(φM,αoλ1)(at t = 0) is the

same for both), we shall denote v as λ′(0); Similarly, (foλ)′(0) symbolizes the
equivalence class corresponding to the curve foλ in N . IfM is not a Euclidean
space, then clearly sums like x+ v are meaningless, where v ∈ TxM ; however,
given y ∈ Uα such that φM,α(y) belongs to some open ball B∥.∥Rm (φM,α(x); ϵ),
dfx can be applied to the equivalence class τ ′(0) of the curve τ over M , such
that τ(0) = x, d

dt
(φM,αoτ)(t = 0) = φM,α(y) − φM,α(x), to obtain an element

in N (i.e. f̃(y) := φ−1
N,β(φN,β(f(x)) +

d
dt
(φN,βoµ)(t = 0))) that in this sense
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the charts allow ∥.∥Rn-approximate to f(y), where µ′(0) = dfx(τ
′(0)). Again

a linear map. Re-thinking abstractly, when we deal with a finite set of points
as is the pure case of the structure Fpn , it is not possible to generalize the
derivative in such senses (tied to R, where the derivative at a point is a linear
map) with any of the 2 definitions of derivative that this school of researchers
uses to analyze the problems in our area (for example, Differential δ-Uniformity
of S-Boxes). The so-called formal derivative (that is, d

dx
(a0 +

∑k
i=1 aix

i) :=

a1+
∑k

i=2 iaix
i−1) is not convenient, since the derivative of abundant functions

leads to a trivial function in which valuable information about f is lost; in
this respect, making use of such a formal derivative would be forcing one
to continue using the derivative that was adequate for the non-discrete case.
The derivative of f at a point according to Definition I, seen as a function
of h (∈ Fpn), is in general a non-linear map. Given such scarcity, the most
strategic definition (universally used in the literature) of the derivative is given
by comparisons in the dependent variable of the function f for a given point
and direction. In the continuous case endowed with its usual topology (say,
f : C → C), if the derivative exists (equal to some L ∈ C), L is obtained
precisely from the set of comparisons, analogously, we will obtain it from a set
of comparisons performed in our universe Fpn . The limit when h goes to 0 is
taken to capture information about f at x. But this information comes from
the set {f(x+h)−f(x)

h
; as h ̸= 0}. The rate of change f(x+h)−f(x)

h
is approximated

by L, that is, f(x + h) − f(x) is approximated by the linear function (of
h ∈ C) Lh. Beyond this linear part, we can consider the complete expression
of f(x + h) − f(x). That is, we investigate the set {f(x + h) − f(x); where
h ̸= 0}, note that here we do not need to take any limit. Let x ∈ Fpn , if we
vary h ∈ Fpn \ {0} in some way, then exactly the quantity governed by f ,
∂h(f)(x) := f(x+h)− f(x) (Definition I of the derivative of f , also denoted
by ∆h(f) and Dh(f)), represents the natural device to measure the behavior

of function f around f(x). We introduce the second definition, ∂̃h(f)(x) :=
f(x+h)−f(x)

h
(Definition II of the derivative of f), here the numerator stores the

information governed by f . As a consequence, the derivative in the degenerate
case such that h = 0 (in Fpn) exists: ∂0(f) = 0; also ∂̃0(f) = 0, subject to using
the following convention with respect to the multiplicative inverse function,
Y(0) = 0 (used in the literature for the field F2n ; similarly, we can identify
Y(x) with the bijection xp

n−2 onto Fpn). In the sense that equivalent goals are
reached, using Definition II is equivalent to using Definition I (any direction
h will be chosen other than 0); for example, Theorem 9.14, also Theorem
9.16, holds for both definitions. In the continuous case, it is common to find
important functions such that their lateral or partial derivatives coincide in
all directions, making it convenient to speak of a derivative with uniqueness
(independent of all directions); but there is no problem if one considers the
derivative over specific directions h (more generally, for each h this derivative



100 Roberto C. Reyes Carranza

is unique, fortunately), as is also done in the continuous case when exploring
subspaces of functions. In our context, the derivative is defined given some
direction h, which allows us to analyze functions. We define the first-order
derivative via ∂

(1)
h1

(f) := ∂h1(f). The derivatives of order m for m ≥ 2 are

defined iteratively, ∂
(m)
h1···hm(f) := ∂hm

(
∂
(m−1)
h1···hm−1

(f)
)
, where h1, · · · , hm ∈ F∗

pn ,
analogously for the other type of derivative.

Remark for Sec. 9.3. We will call the general type of derivation, c∂a
1−c ,

a genuine derivation (or sufficiently invertible) to indicate that there is an
integral operator associated with it. Considering that the integral is the
device that allows us to access the measurement of Area, through the 2nd
FTC, the R. Carranza-Ellingsen-Felke-Riera-Stănică-Tkachenko-Borisov-Chew-
Johnson-Wagner mod (p)-c-integral operator in the direction a makes it a re-
ality to conceive the quantity area under the curve (a.u.c.) for a function
f : Fpn → Fpn , from a point x1 to a point x2 in Fpn , that is, a.u.c. of
f = Ip−1,a,1−c; [x1,x2] f := (Ip−1,a,1−c f)|at x=x2 − (Ip−1,a,1−c f)|at x=x1 . So the
a.u.c. of f is independent of the path between x1 and x2, but it still depends
on the function Ip−1,a,1−c f . Let us give the following conceptual aspect. The
quantity Ip−1,a,1−c; [x1,x2] f is the input that leads us to access the measure-
ment (Area) of the abstract-2-dimensional object for a function whose domain
and codomain are both discrete sets built with a field structure. By the way,
one can explore some variant (which is not necessarily carried out over the
complete domain of integration) of the convolution f ∗ g, suitable enough for
signal processing , this time for quality signals like f, g : Fpn → Fpn .
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Table 1: Nonlinearities of Monomial APN (semi-planar [46]) Functions on
F2n .
In [84] Gohar Kyureghyan established a new version (extended) of the def-
inition of crooked map (Thomas D. Bending and Dmitry Fon-Der-Flaass
[8]) so that crooked maps are also available when n is even. J. F. Dillon
and Hans Dobbertin performed the Walsh-Hadamard spectrum calculations
for the Kasami-Welch and Gold families, showing that they coincide when
gcd(r, n) = 1 [55, 56]. S. Yoshiara and U. Dempwolff showed that two APN
power functions are CCZ-equivalent if and only if they are cyclotomic equiva-
lent [135, 54]. R.C.R. Carranza [112] demonstrated the inequivalence accord-
ing to Carlet-Charpin-Zinoviev between the Kasami-Welch function—as well
as Welch, Niho, and applicable to Dobbertin—and the unusual Budaghyan-
Carlet-Leander Gold based function. André Weil [131] obtained bounds for the
Kloosterman sums. Later, Gilles Lachaud and Jacques Wolfmann [86], based
on the fact that a not supersingular elliptic curve is isomorphic to a Klooster-
man curve, and on results of Taira Honda, William C. Waterhouse, and René
Schoof, found the form of the Kloosterman sums. The names Leonard Carlitz
and Saburo Uchiyama [36] sound familiar when it comes to the nonlinearity of
the multiplicative inverse function.

f(x) = xd Exponent d Constraints Nonlinearity Ref.

Gold 2r + 1 gcd(r, n) = 1 2n−1 − 2
n−1
2 , n odd [72]

(AE to a 2n−1 − 2
n
2 , n even [104]

crooked map) [84]

Kasami-Welch 22r − 2r + 1 gcd(r, n) = 1 2n−1 − 2
n−1
2 , n odd [81]

2n−1 − 2
n
2 , n even [78]

[112]

Welch 2r + 3 n = 2r + 1 2n−1 − 2
n−1
2 [60]

[76]
[29]

Niho 2r + 2r/2 − 1 n = 2r + 1, r even 2n−1 − 2
n−1
2 (n odd) [61]

2r + 2(3r+1)/2 − 1 n = 2r + 1, r odd
Inverse 22r − 1 n = 2r + 1 If n is odd: [104]

⌊2n−1 − 2
n
2 ⌋ϵ

2, gcd(⌊2n−1−2
n
2 ⌋,2)+ [31]

(⌊2n−1 − 2
n
2 ⌋ − 1)ϵ

2, gcd(⌊2n−1−2
n
2 ⌋−1,2)

[36]

where ⌊x⌋ := ℓ ∈ Z, with ℓ ≤ x < ℓ+ 1,
ϵi,j: Kronecker’s delta.

(Not APN for n even) If n is even: 2n−1 − 2
n
2 .

Dobbertin 24r + 23r + 22r + 2r − 1 n = 5r [62]
[27]
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Auxiliary Nomenclature:

id, or Id: identity function.

Fpn also GF (pn): the finite field of characteristic p (a prime number) and
degree n.

Fpn ∖ A also Fpn − A means the set complement of set A.

GF : the graph of the function F

d0(F ): algebraic degree of F . Note that some authors use deg(F ) to refer
to d0(F ), while others prefer to use d0(F ).

deg(φ): degree of the polynomial φ.

d0X(F ): algebraic degree of F with respect to the variable X.

degX(φ): degree of the polynomial φ with respect to the variable X.

|A| denotes the size (cardinality) of set A.

gcd(a, b): the greatest common divisor of a and b.

Z+ (and Z+
0 ): the set of positive integers (and non-negative integers), re-

spectively.

A ⩽ B: A is subfield (respectively, is subring) of B, if A and B are fields
(respectively, rings).

def
=, := both classical symbols are reserved to define a function, for example.

ker(f): the kernel, also known as the null space, of a linear transformation
f is the part of the domain that f maps to the zero of the co-domain.

F
(
S,K

)
: indicates the vector space (over K) of functions (f : S → K)

between (a set) S ̸= ∅ and (a field) K. More generally, if K is replaced by a
(commutative) ring R, then F

(
S, R

)
is an R-module.

F
(
S
)
: indicates F

(
S, S
)
.

F∗
pn : stands for Fpn ∖ {0}. As for a ring R, R∗ = R∖ {0}.
f(a), f(A): we use parentheses to evaluate the function f over points as

well as over sets, say a and A, respectively.

NL(f): as nl(f) is also used in the literature to denote the non-linearity
of the function f .

Fpn : is the algebraic closure of Fpn .
R[x]: polynomial ring in the variable x over R (with coefficients in R).

p: is a prime number throughout the article; while, for instance, P and P ,
can denote something as specified where they are used.

a|b: a divides b.

Warning: when the occasion warrants it, we will denote a function f by
its value f(x) (on sporadic occasions); it will always be clear to distinguish
when it is f itself and when it is its image.
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2 Dillon-Edel-Pott Approach

The technique of switching an APN function ([67, 58, 57]) uses group ring (a
free module) notation, to obtain functions with low differential uniformity by
changing a component function of a known such function, a process that was
first identified by John Dillon.

Definition 2.1 Let F be an arbitrary field (the elements of this ring are
the scalars) and (G,+) a group (we shall consider G to be Abelian and not
necessarily finite; its elements are the basis). Let the set F[G], wich consists of
all elements of the form a =

∑
g∈G agg, where ag ∈ F and the sum runs over

some finite subset of G (called the support of a), together with the addition in
a component-wise fashion, multiplication and the scalar multiplication, which
are defined respectively as

∑
g∈G agg +

∑
g∈G bgg :=

∑
g∈G(ag + bg)g,∑

g∈G agg .
∑

g∈G bgg :=
∑

g∈G(
∑

h∈G ahbg−h)g, and

α.
∑

g∈G agg :=
∑

g∈G(αag)g.

(F[G],+, . , . ) becomes an interesting algebra, the so called group algebra of G
over F.

Given a (n, n) function (F : Fn2 → Fn2 ), consider the group algebra F[Fn2 × Fn2 ],
where the formal sums

∑
v∈Fn

2
c(v)(v, F (v)), for c(v) ∈ F, denote its elements.

We focus on the case c(v) ∈ F2 ⊆ F. We associate a group algebra element
corresponding to the graph of the function F , GF :=

∑
v∈Fn

2
1(v, F (v)). Let U

a subgroup of G, consider the canonical group homomorphism: ϕU : G −→ G
U
,

where ϕU(g) = g+U . This group homomorphism can be extended by linearity
to the homomorphism:

ϕU : F[G] −→ F[G
U
]

D =
∑

g∈G agg ϕU(D) :=
∑

g∈G ag(g + U)

ϕU(D) =
∑

g∈G ag(g+U) =
∑

g+U∈G
U
(
∑

h∈g+U ah)(g+U), the last sum is in

terms of the cosets g+U , where we take the sum of all coefficients ah such that
h+U = g+U . If D has only coefficients (ag) 1 or 0, so that D =

∑
g∈G, ag=1 1g

corresponds to a set D♯ = {g; ag = 1} ⊆ G, then the coefficient of g + U in
ϕU(D) is the following sum in F:∑

h∈g+U

ah(∈ {0, 1}) =
∑

h∈g+U, ah=1

1 = |D♯ ∩ (g + U)|.
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In particular, if each coset of U meets D♯ in at most one element, i.e. |(g +
U) ∩D♯| ∈ {0, 1}, ∀g ∈ G, then:

ϕU(D) =
∑

g+U∈G
U

|(g + U) ∩D♯|(g + U) =
∑

g+U∈G
U
, |(g+U)∩D♯|=1

g + U

and it has only coefficients 0 and 1. This is the case if U is a subgroup of (⩽)
{0} × Fn2 .

Definition 2.2 [67] Let U be a subgroup of Fn2 × Fn2 . We say that the
functions F and H : Fn2 → Fn2 are switching neighbours with respect to U if
ϕU(GF ) = ϕU(GH). We say that F and H are switching neighbours in the
narrow sense if U ⩽ {0} × Fn2 and when U is viewed as a F2-vector space,
dim(U) = 1.

If F and H are switching neighbors with respect to U , we may obtain H from
F by first projecting GF onto ϕU(GF ), and then lifting this element to GH ,
which give us the images of H. The subgroup U ⩽ {0}×Fn2 has the advantage
that the coefficients of ϕU(GF ) are 0 and 1 only, since the cosets of {0} × Fn2
(and therefore also the cosets of U) meet GF no more than once. GF can be
seen as our D♯ above. In this case, ϕU(GF ) corresponds to a mapping FU : Fn2
→ Fn

2

U ′ with FU(v) := F (v) +U ′ and U ′ = {u; (0, u) ∈ U}, where U ′ is basically
the same as U .

Now we study the equation ϕU(GF ) = ϕU(GH) in more detail, first consider
ϕU(GF ):∑
x∈Fn

2

1((x, F (x)) + U) =
∑

(x, F (x)) + U ∈ Fn
2×Fn

2

U

(
∑

h ∈ (x, F (x)) + U

1h)((x, F (x)) + U)

as a formal sum in F[F2n×F2n

U
]. Then ϕU(GF ) = ϕU(GH) as group ring elements

if and only if ϕU(GF )−ϕU(GH) =
∑

x∈Fn
2
0((x, F (x))+U) =

∑
x∈Fn

2
0{(x, F (x)+

u);u ∈ U ′}. Then {(x, F (x) + u);u ∈ U ′} = {(x,H(x) + u);u ∈ U ′}, ∀x ∈ Fn2 ,
i.e. {F (x) + u;u ∈ U ′} = {H(x) + u;u ∈ U ′}, ∀x ∈ Fn2 ⇔ H(x) ∈ F (x) + U ′,
∀x ∈ Fn2 .

Lemma 2.3 Let F , H : Fn2 → Fn2 , and let U ⩽ {0} × Fn2 . Then FU = HU

iff (0, F (v) −H(v)) ∈ U , ∀ v ∈ Fn2 . If U = {(0, 0), (0, u)}, then FU = HU iff
there is a Boolean function f : Fn2 → F2 such that H(v) = F (v) + f(v).u.

Lemma 2.3 shows that one may obtain all switching neighbors of F in the
narrow sense (with respect to a one-dimensional subspace) by adding a Boolean
function f times a vector u ̸= 0. Let F be an APN function, the following
theorem of Yves Edel and Alexander Pott [67] gives a necessary and sufficient
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condition for f to produce another (not necessarily equivalent) APN function
by the application of the switching method:

Theorem 2.4 [67]
Assume that F : Fn2 → Fn2 is an APN function. Let u ∈ Fn2 , u ̸= 0, f : Fn2

→ F2 be a Boolean function, and H(v) := F (v)+ f(v).u. Then: H is an APN
function ⇐⇒ (For all x, y, a ∈ Fn2 , (F (x) + F (x + a) + F (y) + F (y + a) = u
=⇒ f(x) + f(x+ a) + f(y) + f(y + a) = 0)).

The following theorem set up a general method for constructing new quadratic
APN functions from known ones.

Theorem 2.5 [26] Let F : F2n → F2n be a quadratic APN function, let
f : F2n → F2m be a quadratic function where m is a divisor of n, φF (x, a) =
F (x) +F (x+ a) +F (a) +F (0), and φf (x, a) = f(x) + f(x+ a) + f(a) + f(0).
If for every a ∈ F∗

2n there exists a linear function la : F2n → F2m such that:
1). φf (x, a) = la(φF (x, a)) on F2n × {a},
2). For every u ∈ F∗

2m, if φF (x, a) = u for some x ∈ F2n then la(u) ̸= u.
Then F + f is an APN function.

By application of Theorem 2.5 Budaghyan et al. founded an APN function
(see Theorem 7.3) which possesses a simple and closed polynomial formula.

3 An Ultimate Generalization of Dillon Switch-

ing Method Towards δ-Uniform Classes

Both theorems 2.4 and 2.5 are major results in the theory of APN Functions;
we can show that Theorem 2.4 implies Theorem 2.5 when f is a quadratic
and Boolean function (m = 1). For the non-Boolean case (m > 1) neither
implies the other. We complete this historical development—our Theorem 3.1
generalizes Theorem 2.5. On the other hand, it also generalizes Theorem 2.4.
Moreover, Theorem 3.1 generalizes a previous generalization of Theorem 2.4,
catapulting it to the differentially δ-uniform scenario, proved in the Ph.D. dis-
sertation (2020) [111]. In this respect, our next theorem answers the question,
given a function F of class differentially δ-uniform, how should the function G
be so that the sum F +G is of the same class as F . The diagram below shows
the historical development of the Switching Method; for a collection of new
switching neighbors we proved, see [111]. As for differentially (c, δ)-uniform
functions, c = 1 corresponds to the usual derivative, given in Definition I in
Subsection 1.1. While c ̸= 1 corresponds to a convenient modification of the
derivative called c-derivative, which also has the property of being linear.
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can

b
e
com

b
in
ed

w
ith

th
at

of
R
.C
arran

za
to

com
p
lete

all
cases.

In
th
is
d
iagram

,
an

arrow
from

A
to

B
in
d
icates:

resu
lt
in

A
gen

eralizes
resu

lt
in

B
.

A
P
N

F
u
n
ction

s
B
ergm

an
an

d
C
ou

lter
(2022)

[21]

∖∖

Figure 1: †1: George Boole International Prize, †2: Mathematics in France
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Theorem 3.1 (Differentially Uniform Version-II)Assume that F : F2n

→ F2n is a differentially δ-uniform function. Let m a divisor of n, f : F2n →
F2m, ∆af a derivative of f , A∆af(z) = {x ∈ F2n ; ∆af(x) = ∆af(z)}, Ǎ∆af(z) =
F2n − A∆af(z), and H(x) = F (x) + f(x) on F2n. Then: H is a differentially
δ-uniform function ⇐⇒ For all a ̸= 0 and δ + 2 mutually distinct values
distributed in two non-empty sets xi’s∈ A∆af(xi0 )

, for some xi0 ∈ F2n, and x′j’s

∈ Ǎ∆af(xi0 )
,
(
∆aF (xi) + ∆aF (x

′
j) = ωx′j(xi0), where ωx′j(xi0) ∈ F∗

2m, implies

∆af(xi) + ∆af(x
′
j) ̸= ωx′j(xi0)

)
.

Proof. We shall prove the contrapositive of both statements.
Case 1: H is not differentially δ-uniform =⇒

(
∃ a ̸= 0 and δ + 2 mutually

distinct values distributed in two non-empty sets xi’s∈ A∆af(xi0 )
, for some

xi0 in F2n , and x′j’s ∈ Ǎ∆af(xi0 )
, such that

(
∆aF (xi) + ∆aF (x

′
j) = ωx′j(xi0)

and ∆af(xi) + ∆af(x
′
j) = ωx′j(xi0), where ωx′j(xi0) ∈ F∗

2m

))
. Proof. H is

not differentially δ-uniform, then ∃ a ̸= 0, b ∈ F2n such that the equation
∆aH(x) = b has a solution set SH with |SH | ≥ δ + 2. If we assume that all
solutions belong to the nonempty set A∆af(x̃), for some x̃ ∈ F2n . Then, for
any x ∈ SH , ∆aH(x) = ∆aF (x) + ∆af(x) = ∆aF (x) + ∆af(x̃) = b. Given
b−∆af(x̃), we have that SH ⊆ SF , where SF is the solution set of the equation
for the uniform differentiability of function F , b−∆af(x̃) = ∆aF (x). Thence
|SF | ≥ δ + 2 solutions, which contradicts the fact that F is differentially δ-
uniform. That is, SH cannot be contained in only one set like A∆af(x̃). Thus,
∃ xi0 ∈ SH − A∆af(x̃) such that SH ∩ A∆af(xi0 )

̸= ∅ and SH ∩ Ǎ∆af(xi0 )
̸= ∅.

Then, ∀xi ∈ SH ∩ A∆af(xi0 )
, ∀x′j ∈ SH ∩ Ǎ∆af(xi0 )

:

∆aF (xi) = b−∆af(xi0) and ∆af(xi) = ∆af(xi0), and (1)

∆aF (x
′
j) = b− λx′j and ∆af(x

′
j) = λx′j , where λx′j ̸= ∆af(xi0). (2)

Adding the systems of equations (1) and (2), there are a ̸= 0 and δ + 2
mutually distinct values (belonging to SH) xi’s∈ A∆af(xi0 )

̸= ∅ andx′j’s ∈
Ǎ∆af(xi0 )

̸= ∅, for some xi0 in F2n , with: ∆aF (xi)+∆aF (x
′
j)+ωx′j(xi0) = 0 and

∆af(xi)+∆af(x
′
j)−ωx′j(xi0) = 0, where ωx′j(xi0) = ∆af(xi0)+∆af(x

′
j) ∈ F∗

2m .

Case 2: Conversely,
(
there exists a ̸= 0 and δ + 2 mutually distinct values

distributed in two non-empty sets xi’s∈ A∆af(xi0 )
, for some xi0 in F2n , and

x′j’s ∈ Ǎ∆af(xi0 )
, such that

(
∆aF (xi) + ∆aF (x

′
j) = ωx′j(xi0) and ∆af(xi) +

∆af(x
′
j) = ωx′j(xi0), where ωx′j(xi0) ∈ F∗

2m

))
=⇒ H is not differentially δ-

uniform. Proof. Let ∆aF (xi0) be equal to b, for some b ∈ F2n . Substituting this
into the equation for all the δ+2 values xi, x

′
j from the hypothesis, ∆aF (xi)+

∆aF (x
′
j) = ωx′j(xi0), we have: ∆aF (x

′
j) = −b + ωx′j(xi0), ∀x′j ∈ Ǎ∆af(xi0 )

.

Thus, ∆aF (xi)+∆aF (x
′
j) = ∆aF (xi)−b+ωx′j(xi0) = ωx′j(xi0), ∀xi ∈ A∆af(xi0 )

.
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Then, ∆aF (xi) = b, ∀xi ∈ A∆af(xi0 )
. Then: ∆aH(xi) = ∆aF (xi) + ∆af(xi) =

b+∆af(xi0), ∀xi ∈ A∆af(xi0 )
and ∆aH(x′j) = ∆aF (x

′
j)+∆af(x

′
j) = ∆aF (x

′
j)+

ωx′j(xi0)−∆af(xi) = −(b+∆af(xi0)), ∀x′j ∈ Ǎ∆af(xi0 )
. Thus the δ + 2 values

xi’s, x
′
j’s solve the equation ∆aH(x) = b+∆af(xi0) (in characteristic 2), and

H as such can not be differentially δ-uniform. □
For n ≥ 2 (the non-trivial case), Theorem 2.5 is a corollary of Theorem

3.1.

Corollary 3.2 Let F : F2n → F2n be a quadratic APN function, let f : F2n

→ F2m be a quadratic function where m is a divisor of n, n ≥ 2, φF (x, a) =
F (x) +F (x+ a) +F (a) +F (0), and φf (x, a) = f(x) + f(x+ a) + f(a) + f(0).
If for every a ∈ F∗

2n there exists a linear function la : F2n → F2m such that:
1). φf (x, a) = la(φF (x, a)) on F2n × {a},
2). For every u ∈ F∗

2m, if φF (x, a) = u for some x ∈ F2n then la(u) ̸= u.
Then F + f is an APN function.

Proof. The prove is given by application of Theorem 3.1. Suppose that
∆aF (xi) + ∆aF (x

′
j) = w for some w ∈ F∗

2m . Adding ∆aF (0), two times,
we have that φF (xi, a) + φF (x

′
j, a) = w. Since F is quadratic, φF (xi, a) is

linear in its first variable. Thus, φF (xi + x′j, a) = w. By the condition (2)
of the linear function la in the hypothesis, we have that la(w) ̸= w. By ap-
plication of the function la and its linearity, and by the condition (1) in the
hypothesis, we have: φf (xi, a) + φf (x

′
j, a) = la(φF (xi, a) + φF (x

′
j, a)) = la(w).

Thus, adding ∆af(0), two times into the previous equation, we have that
∆af(xi) + ∆af(x

′
j) = la(w). Then ∆af(xi) + ∆af(x

′
j) = la(w) ̸= w, we done.

□

4 Novel Approach of Differentially

{4, 6, 8}-Uniform Permutations

Now we present one of our main results using a different method that we
introduce in this article. Our approach is distinct from the switching method
of Dillon. The method of Dillon applies the switching method to find switching
neighbors—only the case when U is a subgroup of a particular form has been
developed—in the narrow sense conform to the Definition 2.2 (we too have
made a contribution with new switching neighbors in that direction, see pages
38 to 46 in [111]). Whereas our way can be understood as us applying a
perturbation along the independent variable.

We give new differentially 4-uniform polynomial permutations in even de-
gree field extension. Furthermore, we provide whole families of such functions
which also have closed forms. Thus, we make a significant contribution to an
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open problem of Bracken and Leander. Note. It is worth noting that to offer
good resistance to differential cryptanalysis, it is not a weakness to have a dif-
ferential delta-uniformity of ∆(f) = 4 (the best candidates are ∆(f) = 4, 6, 8,
i.e. δ = ∆(f) = ∆f very small) without reaching δ = 2, since history has
shown that components (with an extreme algebraic structure) in a cipher have
introduced vulnerability [12]. We must consider the following two features
about the function f : have a very small ∆(f), and for each input difference
a ̸= 0, it must have the number of output differences b that occur ∆f times,
|{(an output difference) b ∈ F2n ; δf (a, b) = ∆f}| = ω∆f

, also small, in this
sense, to have a behavior more similar to an APN function. That is, for each
fixed a ̸= 0, the probability of obtaining a pair (a, b) such that δf (a, b) = ∆f

is small. And to prevent the block cipher from algebraic attacks, the algebraic
degree should be not too small and not too large (so it should not be n− 1).
Our functions are as required but we also have an optimal algebraic degree,
and furthermore, we obtain families with all algebraic degrees (see Section 5).

Permutations, F , with low differential uniformity (∆(F ) ≤ 8) can be used
as S-boxes of symmetric cryptosystems as they have good resistance to differen-
tial attacks. The AES (advanced encryption standard) uses the multiplicative
inverse function, which is a differential 4-uniform function. To improve AES
or to find new standards, we need differential 4-uniform functions. Finding
differential 4-uniform permutation functions with high nonlinearity on even
degree fields is a challenge. In view of these reasons, in [18], Bracken and
Leander listed an open problem:
Open Problem 2. Find more highly nonlinear permutations of even degree
fields with differential uniformity of 4.

Definition 4.1 [138] It is known that if f a permutation on F2n, then its
algebraic degree satisfies that d0(f) ≤ n− 1. If d0(f) = n− 1, the permutation
f is said to have optimal algebraic degree (o.a.d.).

Charpin and Kyureghyan (2017) in [39] discovered a class of sporadic binomials
permutations with low differential uniformity (δ = 4, 6). Yu and Wang built
differential 6 and 4-uniform permutations from the inverse function [136].
Then Qu et al. [109] gives us a survey of differentially 4-uniform permutations
families, even without the requirement of high nonlinearity, see also Carlet [32]
and Zha [138].

4.1 The Granted by the Underlying Space Fn
2 Method

We construct new families of differentially 4-uniform permutations in this arti-
cle in even degree field extensions. Our functions are given through an explicit
formula in polynomial representation having quite desirable shapes. The other
strategic feature of our polynomials is that their coefficients are precisely in the
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prime field F2, on account of Tr1n. This requirement increased the difficulty for
us in the search for these functions, and this, endows them suitable in terms
of computational implementation. Remark. As if it were a gift, these novel
functions are provided exclusively by the field itself, determined by bases of
the host field, for these reasons we name this method as generatrix granted by
the underlying space Fn2 , consult Theorems 4.6, 4.12, and 5.2.

Theorem 4.2 (Differentially {4, 6, 8}-Uniform Permutations)
There is a linearly independent set of Fn2 , (ai)

n−1
i=1 , whith Tr1n(a1) = · · · =

Tr1n(an−1) = 0, such that:
1) If n odd and gcd(n, k) = 1, then the family of functions:

f(x) = fk,g(x) := x2
k+1 + (x2

k
+ x+ 1)Tr1n(a1x) · · ·Tr1n(agx),

is differentially 4-uniform permutation on F2n. Moreover:
If g = n−1, then d0(f) is optimal and nl(f) ≥ nl(x2

k+1)−2 = 2n−1−2
n−1
2 −2.

If g = n− 2, then d0(f) is optimal too and nl(f) ≥ 2n−1 − 2
n−1
2 − 4.

2) If n= 2m, where m is odd and gcd(n, k′) = 2, then the family of functions:

Gk′,g(x) := x2
k′+1 + (x2

k′
+ x+ 1)Tr1n(a1x) · · ·Tr1n(agx),

is differentially γ-uniform permutation on F2n, where γ ∈ {4, 6, 8}, g ∈ {n−
2, n− 1}. Moreover:

If g = n− 1, then d0(Gk′,g) is optimal and nl(Gk′,g) ≥ nl(x2
k′+1)− 2.

If g = n− 2, then d0(Gk′,g) is optimal and nl(Gk′,g) ≥ nl(x2
k′+1)− 4.

3) If n odd and gcd(n, i) = 1, then the family of functions:

Ki,g(x) := x2
2i−2i+1 + (x2

2i−2i + x2
2i−(2)2i+1 + x2

2i−(2)2i + x2
2i−(3)2i+1 +

x2
2i−(3)2i + · · ·+ x2

i+1 + x2
i
+ x+ 1)Tr1n(a1x) · · ·Tr1n(agx),

is differentially 4-uniform permutation on F2n. Furthermore:
If g = n−1, then nl(Ki,g) ≥ nl(F )−2 = 2n−1−2

n−1
2 −2 with F (x) = x2

2i−2i+1,
and d0(Ki,g) is optimal.

If g = n− 2, then d0(Ki,g) is optimal and nl(Ki,g) ≥ 2n−1 − 2
n−1
2 − 4.

4) If n even, then the families of functions Ĩx̃0,0 and Ĩx̃0 are differentially 4-
uniform permutations on F2n, nl(Ĩx̃0) ≥ nl(Y)−2 = 2n−1−2

n
2 −2 (it can also

be seen that there is a subclass for which the quantity 2n−1 − 2
n
2 is reached),

and both d0(Ĩx̃0,0) and d
0(Ĩx̃0) are optimal.

Proof. We will first demonstrate more general results. Then we will obtain
our results as consequences as particular cases. Following the sequence of
propositions in this section followed by those of sections 5 and 6.
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Lemma 4.3 There exists a linearly independent set of Fn2 , (ai)
n−1
i=1 , such

that Tr1n(a1) = · · · = Tr1n(an−1) = 0.

Proof. Let B(n) = {1, α, α2, · · · , αn−1} be a basis over F2n with α a primi-
tive element of the field. If we select B(n) such that it contains elements whose
trace is 1 then we can consider the maximal subsets of B(n): {αe1 , · · · , αep}
and {αep+1 , · · · , αen}, such that Tr1n(α

ei) = 1, for i ≤ p, and Tr1n(α
ei) = 0,

for p < i, for some p. Thus the set of n − 1 vectors {αe1 + αe2 , · · · , αe1 +
αep , αep+1 , · · · , αen} are linearly independent (because of definition of linear
independence) and have trace 0. □

Lemma 4.4 There exist a basis in Fn2 , (ai)ni=1, where its basis vectors have
trace 1.

Proof. Half of the elements in the vector space Fn2 have trace equal to
1. Any vector v of trace 1 can be spanned by a linear combination of basis
vectors because taking the trace of v is the same as taking the trace of the
basis vectors. As such, there must exist at least one vector αe1 ∈ B(n) such
that Tr1n(α

e1) = 1.
Consider the maximal subsets of B(n): {αe1 , · · · , αep} and {αep+1 , · · · , αen},

such that Tr1n(α
ei) = 1, for i ≤ p, and Tr1n(α

ei) = 0, for p < i, for some p.
Then the set of n vectors {αe1 , αe2 , · · · , αep , αe1 +αep+1 , · · · , αe1 +αen} is also
a basis in Fn2 where its elements have trace 1. □

Lemma 4.5 Let c ∈ F2n, i1, i2, · · · , il ∈ N, P ∈ F2[xi1 , xi2 , · · · , xij+l
] a

polynomial with coefficients in F2, and Tr
1
n(a1) = · · · = Tr1n(aj) = 0. Then,

the equation

x+ P(tr(a1x), · · · , T r1n(ajx), T r1n(x2
i1+1 + x tr(1)), · · · , T r1n(x2

il+1 +
xTr1n(1))) = c,

has only one solution,

x =
c+P(tr(a1c), · · · , T r1n(ajc), T r1n(c2

i1+1+c Tr1n(1)), · · · , T r1n(c2
il+1+c Tr1n(1))).

Proof. Uniqueness: Let ϕ(x) := x + P (x), where P (x) := P(Tr1n(a1x),
· · · , T r1n(ajx), T r1n(x2

i1+1+xTr1n(1)), · · · , T r1n(x2
il+1+xTr1n(1))). The equa-

tion for x, ϕ(x) = c, implies x = c+P (x), where the algebraic expression P (x)
is Boolean, i.e. P (x) ∈ {0, 1},∀x ∈ F2n . Then, the equation ϕ(x) = c, has only
two possible solutions, c and c + 1. If x0 is a solution for that equation, then
x0+1 is not a solution: ϕ(x0+1) = x0+1+ P (x0+1)= x0+ P (x0)+1 = ϕ(x0)+
1 ̸= ϕ(x0) = c, because of the identity P (x+1) = P (x) on F2n , in the next para-
graph. Then the solution for this equation is unique. Identity P (x+1) = P (x)
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on F2n : P (x + 1) = P(Tr1n(a1x), · · · , T r1n(ajx), T r1n(x2
i1+1 + 1 + xTr1n(1) +

Tr1n(1)), · · · , T r1n(x2
il+1+1+xTr1n(1)+Tr

1
n(1))) = P(Tr1n(a1x), · · · , T r1n(ajx),

T r1n(x
2i1+1 + xTr1n(1)), · · · , T r1n(x2

il+1 + xTr1n(1))) = P (x), on F2n , because
of Tr1n(a1) = · · · = Tr1n(aj) = 0, and Tr1n(x+ 1)2

k+1 = Tr1n(x
2k+1 + 1) on F2n ,

∀k ∈ N.
Form of the Solution: We consider the following form of the solution,

x = c+ P (c). If P (c) = 0, then ϕ(c+P (c)) = ϕ(c) = c+P (c) = c+0 = c. On
the other hand, if P (c) = 1, then ϕ(c+P (c)) = ϕ(c+1) = ϕ(c)+1 = c+P (c)+
1 = c+ 1 + 1 = c, as in a previous calculations, where ϕ(x0 + 1) = ϕ(x0) + 1.
Therefore in both cases x = c + P (c) is the solution for the given equation,
ϕ(x) = c. □

A Closure Property: Lemma 4.5 provides us a new-specific class of
involutions (A function h is a involution if it is equal to its compositional
inverse (its inverse function), h−1 = h). Theorem 4.6 is true for the case of
the sum of traces into the formula to construct f (e.g. when f is of the form
f(x) = F (x + Tr1n(a1x) + Tr1n(x

2i1+1 + xTr1n(1)))), but it is also true for the
product case (f of the form f(x) = F (x + Tr1n(a1x)Tr

1
n(x

2i1+1 + xTr1n(1)))),
achieving a closure property with respect to both operations, an exciting thing
in Algebra. Furthermore, Theorem 4.6 does not depend on the δ-parameter,
being an influential result in the Theory of Differentially δ-Uniform Functions.

Theorem 4.6 (Classes of Differentially γ-Uniform Functions) Let
F be a differentially δ-uniform function, P belongs to the polynomial ring
F2[xi1 , xi2 , · · · , xij+l

], and Tr1n(a1) = · · · = Tr1n(aj) = 0 over F2n. Then,

the family of functions f(x) = F (x+P(Tr1n(a1x), · · · , T r1n(ajx), T r1n(x2
i1+1 +

xTr1n(1)), · · · , T r1n(x2
il+1 + xTr1n(1)))) is differentially γ-uniform, where δ ≤

γ ≤ 2δ, j + l ≥ 1, and each ik ∈ N.

Proof. Given a ̸= 0, b, both in F2n , considering the corresponding equa-
tion for f to be studied: ∆af(x) = F (x + P (x) + P (x + a) − P (x) + a) −
F (x + P (x)) = b, where P (x) := P(Tr1n(a1x), · · · , T r1n(ajx), T r1n(x2

i1+1 +

xTr1n(1)), · · · , T r1n(x2
il+1 + xTr1n(1))), the same notation as in the previous

Lemma. Since P (x+ a)− P (x) is a Boolean function, for a = 1, it is possible
that the term P (x+a)−P (x)+a becomes zero, then the equation for b = 0 is
reduced to the following equation, ∆1f(x) = F (x+P (x))−F (x+P (x)) = 0, on
F2n∩{x ∈ F2n ; P (x+1)+1 = P (x)}. Case a ̸= 1. Subcase P (x+a)−P (x) =
0: The equation ∆af(x) = b becomes: F (x + P (x) + a) − F (x + P (x)) = b.
Because F is differentially δ-uniform over F2n , this equation has at most δ
solutions for the variable y = x + P (x), which will be denoted by y = yt
and y = yt + a, for 1 ≤ t ≤ δ

2
. In the following steps we solve the equa-

tions in x, x + P (x) = y, for each value of y. The equation x + P (x) = yt,
by Lemma 4.5, has the unique solution x = yt + P (yt), for 1 ≤ t ≤ δ

2
.
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The equation x + P (x) = yt + a, by Lemma 4.5, has the unique solution
x = yt + a + P (yt + a), for 1 ≤ t ≤ δ

2
. Then, there are at most δ solu-

tions. Subcase P (x + a) − P (x) = 1: The equation ∆af(x) = b becomes:
F (x+P (x)+a+1)−F (x+P (x)) = b. Because of F is differentially δ-uniform
over F2n , this equation has at most δ solutions for the variable y = x+ P (x),
which will be denoted by y = zt and y = zt + a + 1, for 1 ≤ t ≤ δ

2
. In the

following we will try to solve the equations in x, x+ P (x) = y, for each value
of y. The equation x + P (x) = zt, by Lemma 4.5, has the unique solution
x = zt+P (zt), for 1 ≤ t ≤ δ

2
. The equation x + P (x) = zt +a + 1, by Lemma

4.5, has the unique solution x = zt+a+1+P (zt+a+1) = zt+a+1+P (zt+a),
because of the identity, P (x+1) = P (x), on F2n , for 1 ≤ t ≤ δ

2
. Then, there are

at most δ solutions. Case a = 1. ∆1f(x) = F (x+P (x)+1)−F (x+P (x)) = b,
because of the identity, P (x+1) = P (x) on F2n , this equation can be treated as
the equations that appear in the case for a ̸= 1. So the equation ∆1f(x) = b
has at most δ solutions. In conclusion, for any a ̸= 0, b, both in F2n , the
equation ∆af(x) = b attains a total of at most 2δ solutions in F2n . □
For any a ∈ F2n , let Sa = {x ∈ F2n ; Tr

1
n(ax) = 0} its corresponding F2-vector

subspace of F2n , and the set Ha = {x ∈ F2n ; Tr
1
n(ax) = 1} its hyperplane,

respectively. For a ̸= 0, dimSa = n− 1. We can show the following lemma:

Lemma 4.7 Let a1 ̸= a2 two nonzero elements in F2n. Then the intersec-
tions Sa1 ∩ Sa2, Sa1 ∩Ha2 , Ha1 ∩ Sa2, and Ha1 ∩Ha2 form a partition of F2n,
such that: |Sa1 ∩ Sa2| = |Sa1 ∩Ha2| = |Ha1 ∩ Sa2| = |Ha1 ∩Ha2| = 2n−2.

Lemma 4.8 Let {ai ∈ F2n ; i = 1, 2, 3} be a F2-linearly independent set of
Fn2 , such that |Sai ∩ Saj | = |{x ∈ F2n ; Tr

1
n(aix) = Tr1n(ajx) = 0}| = 2n−2, for

all i ̸= j. Then, the intersections Sa1∩Sa2∩Sa3, Sai∩Saj∩Hak , Sai∩Haj∩Hak ,
and Ha1 ∩ Ha2 ∩ Ha3 form a partition of F2n, such that: |Sa1 ∩ Sa2 ∩ Sa3 | =
|Sai ∩Saj ∩Hak | = |Sai ∩Haj ∩Hak | = |Ha1 ∩Ha2 ∩Ha3| = 2n−3, for all i, j, k
different from each other.

Proof. We denote by t̃i,j,k = {x ∈ F2n ; Tr
1
n(a1x) = i, T r1n(a2x) = j, T r1n(a3x) =

k}, and ti,j,k = |t̃i,j,k|, for any (i, j, k) ∈ F3
2. From {ai}3i=1 linearly independent,

a1 + a2 + a3 ̸= 0, |Sa1+a2+a3 = {x ∈ F2n ; Tr
1
n(a1x) + Tr1n(a2x) = Tr1n(a3x)}| =

2n−1. The set {t̃0,0,0, t̃0,1,1, t̃1,0,1, t̃1,1,0} defines a partition of Sa1+a2+a3 , then
t0,0,0 + t0,1,1 + t1,0,1 + t1,1,0 = |Sa1+a2+a3| = 2n−1.
Besides, the set {t̃0,0,1, t̃0,1,0, t̃1,0,0, t̃1,1,1} defines a partition of Ha1+a2+a3 =
{x ∈ F2n ; Tr

1
n(a1x)+Tr

1
n(a2x) = Tr1n(a3x)+1}, then t0,0,1+t0,1,0+t1,0,0+t1,1,1 =

|Ha1+a2+a3 | = 2n − |Sa1+a2+a3 | = 2n−1.
From the hypothesis |Sai ∩ Saj | = 2n−2 we have a common cardinality:

|Sai ∩Haj | = |Hai ∩ Saj | = |Hai ∩Haj | = 2n−2, for all i ̸= j in {1, 2, 3}. Then,
taking into account the partitions, we have the following system of 14 linear
equations (in order from left to right) in the 8 variables, ti,j,k:
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t0,0,0 + t0,0,1 = |Sa1 ∩ Sa2| = 2n−2, t0,0,0 + t1,0,0 = |Sa2 ∩ Sa3| = 2n−2,
t0,0,0 + t0,1,0 = |Sa1 ∩ Sa3| = 2n−2, t0,1,1 + t0,1,0 = |Sa1 ∩Ha2| = 2n−2,
t0,1,1 + t1,1,1 = |Ha2 ∩Ha3| = 2n−2, t0,1,1 + t0,0,1 = |Sa1 ∩Ha3| = 2n−2,
t1,0,1 + t1,0,0 = |Ha1 ∩ Sa2| = 2n−2, t1,0,1 + t0,0,1 = |Sa2 ∩Ha3| = 2n−2,
t1,0,1 + t1,1,1 = |Ha1 ∩Ha3 | = 2n−2, t1,1,0 + t1,1,1 = |Ha1 ∩Ha2| = 2n−2,
t1,1,0 + t0,1,0 = |Ha2 ∩ Sa3| = 2n−2, t1,1,0 + t1,0,0 = |Ha1 ∩ Sa3| = 2n−2,
t0,0,0 + t0,1,1 + t1,0,1 + t1,1,0 = |Sa1+a2+a3| = 2n−1,
t0,0,1 + t0,1,0 + t1,0,0 + t1,1,1 = |Ha1+a2+a3| = 2n−1.
Sa1 ∩Sa2 ∩Sa3 is an F2-vector subspace of Sai ∩Saj , for any i ̸= j, of one less or
same dimension, namely |Sa1∩Sa2∩Sa3| = 2n−2 (or 2n−3). Then, from the first
three equations, t0,0,1 = t1,0,0 = t0,1,0 = 0 or 2n−3, respectively. Substituting
in the equation (14): t1,1,1 = 2n−1 or 2n−3, respectively. Now, substituting
t1,1,1 = 2n−1 in the equation (5): t0,1,1 = 2n−2 − 2n−1 (contradiction with
t0,1,1 ∈ N ∪ {0}). Then t1,1,1 = 2n−3 and t0,1,1 = 2n−2 − 2n−3 = 2n−3. Besides,
from the equation (14), 3 t0,0,1 + 2n−3 = 2n−1, i.e. t0,0,1 = t1,0,0 = t0,1,0 = 2n−3.
Doing back substitution. From the first equation, t0,0,0 = 2n−3. From equations
(7), (12): t1,0,1 = |Ha1 ∩Sa2| − t1,0,0 = 2n−3, t1,1,0 = |Ha1 ∩Sa3| − t1,0,0 = 2n−3.
All the equations are satisfied. In summary ti,j,k = 2n−3. □

Our next top-tier theorem is a cornerstone whose scope encompasses all of
finite field theory working for fields of even as well as odd degree.

Theorem 4.9 (Global Property of Partition of Finite Fields by
Affine Functions) Let (ai)

n−1
i=1 a linearly independent set of Fn2 , the sets Sai =

Kernel(tr(aix)) = {x ∈ F2n ; Tr
1
n(aix) = 0} their corresponding F2-vector sub-

spaces of F2n, and Hai = {x ∈ F2n ; Tr
1
n(aix) = 1} their affine subspaces.

Then, the intersections of the form Sai1 ∩· · ·∩Sain−1
, Hai1

∩Sai2 ∩· · ·∩Sain−1
,

Hai1
∩ Hai2

∩ Sai3 ∩ · · · ∩ Sain−1
,· · · , and Hai1

∩ · · · ∩ Hain−1
form a partition

of F2n. Besides, |Uai1 ∩ · · · ∩ Uain−1
| = 2n−(n−1) = 21, where Uai1 ∩ · · · ∩ Uain−1

denotes any partition element of F2n.

Proof. It is sufficient to demonstrate that |Uai1 ∩ · · · ∩ Uaik | = 2n−k, for all
Uai1 , · · · Uaik , for all 1 ≤ k ≤ n− 1. In particular the theorem. We proceed by
induction. We use the Lemmas 4.7 and 4.8 for some beginning values for n:
For n = 2: |Uai1 | = 2n−1 = 21.
For n = 3: |Uai1 | = 2n−1 = 22; |Uai1 ∩ Uai2 | = 2n−2 = 21.
For n = 4: |Uai1 | = 2n−1 = 23; |Uai1 ∩ Uai2 | = 2n−2 = 22; |Uai1 ∩ Uai2 ∩ Uai3 | =
2n−3 = 21.
The induction hypothesis: Supposing true up to K = n− 2, i.e. let {ai1 , · · · ,
ain−2} a linearly independent set, such that |Uai1 ∩ · · · ∩ Uaik | = 2n−k, for all
1 ≤ k ≤ n− 2.
Induction Step: To demonstrate for K + 1 = n − 1, |Uai1 ∩ · · · ∩ Uain−1

| =
2n−(n−1) = 21, for all Uai1 ∩ · · · ∩ Uain−1

:
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Let t̃li1 ,··· ,lik := {x ∈ F2n ; Tr
1
n(ai1x) = li1 , · · · , T r1n(aikx) = lik}, and tli1 ,··· ,lik =

|t̃li1 ,··· ,lik |, ∀ (li1 , · · · , lik) ∈ Fk2, where 1 ≤ k ≤ n− 1. Systems of equations:

Case-I: Trace Values That Sum to Zero: By the induction hypothesis {ai}n−1
i=1

are linearly independent, a1+ · · ·+an−1 ̸= 0. Then 2n−1 = |Sa1+···+an−1 = {x ∈
F2n ; Tr

1
n((a1+ · · ·+ an−1)x) = Tr1n(a1x)+ · · ·+Tr1n(an−1x) = l1+ · · ·+ ln−1 =

0}| = t0i1 ,··· ,0in−1
+

∑
(li1 ,··· , lin−1

)∈Fn−1
2 has even 1′s

tli1 ,··· ,lin−1
.

Case-II: Trace Values That Sum to One: Also, 2n−1 = 2n − |Sa1+···+an−1| =
|Ha1+···+an−1 = {x ∈ F2n ; Tr

1
n((a1 + · · · + an−1)x) = l1 + · · · + ln−1 = 1}| =∑

(li1 ,··· , lin−1
)∈Fn−1

2 has odd 1′s

tli1 ,··· ,lin−1
.

To define by t̄lik+1
,··· , lin−1

:= tli1 ,··· , lik , lik+1
,··· , lin−1

, where li1 , · · · , lik are the
fixed values, lik+1

, · · · , lin−1 are the free values. Then we have the identity∑
(lik+1

,··· , lin−1
)∈Fn−1−k

2

t̄lik+1
,··· , lin−1

= tli1 ,··· , lik . The induction hypothesis yields

the following systems of equations (a Diophantine problem (that will have a
unique solution)):
From n− 1 factors (Uaij ), n− 2 are fixed values, and 1 is a free value:

t̄0in−1
+ t̄1in−1

= |Uai1 ∩ · · · ∩ Uain−2
| = 2n−(n−2) = 22.

From n− 1 factors (Uaij ), n− 3 are fixed values, and 2 are free values:

t̄0in−2
0in−1

+ t̄0in−2
1in−1

+ t̄1in−2
0in−1

+ t̄1in−2
1in−1

= 2n−(n−3) = 23.

From n− 1 factors (Uaij ), n− 4 are fixed values, and 3 are free values:

t̄0in−3
0in−2

0in−1
+

∑
(lin−3

, lin−2
, lin−1

)∈F3
2 has one entry 1

t̄lin−3
lin−2

lin−1
+∑

(lin−3
, lin−2

, lin−1
)∈F3

2 has two entry 1
′s

t̄lin−3
lin−2

lin−1
+ t̄1in−3

1in−2
1in−1

= 2n−(n−4) = 24.

· · ·
From n− 1 factors (Uaij ), n− (µ+ 1) are fixed values, and µ are free values:

t̄0in−µ ··· 0in−1
+

∑
(lin−µ ··· lin−1

)∈Fµ
2 has one entry 1

t̄lin−µ ··· lin−1
+∑

(lin−µ ··· lin−1
)∈Fµ

2 has two entry 1
′s

t̄lin−µ ··· lin−1
+ · · · +∑

(lin−µ ··· lin−1
)∈Fµ

2 has µ−1 entry 1′s

t̄lin−µ ··· lin−1
+ t̄1in−µ ··· 1in−1

= 2n−(n−(µ+1)) = 2µ+1.

· · ·
From n− 1 factors (Uaij ), 1 is a fixed value, and n− 2 are free values:
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t̄0i2 ··· 0in−1
+

∑
(li2 ··· lin−1

)∈Fn−2
2 has one entry 1

t̄li2 ··· lin−1
+∑

(li2 ··· lin−1
)∈Fn−2

2 has two entry 1′s

t̄li2 ··· lin−1
+ · · · +∑

(li2 ··· lin−1
)∈Fn−2

2 hasn−3 entry 1′s

t̄li2 ··· lin−1
+ t̄1i2 ··· 1in−1

= 2n−1.

The intersection (Sai1 ∩ · · · ∩ Sain−2
) ∩ Sain−1

is a F2-vector subspace of Sai1 ∩
· · · ∩ Sain−2

, then it has one less or the same dimension that of the space
Sai1 ∩ · · · ∩ Sain−2

. Then:

t0i1 ··· 0in−1
=
∣∣ n−1⋂
j=1

Saij

∣∣ =


∣∣ n−2⋂
j=1

Saij

∣∣ = 2n−(n−2) = 22, if dim(
n−1⋂
j=1

Saij ) =

dim(
n−2⋂
j=1

Saij ).

2−1
∣∣ n−2⋂
j=1

Saij

∣∣ = 21, if dim(
n−1⋂
j=1

Saij ) = dim(
n−2⋂
j=1

Saij )− 1.

Case when t0i1 ··· 0in−1
= 21: Substituting in the last system of equations:

From n − 1 factors, n − 2 are fixed values, in particular to be 0, and 1 free
value:

t̄0in−1
+ t̄1in−1

= 22, t̄0in−1
= t0i1 ··· 0in−1

, then t̄1in−1
= 22 − 21 = 21.

From n − 1 factors, n − 3 are fixed values, in particular to be 0, and 2 free
values:

t̄0in−2
0in−1

+ t̄0in−2
1in−1

+ t̄1in−2
0in−1

+ t̄1in−2
1in−1

= 23,

t̄0in−2
0in−1

= t0i1 ··· 0in−1
, t̄0in−2

1in−1
= t̄1in−1

, t̄1in−2
0in−1

= t̄1in−1
,

then: t̄1in−2
1in−1

= 23 − 3(21) = 21.

· · ·
From n− 1 factors, n−µ− 1 are fixed values, in particular to be 0, and µ free
values, for 1 ≤ µ ≤ n− 2 (from the induction hypothesis):

µ∑
j=0

(
µ

j

)
t̄ lin−µ ··· lin−1

((lin−µ ,··· lin−1
)

has j entries 1′s)

= 2µ+1.

We obtain the constant sequence: t̄1in−1
= t̄1in−2

1in−1
= · · · = t̄1i2 ··· 1in−1

= 21.

Case If t0i1 ··· 0in−1
= 22: Again substituting in the system of equations:

From n − 1 factors, n − 2 are fixed values, in particular to be 0, and 1 free
value:
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t̄0in−1
+ t̄1in−1

= 22, t̄0in−1
= t0i1 ··· 0in−1

, then t̄1in−1
= 22 − 22 = 0, for arbitrary

t̄1in−1
.

From n − 1 factors, n − 3 are fixed values, in particular to be 0, and 2 free
values:

t̄0in−2
0in−1

+ t̄0in−2
1in−1

+ t̄1in−2
0in−1

+ t̄1in−2
1in−1

= 23,

t̄0in−2
0in−1

= t0i1 ··· 0in−1
, t̄0in−2

1in−1
= t̄1in−2

0in−1
= t̄1in−1

= 0, substituting the
previous identity

then: t̄1in−2
1in−1

= 23 − 22 = 22, for arbitrary t̄1in−2
1in−1

.

From n − 1 factors, n − 4 are fixed values, in particular to be 0, and 3 free
values:

22 + 3(0) + 3(22) + t̄1in−3
1in−2

1in−1
= 24,

then: t̄1in−3
1in−2

1in−1
= 0, for arbitrary t̄1in−3

1in−2
1in−1

.

We obtain the alternating sequence:

t̄ lin−µ ··· lin−1

((lin−µ ,··· lin−1
)

hasµ free values)

=

{
0, if (lin−µ , · · · lin−1) contains an odd number of 1’s
4, if (lin−µ , · · · lin−1) contains an even number of 1’s,

(1)

∀ 1 ≤ µ ≤ n− 2.
Substituting in the equation:

2n−1 = |Ha1+···+an−1| =
∑

(li1 ,··· , lin−1
)∈Fn−1

2 has odd 1′s

tli1 ,··· ,lin−1
=

∑
(li1 ,··· , lin−1

)∈Fn−1
2 has one entry 1

t̄1in−1
+∑

(li1 ,··· , lin−1
)∈Fn−1

2 has three entry 1′s

t̄1in−3
1in−2

1in−1
+ · · · +∑

(li1 ,··· , lin−1
)∈Fn−1

2 hasn−3 entry 1′s

t̄1i3 ··· 1in−1
or∑

(li1 ,··· , lin−1
)∈Fn−1

2 hasn−2 entry 1′s

t̄1i2 ··· 1in−1
+ ϵ t 1i1 ··· 1in−1

(alln−1 places
are 1′s)

= 2n−1,

for some ϵ ∈ {0, 1}.

Namely:
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0 + · · · + 0 + ϵ t 1i1 ··· 1in−1

(alln−1 places
are 1′s)

= 2n−1, for some ϵ ∈ {0, 1}.

Then the term t1i1 ··· 1in−1
needs to be present and can’t be 0; it is t1i1 ··· 1in−1

=
2n−1.
From the induction hypothesis we have:

tli1 ··· lin−2
= |Uai1 ∩ · · · ∩ Uain−2

| = 2n−(n−2) = 22

In particular:

t1i1 ··· 1in−2
= |Hai1

∩ · · · ∩Hain−2
| = 22.

By definition:

t1i1 ··· 1in−2
0in−1

+ t1i1 ··· 1in−2
1in−1

= t1i1 ··· 1in−2

From the previous four equations:

2n−1 = t1i1 ··· 1in−1
= 22 − t1i1 ··· 1in−2

0in−1
≤ 22, where t1i1 ··· 1in−2

0in−1
≥ 0,

∀n ≥ 4.

For n ≤ 3 the theorem is true, from the previous lemmas, Lemma 4.7 and 4.8.
Then t0i1 ··· 0in−1

= 22 is not true. Then, t0i1 ··· 0in−1
= 21, then for this case we

have the corresponding constant sequence:

t̄1in−1
= t̄1in−2

1in−1
= · · · = t̄ 1in−µ ··· 1in−1

((li1 ,··· , lin−1
) hasµ entry 1′s)

= · · · = t̄1i2 ··· 1in−1

= 21.

Equivalently:

t0i1 ··· 0in−2
1in−1

= t0i1 ··· 0in−3
1in−2

1in−1
= · · · = t0i1 ··· 0in−µ−1

1in−µ ··· 1in−1
= · · · =

t0i11i2 ··· 1in−1
= 21,

for all 1 ≤ i1, · · · , in−1 ≤ n− 1, 1 ≤ µ ≤ n− 2.
It remains to see what happens in the case of n−1 ones, t1i1 ··· 1in−1

. By back

substitution, beginning with the last equation (which has n−2 ones and 1 zero)
of the constant sequence, t0i11i2 ··· 1in−1

= 21, for all 1 ≤ i1, · · · , in−1 ≤ n − 1

(then also t1i1 ··· 1in−2
0in−1

= 21) into the equation:

t1i1 ··· 1in−2
0in−1

+ t1i1 ··· 1in−2
1in−1

= t1i1 ··· 1in−2
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t1i1 ··· 1in−2
1in−1

= 22 − 21 = 21.

Then, with the last equation t1i1 ··· 1in−1
= 21, and t0i1 ··· 0in−1

= 21, we obtain
the following constant sequence:

t0i1 ··· 0in−1
= t0i1 ··· 0in−2

1in−1
= t0i1 ··· 0in−3

1in−2
1in−1

= · · · =
t0i1 ··· 0in−µ−1

1in−µ ··· 1in−1
= · · · = t0i11i2 ··· 1in−1

= t1i1 ··· 1in−1
= 21,

for all 1 ≤ i1, · · · , in−1 ≤ n− 1, 1 ≤ µ ≤ n− 2.
Which means that |Uai1 ∩ · · · ∩Uain−1

| = tli1 ··· lin−1
= 21, ∀ li1 · · · lin−1 , (li1 , · · · ,

lin−1) contains any number of ones, from 0 up to n−1. Then |Ua1∩· · ·∩Uan−1| =
21, for all Ua1 , · · · , Uan−1 . □

Corollary 4.10 Let (ai)
n−1
i=1 a linearly independent set of Fn2 , and ϕ a func-

tion on F2n, define the sets H̃ai := {x ∈ F2n ; Tr
1
n(aiϕ(x)) = 1}. Then

|H̃ai1
∩ · · · ∩ H̃ain−1

| = |ϕ−1[{v0, v1}]|, where Ha1 ∩ · · · ∩Han−1 = {v0, v1}.

In particular, if ϕ is a permutation, then |H̃ai1
∩ · · · ∩ H̃ain−1

| = 2.

Corollary 4.11 Let (ai)
n−1
i=1 a linearly independent set, and let 0 /∈ (hi)

l
i=1

a sequence of different elements, on F2n. Defining a
(j)
i := aihj, where each

hj ̸= 1, then {x ∈ F2n ; Tr
1
n(a1x), · · · Tr1n(an−1x)+ Tr1n(a

(1)
1 x) · · · Tr1n(a

(1)
n−1x)+

Tr1n(a
(l)
1 x) · · · Tr1n(a

(l)
n−1x) = 1} ⊂ (Ha1 ∩ · · · ∩ Han−1)∪ · · · ∪ (H

a
(l)
1

∩ · · · ∩
H
a
(l)
n−1

), and |(Ha1 ∩ · · · ∩Han−1)∪ · · · ∪ (H
a
(l)
1
∩ · · · ∩H

a
(l)
n−1

)| ≤ 2(l + 1).

Besides, one can use the affine transformation a
(j)
i := ai + hj in the proof

of the Corollary. Moreover, if Ha1 ∩ · · · ∩Han−1 ,· · · ,Ha
(l)
1
∩ · · · ∩H

a
(l)
n−1

are dis-

joints, then |{x ∈ F2n ; Tr
1
n(a1x) · · · Tr1n(an−1x) + Tr1n(a

(1)
1 x) · · · Tr1n(a

(1)
n−1x) +

Tr1n(a
(l)
1 x) · · · Tr1n(a

(l)
n−1x) = 1} = (Ha1∩· · ·∩Han−1)∪· · · ∪ (H

a
(l)
1
∩· · ·∩H

a
(l)
n−1

)|
= 2(l + 1).

Example. Let (ai)
n−1
i=1 a linearly independent set on F2n , define a

(1)
i := aih1,

where h1 ̸= 0, 1, moreover (Ha1 ∩ · · · ∩ Han−1) ∩ (h1Ha1 ∩ · · · ∩ Han−1) = ∅.
Then |{x ∈ F2n ; Tr

1
n(a1x) · · · Tr1n(an−1x) + Tr1n(a

(1)
1 x) · · · Tr1n(a

(1)
n−1x) = 1}

= (Ha1 ∩ · · · ∩Han−1) ∪ (H
a
(1)
1

∩ · · · ∩H
a
(1)
n−1

)| = 4.

Theorem 4.9 implies that |Ha1 ∩ · · ·∩Han−1| = 21, i.e., only two pre images
will change, from x to x + 1, that means: Ha1 ∩ · · · ∩ Han−1 = {x0, x1}, for
some xi ∈ F∗

2n , i : 0, 1. The given families in the hypothesis of the main
theorem (Theorem 4.2) belong to the more general family f(x) = F (x +
Tr1n(a1x) · · ·Tr1n(an−1x)). For f we shall make an approximation of its non-
linearity through the nonlinearity for F (which is known):
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Wf (a, b) = (−1)Tr
1
n(b F (x0+1)+ a x0) + (−1)Tr

1
n(b F (x1+1)+ a x1)+∑

x∈F2n−{x0, x1}
(−1)Tr

1
n(b F (x)+ a x)

= (−1)Tr
1
n(b F (x0+1)+ a x0) − (−1)Tr

1
n(b F (x0)+ a x0) + (−1)Tr

1
n(b F (x1+1)+ a x1)

−(−1)Tr
1
n(b F (x1)+ a x1) +

∑
x∈F2n

(−1)Tr
1
n(b F (x)+ a x)

= (−1)Tr
1
n(b F (x0+1)+ a x0) − (−1)Tr

1
n(b F (x0)+ a x0) + (−1)Tr

1
n(b F (x1+1)+ a x1)

−(−1)Tr
1
n(b F (x1)+ a x1) +WF (a, b). Then:

Wf (a, b)−WF (a, b) = (−1)Tr
1
n(a x0)

(
(−1)Tr

1
n(b F (x0+1)) − (−1)Tr

1
n(b F (x0))

)
+

(−1)Tr
1
n(a x1)

(
(−1)Tr

1
n(b F (x1+1)) − (−1)Tr

1
n(b F (x1))

)
. Then:

Wf (a, b)−WF (a, b) = θ ∈ {0, ±2, ±4} (If it is ξ (= |Ha1∩· · ·∩Har |) points,
where 1 ≤ r ≤ n− 1, using this same procedure, where θ ∈ [−4ξ/2, 4ξ/2], we
obtain Theorem 4.14). Then we have the following bounds for the nonlinearity
of f :

nl(f) = 2n−1− 1
2

max
a∈Fn

2 , b∈Fn∗
2

|Wf (a, b)| = 2n−1− 1
2

max
a∈Fn

2 , b∈Fn∗
2

|WF (a, b)+θ|. Thus

nl(F ) − |θ|
2
= 2n−1 − 1

2
(|θ| + max

a∈Fn
2 , b∈Fn∗

2

|WF (a, b)|) ≤ nl(f) ≤ 2n−1 − 1
2
(−|θ| +

max
a∈Fn

2 , b∈Fn∗
2

|WF (a, b)|) = nl(F ) + |θ|
2
. I.e. nl(f) − nl(F ) = θ

2
∈ {0, ±1, ±2}.

Therefore,

Theorem 4.12 Let (ai)
n−1
i=1 be a linearly independent set of Fn2 , F : Fn2 →

Fn2 , and f(x) = F (x+ Tr1n(a1x) · · ·Tr1n(an−1x)). Then, |nl(f)− nl(F )| ≤ 2.

In particular, nl(f) ≥ nl(F ) − 2. Therefore, we obtain near-optimal non-
linearity if we choose nl(F ) optimal. We emphasize that: although other
f can be constructed satisfying this same inequality, the challenge focuses on
the extent to which other highly relevant cryptographic aspects are taken into
account, which can only be fitted within the formula for f itself. Likewise, the
success of another f will depend on each piece and where it is placed within
the formulation of f . Some candidates for function F are those shown in Table
1 along with their nonlinearities.

The following result can be obtained analogously to Theorem 4.9.

Corollary 4.13 Let (ai)
n−1
i=1 a linearly independent set of Fn2 , the sets Sai =

Kernel(Tr1n(aix)) = {x ∈ F2n ; Tr
1
n(aix) = 0} their corresponding F2-vector

subspaces of F2n, under the trace function, Hai = {x ∈ F2n ; Tr
1
n(aix) = 1}

their affine subspaces, and 1 ≤ r ≤ n− 1. Then, the intersections of the form
Sa1 ∩ · · · ∩ Sar , Ha1 ∩ Sa2 ∩ · · · ∩ Sar , Ha1 ∩ Ha2 ∩ Sa3 ∩ · · · ∩ Sar ,· · · , and
Ha1 ∩· · ·∩Har form a partition of F2n. Besides, |Ua1 ∩· · ·∩Uar | = 2n−r, where
Ua1 ∩ · · · ∩ Uar denotes any partition element of F2n.
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Theorem 4.14 Let (ai)
n−1
i=1 a linearly independent set of Fn2 , F : Fn2 → Fn2 ,

1 ≤ r ≤ n − 1, and f(x) = F (x + Tr1n(a1x) · · ·Tr1n(arx)). Then, |nl(f) −
nl(F )| ≤ 2n−r.

Open Problem 3. It would be a considerable advance to analyze when
precisely the function of Theorem 4.14 (f(x) = F (x+Tr1n(a1x) · · ·Tr1n(an−1x)))
is CCZ-inequivalent to F , for F as general as possible.

5 Discussions on the Class of Highly Nonlin-

ear Functions Possessing All Algebraic De-

grees Up to the Optimum

A novel property of the class of functions in (1)-(2) of Theorem 4.2 (later
denoted by Call

2;n−1) is that for every algebraic degree from 2 to the optimum
(i.e. n − 1) there exists a member in the class Call

2;n−1 with such a degree.
Moreover, Call

2;n−1 can be considered without the restrictions on gcd(n, k) and
gcd(n, k′), and whether n is divisible by 2 or not. Besides, the algebraic degree
is the backbone of essential results. To date, no other class of differentially δ-
uniform functions (including APN functions) with this quality of completeness
is known. As for the class in Theorem 4.2-(3), it would be interesting to
investigate whether it possesses this or a similar property. For each member
of Call

2;n−1 we compute its algebraic degree by means of a rather general proof.

Theorem 5.1 Let Pr : F2n → F2n be the function defined by the rule
Pr(x) := Tr1n(a1x) · · ·Tr1n(arx), such that (ai)

n−1
i=1 is a linearly independent

set of Fn2 , and 1 ≤ r ≤ n− 1. Then d0(Pr) = r.

Proof. Corollary 4.13 implies that |Ha1 ∩ · · · ∩ Har | = 2n−r, i.e., there are
|F2n|−2n−r different roots on F2n that satisfy the nonlinear equation Pr(x) = 0.
Thus, after performing the algebraic operations and combine like terms of
the polynomial Dr(x) :=

∏
αi is one of these mentioned roots of Pr

x − αi, it can be re-

written as a polynomial of degree deg(Dr) = |F2n| − 2n−r, i.e. Dr(x) =
x2

n−2n−r
+ terms of less degree. Due to the form of the formula Pr(x), any

of its terms is of the form κx2θ1+···+2θr , for some (κ, θ1, · · · , θr) ∈ F2n ×(
Z/nZ

)r
with κ ̸= 0. This leads to d0(Pr) ≤ r... (Eq. 1), and addi-

tionally, since every function F ∈ F(F2n ,F2n) has a sole representation as
a univariate polynomial of degree at most 2n− 1, then deg(Pr(x) mod (x2

n −
x)) ≤ max(deg(κx2θ1+···+2θr mod (x2

n−x))) ≤ max
θi ̸=θj if 1≤i ̸=j≤r

(deg(κx2θ1+···+2θr

mod (x2
n−x))) = deg(κ1x

2n−1+···+2n−r
) = 2n−2n−r... (Eq. 2), if the coefficient

κ1 ̸= 0 (but if κ1 = 0, this same upper bound on deg(Pr(x) mod (x2
n − x))
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is still preserved). Since the roots of Pr(x) are roots of Pr(x) mod (x2
n − x)

(this remainder results from applying the division algorithm to the pair Pr(x),
x2

n − x. Besides, x2
n − x induces the zero function 0 : F2n → F2n , further-

more, is a non-zero element in the integral domain F2n [X]), then we bound
its degree, deg(Pr(x) mod (x2

n − x)) ≥ deg(Dr) = 2n − 2n−r... (Eq. 3).
From (Eq. 2)-(Eq. 3), deg(Pr(x) mod (x2

n − x)) = 2n − 2n−r. Guaranteeing

that κ1 ̸= 0 in the term κ1x
deg(Pr(x) mod (x2

n−x)) of Pr(x) mod (x2
n − x), and

then, d0(Pr) ≥ d0(κ1x
deg(Pr(x) mod (x2

n−x))). The integer representation of the
exponent deg(Pr(x) mod (x2

n − x)) is 2n−1 + · · ·+2n−r, which is also unique.
According to the definition of algebraic degree, d0(Pr) ≥ r... (Eq. 4). From
(Eq. 1)-(Eq. 4), d0(Pr) = r. □

In the remainder of this section, we delve deeper into the algebraic degree;
below, we will shed light on a small part that we have previously investigated
at the end and without much depth in this aspect. With respect to Theorem
4.2-(2), two subcases are presented; for the rich subfamily such that g = n−2,
we clarify that the algebraic degree beyond being no less than n − 2 (almost
optimal algebraic degree), this is optimal. While for the other subfamily,
where g = n − 1, this is optimal as well. Without further ado, we provide
the computation of the algebraic degree of this stellar class of functions in the
beautiful theorem given below.

Theorem 5.2 Let (ai)
n−1
i=1 be a linearly independent set of Fn2 , u ≥ 1. Then,

the following assertions holds.

d0((x(2
u or 2u±1) + x+ 1)Pm(x)) = m+ 1, ∀ n− 3 ≥ m ≥ 2;

d0((x(2
u or 2u±1) + x+ 1)Pn−2(x)) = n− 1; and

d0((x(2
u or 22u) + x + 1)Pn−1(x)) = n − 1, where Pm(x) =

m∏
i=1

Tr1n(aix), ∀
m ≥ 2.

Proof. By Theorem 5.1, Pm(x) = Ax2
n−1+···+2n−m

+ other terms of less degree,
where A ∈ F∗

2n (guarantees the existence of the leading term), m ≥ 2, and
u ≥ 1. The terms of maximum algebraic degree (= m) in Pm exist and are
determined, for instance, as 2ωth powers (where ω ∈ Z/nZ) of its leading term
—because the algebraic degree is invariant under these powers, and Pm is
idempotent under the field multiplication—given in the following polynomial:

∑
ω∈Z/nZ

A2ωx

∑
θ∈{ω, ω+1,··· , ω+n−m−1}

−2θ

Regarding this case, let us additionally consider that n− 2 ≥ m. Possible
terms with the maximum possible algebraic degree (= m + 1) in xPm(x) can
only come from terms with algebraic degree m in Pm(x), as presented below:
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∑
ω∈Z/nZ,

0∈{ω, ω+1,··· , ω+n−m−1}

xA2ωx

∑
θ∈{ω, ω+1,··· , ω+n−m−1}

−2θ

+

∑
{0, ω1,··· , ωn−m−1}⊆

(
Z/nZ

)n−m

is a set of non-consecutive
different one each other values.

xU0, ω1,··· , ωn−m−1x

∑
θ∈{0, ω1,··· , ωn−m−1}

−2θ

=
∑

ω∈Z/nZ,
0∈{ω, ω+1,··· , ω+n−m−1}

A2ωx

∑
θ∈{ω, ω+1,··· , ω+n−m−1}−{0}

−2θ

+

∑
{0, ω1,··· , ωn−m−1}⊆

(
Z/nZ

)n−m

is a set of non-consecutive
different one each other values.

U0, ω1,··· , ωn−m−1x

∑
θ∈{ω1,··· , ωn−m−1}

−2θ

Note that the expressions in this theorem have the following form (hereafter
we omit the parentheses in the exponent, since there will be no ambiguity in
reading it as usual):

∑
conditions set # 1

coefficient x

( ∑
conditions set # 2

some argument

)

where, coefficient ∈ F2n . Terms of algebraic degree m+ 1 in xuPm(x):
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∑
ω∈Z/nZ,

u∈{ω, ω+1,··· , ω+n−m−1}

x2
u

A2ωx

∑
θ∈{ω, ω+1,··· , ω+n−m−1}

−2θ

+

∑
{u, ω1,··· , ωn−m−1}⊆

(
Z/nZ

)n−m

is a set of non-consecutive
different one each other values.

x2
u

U2u

0, ω1−u,··· , ωn−m−1−ux

∑
θ∈{u, ω1,··· , ωn−m−1}

−2θ

=
∑

ω∈Z/nZ,
u∈{ω, ω+1,··· , ω+n−m−1}

A2ωx

∑
θ∈{ω, ω+1,··· , ω+n−m−1}−{u}

−2θ

+

∑
{u, ω1,··· , ωn−m−1}⊆

(
Z/nZ

)n−m

is a set of non-consecutive
different one each other values.

U2u

0, ω1−u,··· , ωn−m−1−ux

∑
θ∈{ω1,··· , ωn−m−1}

−2θ

Don’t forget that
∑

ω∈Z/nZ
2ω = 0, for n ≥ 2. Assuming that d0((x2

u
+ x +

1)Pm(x)) ≤ m:

∑
{0, u, ω2,··· , ωn−m−1}⊆

(
Z/nZ

)n−m

is a set of non-consecutive
different one each other values.

U0, u, ω2,··· , ωn−m−1x

∑
θ∈{u, ω2,··· , ωn−m−1}

−2θ

+

∑
ω∈Z/nZ,

u∈{ω, ω+1,··· , ω+n−m−1},(
{ω, ω+1,··· , ω+n−m−1}−{u}

)
∪{0}⊆

(
Z/nZ

)n−m

is a set of non-consecutive different
one each other values.

x

∑
θ∈{ω, ω+1,··· , ω+n−m−1}−{u}

−2θ(
A2ω + U0, ω, ω+1,··· , ω+n−m−1

(removing u)

)

+ terms of other types =
∑

{ω1,··· , ωn−m−1}⊆
(
Z/nZ

)n−m−1

is a set of different
one each other values.

(0)x

∑
θ∈{ω1,··· , ωn−m−1}

−2θ

(Eq. 1)

Assuming that also d0((x2
u±1

+ x + 1)Pm(x)) ≤ m. The above equation
corresponds to u. The first summation in the equation corresponding to u± 1
is given by the following expression:
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∑
{0, u±1, ω2,··· , ωn−m−1}⊆

(
Z/nZ

)n−m

is a set of non-consecutive
different one each other values.

U0, u±1, ω2,··· , ωn−m−1x

∑
θ∈{u±1, ω2,··· , ωn−m−1}

−2θ

A portion of this summation is separated and written as the summation at
the beginning of the equation corresponding to u± 1, below:

∑
ω∈Z/nZ,

{u±1, ω2,··· , ωn−m−1}
is chosen such that it coincides with

{ω, ω+1,··· , ω+n−m−1}−{u}.
Where u∈{ω, ω+1,··· , ω+n−m−1},(

{ω, ω+1,··· , ω+n−m−1}−{u}
)
∪{0}⊆

(
Z/nZ

)n−m

is a set of non-consecutive different
one each other values.

U0, ω, ω+1,··· , ω+n−m−1
(removing u)

x

∑
θ∈{ω, ω+1,··· , ω+n−m−1}−{u}

−2θ

+ terms of other types =
∑

{ω1,··· , ωn−m−1}⊆
(
Z/nZ

)n−m−1

is a set of different
one each other values.

(0)x

∑
θ∈{ω1,··· , ωn−m−1}

−2θ

(Eq. 2)

Eq. (1) implies:
U0, u, ω2,··· , ωn−m−1 = 0, and A2ω + U0, ω, ω+1,··· , ω+n−m−1

(removing u)
= 0.

Eq. (2) implies:
U0, ω, ω+1,··· , ω+n−m−1

(removing u)
= 0, where u±1 ∈ {ω, ω+1, · · · , ω+n−m−1}−{u}.

Then: 0 = U0, ω, ω+1,··· , ω+n−m−1
(removing u)

̸= 0, where u±1 ∈ {ω, ω+1, · · · , ω+n−m−

1}−{u}, which means a contradiction. Therefore, d0((x2
u
+x+1)Pm(x)) ≤ m

and d0((x2
u±1

+ x + 1)Pm(x)) ≤ m cannot occur simultaneously, or rather,
d0((x2

u
+ x + 1)Pm(x)) = m + 1 or d0((x2

u±1
+ x + 1)Pm(x)) = m + 1. In

particular, we reach an optimal case: d0((x2
u
+ x + 1)Pn−2(x)) = n − 1 or

d0((x2
u±1

+x+1)Pn−2(x)) = n− 1. Note that, while if it is u = 1, it is enough
to use u+ 1.

Case d0((x2
u
+ x+ 1)Pn−1(x)) = n− 1:

Pn−1(x) =
n−1∏
i=1

Tr1n(aix) = κx2n−1+···+21+ other terms of less degree, where

κ ̸= 0 (ensures the existence of the leading term). The maximum algebraic
degree (= n− 1) terms in Pn−1 exist and are determined as 2ω powers of their
leading term (of maximum degree), and constitute the polynomial below:

∑
ω∈Z/nZ

κ2ωx

∑
θ∈Z/nZ−{ω}

+2θ
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The only terms with algebraic degree n− 1 in xPn−1(x) are produced from
only one of the terms with algebraic degree n− 1 and possibly from the terms
with algebraic degree n− 2 in Pn−1(x), as shown below:

xκ2x

∑
θ∈Z/nZ−{1}

2θ

+
∑

ω∈Z/nZ−{0}

xζ0, ωx

∑
θ∈Z/nZ−{0, ω}

2θ

= κ2x

∑
θ∈Z/nZ−{0}

2θ

+
∑

ω∈Z/nZ−{0}

ζ0, ωx

∑
θ∈Z/nZ−{ω}

2θ

Terms of algebraic degree n− 1 in xuPn−1(x):

x2
uκ2u+1

x

∑
θ∈Z/nZ−{u+1}

2θ

+
∑

ω∈Z/nZ−{u}

x2
u

ζ2
u

0, ω−ux

∑
θ∈Z/nZ−{u, ω}

2θ

= κ2u+1

x

∑
θ∈Z/nZ−{u}

2θ

+
∑

ω∈Z/nZ−{u}

ζ2
u

0, ω−ux

∑
θ∈Z/nZ−{ω}

2θ

Assuming (regarding u) that d0((x2
u
+ x+ 1)Pn−1(x)) ≤ n− 2:

(
κ2 + ζ2

u

0, n−u
)
x

∑
θ∈Z/nZ−{0}

2θ

+
(
κ2u+1

+ ζ0, u
)
x

∑
θ∈Z/nZ−{u}

2θ

+∑
ω∈Z/nZ−{0, u}

(
ζ0, ω + ζ2

u

0, ω−u
)
x

∑
θ∈Z/nZ−{ω}

2θ

= −
∑

ω∈Z/nZ

κ2ωx

∑
θ∈Z/nZ−{ω}

2θ

(Eq. 3)

Eq. (3) implies:
κ2 + ζ2

u

0, n−u + κ = 0

κ2u+1
+ ζ0, u + κ2u = 0

ζ0, ω + ζ2
u

0, ω−u + κ2ω = 0 for any ω ̸= 0, u.

Item (3) in this system works for ω = 2u: ζ0, 2u + ζ2
u

0, u + κ22u = 0 (Eq. 4).

Assuming (regarding 2u) also that d0((x2
2u
+ x + 1)Pn−1(x)) ≤ n − 2 one

of its equations is:

−ζ0, 2u = κ22u
(
1 + κ22u

)
=
(
− ζ0, u

)2u
(Eq. 5).

In light of κ22u ̸= 0, this fact (Eq. (5)) contradicts Eq. (4). Then d0((x(2
u or 22u)+
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x+1)Pn−1(x)) = n−1. When it comes to u = 1 we use an analogous procedure.
□

On the other hand, with respect to a piecewise function, its algebraic degree
cannot in principle be obtained as the maximum nor as the sum of the degrees
of the piecewise functions that define it. Problem 4A How could the algebraic
degree of a piecewise function be calculated from the algebraic degrees of its
piecewise functions?. Controllability Grade Note: Theorem 4.14 gives us
some control over the nonlinearity of f , while Theorem 5.2 gives us some
level of control over d0(f); for both situations by choosing a suitable mapping
Pr. Open Problem 4B Looking at Theorem 4.14 and Theorem 5.2, we ask
whether there is any equation that specifies such a fabulous connection between
nl(f) and d0(f), for the functions involved there, for instance, when nl(F ) is
high.

Corollary 5.3 Let n > 3, n−3 ≥ u ≥ 1, and (ai)
n−1
i=1 a linearly independent

set of Fn2 . If n is odd, gcd(n, u) = 1, and Tr1n(a1) = . . . = Tr1n(an−1) = 0, then:

f is a permutation with d0(f) = n − 1, where f(x) = x2
u+1 + (x2

u
+

x + 1)Tr1n(a1x) . . . T r
1
n(an−1x) or f(x) = x2

2u−2u+1 + (x2
2u−2u + x2

2u−(2)2u+1 +
x2

2u−(2)2u+x2
2u−(3)2u+1+x2

2u−(3)2u+. . .+x2
u+1+x2

u
+x+1)Tr1n(a1x) . . . T r

1
n(an−1x).

Proof. Every x−αi divides Pr, actually, Pr = DrQr (referring to Theorem 5.1),

for r ≤ n−1. The function KPn−1 satisfies that K(x)Pn−1(x) =

(
K(x0)(x−x1)∏
x′ ̸=x0

(x0−x′)+

K(x1)(x−x0)∏
x′′ ̸=x1

(x1−x′′) + Qn−1(x − x0)(x − x1)

)
Dn−1(x), and since x2

n − x | Qn−1(x −

x0)(x− x1)Dn−1(x), then KPn−1 can be re-written as a single polynomial un-

der mod (x2
n−x) determined by the equation K(x)Pn−1(x)

K(x0)∏
x′ ̸=x0

(x0−x′)+
K(x1)∏

x′′ ̸=x1

(x1−x′′)
=

(
x−(

K(x0)x1∏
x′ ̸=x0

(x0−x′)+
K(x1)x0∏

x′′ ̸=x1

(x1−x′′)

)/(
K(x0)∏

x′ ̸=x0

(x0−x′)+
K(x1)∏

x′′ ̸=x1

(x1−x′′)

))
Dn−1(x), whereKu(x) =

x2
2u−2u+1 (subsequently denoted without the parameter u: K(x)),

K(x0)∏
x′ ̸=x0

(x0−x′)+
K(x1)∏

x′′ ̸=x1

(x1−x′′) ̸= 0, Ha1∩· · ·∩Han−1 = {x0, x1}, and Qn−1 ∈ F∗
2n .

Then,

deg

((
x−

K(x0)x1∏
x′ ̸=x0

(x0−x′)+
K(x1)x0∏

x′′ ̸=x1

(x1−x′′)

K(x0)∏
x′ ̸=x0

(x0−x′)+
K(x1)∏

x′′ ̸=x1

(x1−x′′)

)
Dn−1(x)

)
=

deg

(
x−

K(x0)x1∏
x′ ̸=x0

(x0−x′)+
K(x1)x0∏

x′′ ̸=x1

(x1−x′′)

K(x0)∏
x′ ̸=x0

(x0−x′)+
K(x1)∏

x′′ ̸=x1

(x1−x′′)

)
+deg(Dn−1(x)) = 2n − 1, that is,
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d0(K(x)Pn−1(x)) = d0
((

x−

K(x0)x1∏
x′ ̸=x0

(x0−x′)+
K(x1)x0∏

x′′ ̸=x1

(x1−x′′)

K(x0)∏
x′ ̸=x0

(x0−x′)+
K(x1)∏

x′′ ̸=x1

(x1−x′′)

)
Dn−1(x)

)
= n.

Applying Corollary 9.3 we arm ourselves with the equalities
d0(∂H=1(KPn−1)(x)) = d0(K(x)Pn−1(x)) − 1 = n − 1. Let the composition
fK := Ko(Id + Pn−1), where Id is the identity function, thus d0(fK(x)) =
d0((fK(x)−K(x))+K(x)) = d0(fK(x)−K(x)) = d0(∂1(K(x))Pn−1(x)), if u is
such that d0(K(x)) = u+1 < d0(fK(x)−K(x)) (because adding a term of lower
algegraic degree does not affect the underlying algegraic degree). The algebraic
degree for K results as follows: 22u−2u+1 = 22u−1+ . . .+2u+1+(2u−1+ . . .+
20) + 20 + 20 = 22u−1 + . . .+ 2u+1 + 2u + 20, where u > 0. Since ∂1(Pr) is zero,
∂H=Pn−1(x)(K)(x) = ∂1(K(x))Pn−1(x) = ∂1(KPn−1)(x), and it is also required
that u+1 < n−1. We note that the KasamisKn−u andKu (equal to Kn−uoAu)
are EA-E by applying Au(x) = x2

2u
, so let’s just consider the Kasami sub-list

for 1 ≤ u ≤ n−1
2
. Suppose K(x0)∏

x′ ̸=x0

(x0−x′) +
K(x1)∏

x′′ ̸=x1

(x1−x′′) = 0, then K(x0)
Dn−1(x0)(x0−x1) +

K(x1)
Dn−1(x1)(x1−x0) = 0. The function ∂1(Dn−1) is zero since ∂1(Pn−1) is, besides

x1−x0 = 1 and Dn−1(x0) ̸= 0. Then K(x0) = K(x1), which is a contradiction

because K is 1-to-1, that is we get that K(x0)∏
x′ ̸=x0

(x0−x′) +
K(x1)∏

x′′ ̸=x1

(x1−x′′) ̸= 0. Done!,

d0(fK(x)) = n − 1. Applying this same procedure to the Gold G(x) instead
of K(x), we get that d0(fG(x)) = n − 1, such that d0(G(x)) = 2 < n − 1 =
d0(fG(x)−G(x)), i.e. 3 < n.

It is known that the Gold x2
u+1 and Kasami x2

2u−2u+1 functions are per-
mutations when n is odd and gcd(n, u) = 1 (see Table 11 in this article and
[104, 85]). By Lemma 4.5, the polynomial x + Tr1n(a1) · · ·Tr1n(an−1) is a per-
mutation. Thus the composition f(x) = F (x + P (x)) is a permutation too,
where F is Gold or Kasami. □

The body of the Corollary 5.3 fills in the missing cases with respect to the
parameter u in Theorem 5.2, when it comes to Pn−1. Let’s see what happens
more precisely below.

Corollary 5.4 Let (ai)
n−1
i=1 be a linearly independent set of Fn2 , n > 3, n−

3 ≥ u ≥ 1, and Pn−1 as given in Corollary 5.3 and Theorem 5.1. Then:
1). If 3 < n, then d0((x2

u
+ x+ 1)Pn−1(x)) = n− 1.

2). d0((x2
2u−2u + x2

2u−(2)2u+1 + x2
2u−(2)2u + x2

2u−(3)2u+1 + x2
2u−(3)2u + · · ·+

x2
u+1 + x2

u
+ x+ 1)Pn−1(x)) = n− 1.

Theorem 5.5 (Optimal algebraic degree involving, either, any bijection or
any APN). Let F : F2n → F2n be a function, {ai}n−1

i=1 a linearly independent set
of Fn2 , the parameters of F (like u in Kasami) are such that d0(F(x)) < n− 1,
n > 3, and the pair Pn−2, Pn−1 as in Theorem 5.1. Then:

If F is bijective, then d0(F(x+Pn−1(x))) and d
0(∂1(F(x))Pn−1(x)) are optimal.
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If F is APN, then d0(F(x+ Pn−2(x))) and d
0(∂1(F(x))Pn−2(x)) are optimal.

Proof. In the body of Corollary 5.3, we relax the function K to be a bijec-
tive function (we emphasize, not necessarily a monomial function), and when-
ever necessary we apply the fact that the derivative operator is linear on the
space F(F2n ,F2n′ ), where n, n′ ∈ Z+. As for the case, F APN: F(x)Pn−2(x)

mod (x2
n − x)= Dn−2(x)

∑
ωℓ∈Ha1∩···∩Han−2

F(ωℓ)
∏

ωc∈Ha1∩···∩Han−2\{ωℓ}
(x−ωc)∏

x′ ̸=ωℓ

(ωℓ−x′)
. Assum-

ing that the coefficient of the term of degree 3 (let’s call it C3) in the sum to the

right of Dn−2(x) is equal to zero, that is, 0 = C3 :=
∑

ωℓ∈Ha1∩···∩Han−2

F(ωℓ)∏
x′ ̸=ωℓ

(ωℓ−x′)
.

The F2n-partition element Ha1 ∩ · · · ∩ Han−2 = {ω0, ω1, ω2, ω3} contains 4
distinct elements, moreover, Ha1 ∩ · · · ∩ Han−2 ∩ H

a
(1)
n−1

= {ω0, ω1}, Ha1 ∩
· · · ∩ Han−2 ∩ H

a
(2)
n−1

= {ω2, ω3}, necessarily ω1 − ω0 = 1 = ω3 − ω2, and

{ai}n−2
i=1 ∪ {a(j)n−1} is a linearly independent set of Fn2 , for each j : 1, 2. Us-

ing the fact ∂1(Dn−2) = ∂1(Pn−2) = 0, then C3 = ∂1(F)(ω0)
(ω0−ω2)(ω0−ω3)Dn−2(ω0)

+
∂1(F)(ω2)

(ω2−ω0)(ω2−ω1)Dn−2(ω2)
= ∂1(F)(ω0)

Q−1
n−2(ω0−ω2)(ω0−ω3)

+ ∂1(F)(ω2)

Q−1
n−2(ω2−ω0)(ω2−ω1)

= 0. Then

∂1(F)(ω0) = ∂1(F)(ω2) = β, also ∂1(F)(ω1) = ∂1(F)(ω3) = β, for some β ∈ F2n ,
but this violates the APN condition on F. Then such a leading coefficient, C3,
cannot be 0. Then,

deg

(
Dn−2(x)

( ∑
ωℓ∈Ha1∩···∩Han−2

F(ωℓ)
∏

ωc∈Ha1∩···∩Han−2\{ωℓ}
(x−ωc)∏

x′ ̸=ωℓ

(ωℓ−x′)

))
=

deg

( ∑
ωℓ∈Ha1∩···∩Han−2

F(ωℓ)
∏

ωc∈Ha1∩···∩Han−2\{ωℓ}
(x−ωc)∏

x′ ̸=ωℓ

(ωℓ−x′)

)
+deg(Dn−2(x)) = 2n−1, that

is, d0
(
Dn−2(x)

( ∑
ωℓ∈Ha1∩···∩Han−2

F(ωℓ)
∏

ωc∈Ha1∩···∩Han−2\{ωℓ}
(x−ωc)∏

x′ ̸=ωℓ

(ωℓ−x′)

))
= d0(F(x)Pn−2(x)) = n. Applying Corollary 9.3 analogously as it was done
in Corollary 5.3, we obtain that d0(∂1(FPn−2)(x)) = d0(F(x)Pn−2(x)) − 1 =
n − 1. Let fF := Fo(Id + Pn−2), therefore d

0(fF(x)) = d0(fF(x) − F(x)) =
d0(∂1(F(x))Pn−2(x)), if d

0(F(x)) < d0(fF(x) − F(x)). Since ∂1(Pn−2) is zero,
∂H=Pn−2(x)(F)(x) = ∂1(F(x))Pn−2(x) = ∂1(FPn−2)(x). Subject to d0(F(x)) <
n− 1 = d0(fF(x)− F(x)), we have d0(Fo(Id+ Pn−2)) = n− 1. □

Theorem 5.5 can be applied in parts (1) and (3) of Theorem 4.2. Fol-
lowing the same argument as in Corollary 5.3, the algebraic degree of the
other families in the statement of Theorem 4.2 can be obtained. Includ-
ing the families with n − 2 factors in trace form from item (2) in Theo-
rem 4.2, they will also attain the optimal algebraic degree. Open Prob-
lem 5. Investigate d0(fKu,r) when r < n − 1, 1 < u, for the function,
fKu,r(x) = x2

2u−2u+1 + (x2
2u−2u + x2

2u−(2)2u+1 + x2
2u−(2)2u + x2

2u−(3)2u+1 +
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K(x): a bijection with a poor d0(K(x))

F(x): an APN with a poor d0(F(x))

Enhanced to

K(x) + ∂1(K(x))Pn−1(x) with o.a.d.
F(x) + ∂1(F(x))Pn−2(x) with o.a.d.
as all its other security properties are
not significantly altered.

Figure 2: Transition to functions with optimal algebraic degree (o.a.d.)

x2
2u−(3)2u + · · · + x2

u+1 + x2
u
+ x + 1)Tr1n(a1x) · · ·Tr1n(arx), and in particu-

lar when gcd(n, u) = 1. Open Problem 6. Obtain some version of Theorem
5.5 for Fpn of odd charact. p.

Corollary 5.6 Let n ≥ 3, n−1 ≥ u ≥ 1, and (ai)
n−1
i=1 a linearly independent

set of Fn2 . Then the families f(x) = x2
u+1+(x2

u
+x+1)Tr1n(a1x) . . . T r

1
n(an−1x)

and f(x) = x2
2u−2u+1 + (x2

2u−2u + x2
2u−(2)2u+1 + x2

2u−(2)2u + x2
2u−(3)2u+1 +

x2
2u−(3)2u + . . . + x2

u+1 + x2
u
+ x + 1)Tr1n(a1x) . . . T r

1
n(an−1x) are not EA-

equivalent to power functions Gold, Kasami, and the Dobbertin’s functions of
the form x2

n/2+2n/4+1 (where n/4 is odd, discussed in [18, 27], and [59]), and
the Bracken’s binomial functions αx2

s+1 + α2kx2
−k+2k+s

in Table 3.

Proof. Corollary 5.3 provide us that d0(f) = n − 1. Whereas, Gold
d0(x2

u+1) = 2, Kasami d0(x2
2u−2u+1) = u + 1 (for the Kasami case: u <

n − 1), Dobbertin d0(x2
n/2+2n/4+1) = 3, and Bracken’s binomial d0(αx2

s+1 +
α2kx2

−k+2k+s
) = 2. The algebraic degree of not affine functions is invariant

under EA-equivalence. Then, for the Kasami case, with u < n − 2, f is not
EA-equivalent to Gold, Kasami, Dobbertin, and the Bracken’s binomial. □

Note. It is of particular interest to remark that Theorem 4.2 establishes
that the bases B(n) of the Finite Field are those who provide the new function
families.
Examples. Permutations based on Gold and Kasami (see tables 8 and 9).
From Theorem Differentially δ-Uniform polynomial, Gk,j(x) = x2

k+1 + (x2
k
+

x + 1)Tr1n(a1x) . . . T r
1
n(ajx) and Ki,j(x) = x2

2i−2i+1 + (x2
2i−2i + x2

2i−(2)2i+1 +

x2
2i−(2)2i+x2

2i−(3)2i+1+x2
2i−(3)2i+. . .+x2

i+1+x2
i
+x+1)Tr1n(a1x) . . . T r

1
n(ajx),

where Tr1n(a1) = . . . = Tr1n(aj) = 0. Cryptographic properties: ∆(f) = its
differential δ uniformity. nl(f) = its nonlinearity, depending on which family
they are, they satisfy the inequalities: nl(f) ≥ nl(F )−2 (or nl(f) ≥ nl(F )−4),
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where nl(F ) is the high nonlinearity of the Gold or Kasami. d0(f) = its
algebraic degree. We wrote computer programs in SAGE-Python (based on
the system MACSYMA developed by MIT) and Python software to fill each
table in this research.

6 An Inherent Bound on Y

It is worth mentioning that the multiplicative inverse function, Y, is the S-Box
used by the AES [51] and that, as we see in Section 8, it is vulnerable; in turn,
such Y is unsurpassed in terms of other nonlinearity qualities. We obtain the
number of fixed points for the classes Ĩx̃0,0, Ĩx̃0 , produced by our method, and
there are coincidences with other procedures in this particular aspect. The goal
of this section is to determine the inherent bound on Y, as given by Theorem
6.2, one of whose implications is Theorem 6.1. The second focus is the design
of an optimal basis Bx̃0 that will give us sufficient control over Ĩx̃0,0 and Ĩx̃0 .
There is an extensive open problem at the end of the section. Consider the
following optimization problem whose cost function is given by the size of the
set of fixed points of Pn−1o(x

−1 + σ) for n ≥ 2, where the objective is to find
the optimal parameters

(
σ, (ai)

n−1
i=1

)
that minimize it:

min
σ∈F2n ; (ai)

n−1
i=1 is linearly independent

|Fixed points of Pn−1o(x
−1 + σ)|

The Subfamilies Ĩx̃0,0 and Ĩx̃0 : let Pn−1 be such that its parameters (ai)
n−1
i=1

form a linearly independent set of Fn2 . We have that the equation Pn−1(x) = 1
has a solution set equal to a coset x̃0 + F2 = {x̃0, x̃0 + 1} verifying that
(x̃0 + F2) ∩ F2 = ∅, if Tr1n(a1) = · · · = Tr1n(an−1) = 0. So we imme-

diately have that: Tx̃0
def
= { 1

x̃0
, 1
x̃0+1

} (respectively F2) is the solution set

of the equation Pn−1(x
−1) = 1 (respectively P̂n−1(x) = 1), where P̂n−1 is

the composition Pn−1o(x
−1 + x̃0). Depending on the purpose we have, we

will consider function Ĩx̃0,0(x)
def
= x2

n−2 + Tr1n(a1x
2n−2) · · ·Tr1n(an−1x

2n−2) or

Ĩx̃0(x)
def
= x2

n−2 + x̃0 + Tr1n(a1(x
2n−2 + x̃0)) · · ·Tr1n(an−1(x

2n−2 + x̃0)), the rea-
son of the subscript including x̃0 lies in the design of a basis Bx̃0 of the type
that will be seen shortly. With respect to the algebraic degree of these two
families, it is the optimal one, because if their term x2

n−2 were eliminated by
one coming from the part Pn−1o x

−1 (respectively Pn−1o(x
−1+ x̃0)), then they

are still left with their term of degree 2n − 3 (whose algebraic degree is also
optimal) coming (also) from the part Pn−1o x

−1 (respectively Pn−1o(x
−1+ x̃0))

(in the body of Theorem 5.2 you will find applicable relations independent of
the Gold form).

Permutations Ĩx̃0,0 and Ĩx̃0 are differentially 4-uniform as we will see below.
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Theorem 6.1 Let n be even. For every a ̸= 0 together with x̃0 /∈ F2, the
mappings

x −→ Ĩx̃0,0(x+ a)− Ĩx̃0,0(x), x −→ Ĩx̃0(x+ a)− Ĩx̃0(x)

are (at most) 4-to-1.

Proof. Let Y(x) = x−1, Id(x) = x, and ξ′, ξ′′ be two points such that
Tr1n(Y(Y(ξ′) + 1)) = Tr1n(Y(Y(ξ′′) + 1)) = 1, and Ĩx̃0,0 defined with a ba-
sis Bx̃0 , as determined in Section 6. Then,

∂a((Id + Pn−1)oY)(x) = ((Id + Pn−1)oY)(x + a) − ((Id + Pn−1)oY)(x) =
Y(x+ a)−Y(x) = ∂aY(x), if x /∈ {Y(ξ′),Y(ξ′′),Y(ξ′) + a,Y(ξ′′) + a}.

If x ∈ {Y(ξ′),Y(ξ′′),Y(ξ′) + a,Y(ξ′′) + a}, ∂a((Id + Pn−1)oY)(x) = ((Id +
Pn−1)oY)(x+a)−((Id+Pn−1)oY)(x) = Y(x+a)−Y(x)+γ(a) = ∂aY(x)+γ(a),
where γ(a) ∈ F2, (Id + Pn−1)(ξ

′) = ξ′ + 1, (Id + Pn−1)(ξ
′′) = ξ′′ + 1.

Let d = 1
3
(2n − 1), d ∈ N since n ∈ 2N. There is a fact that connects us to

Nyberg (1993), she observed that for each a ∈ F∗
2n , {0, a, a1+d, a1+2d} −→ Y(a)

is the only 4-to-1 shipment under the mapping ∂aY, its other shipments do
not matter, they are 2-to-1. We wonder if there is any additional pair that
contributes with a shipment toY(a), symbolically, {x, x+a} −→ Y(a). Such a
pair could only come from the set {Y(ξ′),Y(ξ′′),Y(ξ′)+a,Y(ξ′′)+a}. Suppose,
for example, that ∂a((Id + Pn−1)oY)(Y(ξ′)) = ∂aY(Y(ξ′)) + 1. Below we will
show that Tr1n(Y(Y(ξ′) + 1)) = 1 (from the hypothesis) implies ∂aY(Y(ξ′))−
Y(a) ̸= 1, ∀a ̸= 0. So ∂a((Id + Pn−1)oY)(Y(ξ′)) = ∂aY(Y(ξ′)) + 1 ̸= Y(a),
i.e. such a shipment does not reach Y(a). Then the shipments at most can be
4-to-1, proving that for each a ̸= 0 the mapping x −→ Ĩx̃0,0(x+ a)− Ĩx̃0,0(x) is
differentially 4-uniform. Applying the fact that a permutation f and its f−1

have the same uniform differentiability, we obtain that, ∆(Ĩx̃0,0) = ∆(Yo(Id+
Pn−1)) = ∆((Y+ x̃0)o(Id + Pn−1)) = ∆(Ĩx̃0).

In this paragraph, let us prove that: given (a, k) ∈
(
F∗
2n

)2
, ζ /∈ Y(k)F2 such

that Tr1n(Y(kζ+1)) = 1 implies ∂aY(ζ)−Y(a) ̸= k. Let ζ /∈ {a, 0,Y(k)}, the
equation ∂aY(ζ)−Y(a) = k is equivalent (when multiplied by ζa(ζ + a)) to,
(kζ+1)a2+(kζ2+ζ)a+ζ2 = 0, then multiplying by Y(ζ2(kζ+1)), (aY(ζ))2+
aY(ζ) +Y(kζ + 1) = 0 (implying Tr1n(Y(kζ + 1)) = 0). Consequently, if we
choose (k, ζ) such that Tr1n(Y(kζ + 1)) = 1, we have ∂aY(ζ)−Y(a) ̸= k. On
the other hand, if ζ = a, a simple evaluation and the definition of Y show
that ∂aY(ζ) − Y(a) = 0 ̸= k. This inference in question is thus proven. In
particular, this implication is obtained for k = 1 and ζ = Y(ξ′).

By virtue of Theorem 6.2, it is enough to choose ξ′ = θ and ξ′′ = θ+1, and
apply the linearity of the trace, to obtain Tr1n(Y(Y(ξ′)+1)) = Tr1n(Y(Y(ξ′′)+
1)) = 1. For θ /∈ F2, the existence of such an (optimal) Basis Bx̃0 is always
guaranteed, where θ = x̃0. □

The property of the multiplicative inverse function Y shown below gives it
a decisive advantage in terms of its applicability.
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Theorem 6.2 (An inherent bound on Y). There are no less than 2n−2−√
2n−2 + 1

4
and no more than 2n−2 +

√
2n−2 + 1

4
points θ ∈ F2n verifying the

identity: Tr1n(Y(θ)) = Tr1n(Y(θ + 1)) = 1.

Proof. Let’s start by defining the function ψ(θ) := Y(θ + 1) − Y(θ). If
we remove {0, a} from {0, a, a1+d, a1+2d} for a = 1, the derivative, ψ, be-
comes 2-to-1, when dealing with n even. Let’s define the following sets,
Oκ
κ̃ := {θ ∈ F2n ;Tr

1
n(Y(θ + κ)) = κ̃, T r1n(Y(θ)) = Tr1n(Y(θ + 1))}, Iκκ̃ :=

{θ ∈ F2n ;Tr
1
n(Y(θ + κ)) = κ̃, T r1n(Y(θ)) ̸= Tr1n(Y(θ + 1))}, where κ, κ̃ : 0, 1.

Let’s show that
∣∣|O0

0

⋃
O0

1|−2n−1− 1
2

∣∣ ≤ √
2n. For θ /∈ F2, applying the change

of variable u = Y(θ)+1 allows us to represent ψ as, ψ(θ) = ψ̃(u) := u+Y(u),

where u /∈ F2. Even though ψ(F2) ̸= ψ̃(F2), it happens that Tr1n(ψ(F2)) =

Tr1n(ψ̃(F2)) = 0, and also F2 ⊆ O0
0

⋃
O0

1. So, it will be equivalent to showing∣∣|{u ∈ F2n ;Tr
1
n

(
ψ̃(u)

)
= 0}| − 2n−1 − 1

2

∣∣ ≤ √
2n. At this point we come across

Kloosterman’s sums K(a). By definition of K(a), it is immediate to deduce

that 2|{u ∈ F2n ;Tr
1
n

(
ψ̃(u)

)
= 0}|−2n = K(1)+1, besidesWY(1, 1) = K(1)+1,

for n even or odd, with a ∈ F∗
2n . The Kloosterman sum K(1) is an integer of

the form K(1) = −1 mod (4) in the interval [−2
n
2
+1, 2

n
2
+1], see Theorem 3.4

in [131, 86]. Then, 2|{u ∈ F2n ;Tr
1
n

(
ψ̃(u)

)
= 0}| − 2n ∈ [−2

n
2
+1 + 1, 2

n
2
+1 + 1],

i.e., 2|{u ∈ F2n ;Tr
1
n

(
ψ̃(u)

)
= 0}| ∈ [2n − 2

n
2
+1 + 1, 2n + 2

n
2
+1 + 1]. This gives

|{u ∈ F2n ;Tr
1
n

(
ψ̃(u)

)
= 0}| ∈ [2n−1 −

√
2n + 1/2, 2n−1 +

√
2n + 1/2].

Next, let’s prove |O0
1| = |O0

0

⋃
O0

1|/2. Assuming that |Oκ
0 | > |Oκ

1 | oc-
curs; it is straightforward to see that |{θ ∈ F2n ;Tr

1
n(Y(θ)) = κ̃}| = 2n−1,

so
∣∣I0

(κ̃+1) mod (2)

∣∣ = |O0
κ̃|. So

∣∣I1
κ̃

∣∣ =
∣∣I0

(κ̃+1) mod (2)

∣∣. Then we have |{θ ∈
F2n ;Tr

1
n(Y(θ + 1)) = κ̃}| = 2|O0

κ̃|; therefore |O1
0

⋃
I1
0 | = 2|O0

0| > 2|O0
1| =

|O1
1

⋃
I1
1 |, but this is a contradiction, because in fact κ̃}| = |O1

κ̃

⋃
I1
κ̃| = 2n−1,

since the transformation Y(θ + 1) permutes F2n . That is, |O0
0| ≯ |O0

1|. Anal-
ogously, we get |O0

0| ≮ |O0
1|, so |O0

0| = |O0
1|. That is, |O0

1| = 1
2
|O0

0

⋃
O0

1|.
Therefore, 2n−2 −

√
2n−2 + 1

4
≤ |{θ ∈ F2n ;Tr

1
n(Y(θ)) = Tr1n(Y(θ+1)) = 1}| ≤

2n−2 +
√
2n−2 + 1

4
. □

We can see that we have investigated the second coordinate function in the
function θ −→ (Tr1n(Y(θ+1))Tr1n(Y(θ)), T r1n(Y(θ+1)−Y(θ))) to investigate
its first coordinate function.

Design of an Optimal Basis Bx̃0 =
(
β
(i)
x̃0

)n−1

i=1
: consider the general family

of the form F−1(x) + Pn−1(F
−1(x)) (when invertible, it is the inverse of f of

Theorem 4.12 for Tr1n(a1) = · · · = Tr1n(an−1) = 0) together with an arbitrary
point x̃0 /∈ F2, for some permutation F−1. We wish to obtain a basis as
in Theorem 4.9 such that the coset x̃0 + F2 solves its associated equation:
Pn−1(x) = 1. We solve this problem in this paragraph. Let Θ ∈ Hx̃0 ∩ S1 be

linearly independent with
(
β(i)
)n−2

i=1
, where

(
β(i)
)n−1

i=1
is a basis of the subspace

S1, and
(
β(i)
)n−2

i=1
is a basis of the subspace S1 ∩ Sx̃0 . Based on Corollary
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·ζ

∏
k∈K

Tr1n(Y(Y(k)ζ + 1))=1

·pYa(ζ){0} ∪K

F2n

F2n

F2n

Y(K)

pYa(ζ)
def
=∂aY(ζ)−Y(a)

·a

Figure 3: Mappings pYa

4.13 and that {1, x̃0} is a linearly independent set, Θ exists. More precisely,
we can choose Θ = β(n−1). We know that Tr1n(x̃0Θ) = 1 and Tr1n(Θ) = 0,
due to the definition of Θ. To see the linear independence, assume that,
n−2∑
i=1

ci(β
(i)+Θ)+cn−1Θ = 0, that is,

n−2∑
i=1

ciβ
(i)+

(
n−1∑
i=1

ci

)
β(n−1) = 0, in particular

cn−1 = −
n−2∑
i=1

ci = 0. Then all ci is zero. Finally, we obtain the desired basis

{β(i) + Θ}n−2
i=1 ∪ {Θ} = {al}n−1

l=1 ⊆ Hx̃0 for S1, with Tr1n(1β
(i) + Θ) = 0 and

Tr1n(Θ) = 0, for any 1 ≤ i ≤ n − 2. That is, Pn−1(x̃0 + F2) = 1. In sequel
(to highlight the dependence on the point x̃0) this basis for S1 is denoted as

Bx̃0 =
(
β
(i)
x̃0

)n−1

i=1
. Note that we denote the bases by parentheses as well as by

brackets.

Theorem 6.3 The fixed point sets of Ĩx̃0,0 and Ĩx̃0 verify:
A1). There exists x̃0 ∈ F2n ∖ F2 such that |Fixed points of Ĩx̃0,0| ≤ 2.
A2). |Fixed points of Ĩx̃0| ≤ 2, for σ = x̃0 ∈ F2n ∖ F2 and (ai)

n−1
i=1 = Bx̃0.

A3). If x̃0 ∈ F2n ∖ F2 with Tr1n(x̃
−1
0 ) = 1, then |Fixed points of Ĩx̃0| = 0.

Proof. Let x̃0 be a point outside F2. Case I. We look for the fixed points
of Ĩx̃0,0(x) = x2

n−2 + Tr1n(β
(1)
x̃0
x2

n−2) . . . T r1n(β
(n−1)
x̃0

x2
n−2), where Bx̃0 is some

basis determined by x̃0 (the one recently obtained), such that Pn−1(x
−1) =

1 has Tx̃0 as its solution set. From Ĩx̃0,0(x) = x we have x2
n−2 = x +

Tr1n(β
(1)
x̃0
x2

n−2) . . . T r1n(β
(n−1)
x̃0

x2
n−2). If Pn−1(x

2n−2) = 0, then x2
n−2 = x, i.e,

x = 0 or x2−1 = 0 (x = 1). We will consider finding two more fixed points for
Ĩx̃0,0. Furthermore, if Pn−1(x

2n−2) = 1 (solved only by x in Tx̃0), then we have
the following equation independent of x̃0, x

2n−2 = x + 1, i.e. x2 + x − 1 = 0,
whose solution set is γ+F2, for some γ ∈ F2n with (γ+F2)∩F2 = ∅. Just by
taking any of the lots of 2n−4 candidates for x̃0, x̃0 /∈ F2∪(1ρ+F2) for ρ ∈ γ+F2,

, we have that x2 + x− 1 ̸= 0 on F2n . By choosing x̃0 this way, we get Ĩx̃0,0 to
have no more than two fixed points, and also, Fixed points of Ĩx̃0,0 ⊆ F2. Case
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II. Regarding Ĩx̃0 the results change surprisingly. If Pn−1(x
2n−2 + x̃0) = 1,

our Ĩx̃0 has no fixed points. If Pn−1(x
2n−2 + x̃0) = 0, this brings us to

xx̃0 ̸= 0, ( x
x̃0
)2 + x

x̃0
+ x̃−2

0 = 0. Thus, Tr1n(x̃
−1
0 ) = 0. Besides, Fixed points of

Ĩx̃0 ⊆ {x ∈ F2n∖(F2∪(x̃0+F2));x
2+x̃0x = 1} (2 fixed points at most). There-

fore, |Fixed points of Pn−1o(x
−1 + σ)| ≤ 2, for σ = x̃0 /∈ F2 and (ai)

n−1
i=1 = Bx̃0 .

It is even enough to choose x̃0 such that Tr1n(x̃
−1
0 ) = 1 to have Ĩx̃0 without

fixed points: Fixed points of Ĩx̃0 = ∅ (there are a large number of x̃0 points)
□

This property of having a considerably small number of fixed points (2

points at most) propagates to the families Ĩ
(m)
x̃0,0

(x)
def
= x2

n−2 + Tr1n(β
(1)
x̃0
x2

n−2)

. . . T r1n(β
(m)
x̃0

x2
n−2) and Ĩ

(m)
x̃0

(x)
def
= x2

n−2+x̃0+Tr
1
n(β

(1)
x̃0

(x2
n−2+x̃0)) . . . T r

1
n(β

(m)
x̃0

(x2
n−2 + x̃0)), where m ≥ 1. Problem 7. For each m and each point x̃0 /∈ F2

a family of functions Ĩ
(m)
x̃0

(x) is generated. Investigate whether these differen-
tially δ-uniform classes contain subclasses with the best differential δ-spectrum
within their general differentially δ-uniform class: that is, whose δf (a, b) co-
incides with ∆(f)(= δ) in at most 2n − 1 occurrences where (a, b) belongs
to some set {(a1, b1), . . . , (a2n−1, b2n−1)} (abstracting from the behavior of the
mother reference x−1 (see the second paragraph in Theorem 6.1), although
questionable in some of its aspects), where the ai(̸= 0) are distinct from each
other, while the rest of the quantities δf (a, b) are bounded above by ∆(f)− 2.
Still a differential δ-spectrum is one of the most relevant, if there were at most
(2n−1)σ pairs (a1, b1,1), (a1, b1,2), . . . , (a2n−1, b2n−1,1), (a2n−1, b2n−1,2), where all
δf (ai, bi,1) and δf (ai, bi,2) are equal to ∆(f), where the ai ̸= 0 are distinct, for
σ = 2 (small). Besides, consider other families in Theorem 4.6. A candidate
for F in Theorem 4.6 may be the Bracken and Leander function.

In [111], Chapter 4, the author finds bounds for the nonlinearity (NL(f))
of an infinite class of rather peculiar highly nonlinear functions, turning such
a bounding mission into a remarkable optimization problem of the following
style (Open Problem 8: give an answer to this discrete problem for the rest
of the members of the classes in Theorems 4.2 and 4.12, as well as determining
more precise bounds):

max
u1 ̸=1, (u1, u2,Z)∈

(
F2n

)2
×Z+

|{X ∈ F2n ;Tr
1
n((u1 + 1)X2k+1) + u2X)

+Tr1n(X
2k+1)Tr1n(X

2Z+1) = 0}|.

In the oral part of Roberto R. Carranza’s doctoral dissertation (year 2020),
he proposed to refine the value of the differentiability of a function, as an-
nounced below. Open Problem 9. Given any diff. δ-uniform f1, properly
smooth this function into a new f2 such that ∆(f2) is strictly less than ∆(f1),
without sacrificing the properties of non-linearity, the algebraic degree, and
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|f2(F2n)| should not decrease drastically. According to this sense, f2 is called
the evolution of f1.

7 CCZ-inequivalence

The Walsh spectrum of the almost bent (AB) and Gold subfamilies can be
found in the papers by Edel and Pott [67], Carlet, Charpin, and Zinoviev [34],
and Dillon and Dobbertin [56]. In [112] R. Carranza added a new method to
demonstrate CCZ-inequivalence between the Kasami-Welch family and other
functions. The following result says that our function families are new.

Theorem 7.1 The family of functions in Theorem 4.2 are CCZ-inequivalent
to the Gold functions ([72, 104]), the Kasami functions ([78, 81]), the Dob-

bertin’s functions of the form x2
n/2+2n/4+1 (where n/4 is odd, discussed in

[18, 27], and [59]) and quadratic functions (including the Bracken’s binomial),
where n > 4.

Proof. When n is even, the extended Walsh spectrum of the Gold, the Kasami
and the Dobbertin’s functions x2

2r+2r+1 is included in the (three valued) set
{0, 2n/2, 2n/2+1}. Regarding to quadratic functions, the elements of their Walsh
spectrum belong to the set {0,±2n/2+l; where l ≥ 0}, namely, the elements of
their extended Walsh spectrum are divisible by 2n/2. Now let’s compute the
form of the Walsh coeffcients of the functions in Theorem 4.2.

The equation Tr1n(a1x0) . . . T r
1
n(an−1x0) = 1 implies Tr1n(a1(x0 + 1)) . . .

T r1n(an−1(x0 + 1)) = 1, that means: If x0 ∈ Ha1 ∩ · · · ∩Han−1 , then x0 + 1 ∈
Ha1 ∩· · ·∩Han−1 −{x0}. Then, x1 = x0+1, in particular ∆1F (x0) = ∆1F (x1).

Then, Wf (a, b) −WF (a, b) = (−1)Tr
1
n(a x0)

(
(−1)Tr

1
n(b F (x0+1)) − (−1)Tr

1
n(b F (x0))

)
−

(−1)Tr
1
n(a x0+a)

(
(−1)Tr

1
n(b F (x0+1)) − (−1)Tr

1
n(b F (x0))

)
= (−1)Tr

1
n(a x0)

(
1− (−1)Tr

1
n(a)
)(

(−1)Tr
1
n(b F (x0+1)) − (−1)Tr

1
n(b F (x0))

)
.

The function F is 1-to-1, then ∆1F (x0) ̸= 0. Case-I: Choose b ̸= 0 such
that Tr1n(b∆1F (x0)) = 0. Then the factor of Wf (a, b) − WF (a, b), given by(
(−1)Tr

1
n(b F (x0+1)) − (−1)Tr

1
n(b F (x0))

)
will be zero, then Wf (a, b) = WF (a, b),

then Wf (a, b) ∈ {0,±2n/2,±2n/2+1}. Case-II: Choose b ̸= 0 such that

Tr1n(b∆1F (x0)) = 1. Then the factor
(
(−1)Tr

1
n(b F (x0+1)) − (−1)Tr

1
n(b F (x0))

)
will

be ±2, thenWf (a, b) = WF (a, b)±2(−1)Tr
1
n(a x0)

(
1− (−1)Tr

1
n(a)
)
= WF (a, b)±

2
(
1− (−1)Tr

1
n(a)
)
. If Tr1n(a) = 0, then Wf (a, b) = WF (a, b). If Tr1n(a) = 1,

then Wf (a, b) = WF (a, b)± 22.
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Only under the condition Tr1n(b∆1F (x0))Tr
1
n(a) = 1, it appears new Walsh

coefficients different from the coefficients WF (a, b). There are 2
n−12n−1 of this

new coefficients. There are (3)22n−2 − 2n coefficients WF (a, b).
By Lemma 1.20, the extended Walsh spectra is a CCZ-invariant parameter.

When n > 4, the number 2n/2 do not divides the coefficients |Wf (a, b)|. Then,
the functions in Theorem 4.2 have different extended Walsh spectrum from
the ones cited in Theorem 7.1. □

Definition 7.2 Let (ai)
n
i=1 be a basis of Fn2 (over F2, as usual), F : Fn2 →

Fn2 , Trmn (x) =
∑ n

m
−1

i=0 x2
im
, and r ≥ 1, then f(x) = F (x+Tr1n(a1x) . . . T r

1
n(arx))

is called an r-light function of F .

Our method applied to the multiplicative inverse function leads to members
of the families, Ĩ

(n−i)
x̃0,0

(x) = x2
n−2 + Tr1n(a1x

2n−2)· · ·Tr1n(an−ix2
n−2),∀n − 1 ≥

i ≥ 2 and Ĩ
(n−1)
x̃0,0

(x) := Ĩx̃0,0(x) = x2
n−2+Tr1n(a1x

2n−2)· · ·Tr1n(an−1x
2n−2), with

optimal algebraic degree regardless of whether n is even or odd.

7.1 On Budaghyan-Carlet-Leander’s CCZ-inequivalence
Conjecture

Knowing an exceptional APN function is a sign of strength since we can be
using a field and suddenly switch it to another one chosen at will from a
number ℵ0 (countable infinity, according to Georg Cantor) of possibilities that
are its field extensions involved while employing the same function formula
without losing the APN quality to maintain security; exceptional APN is bet-
ter than APN. In cases where two functions are indistinguishable in terms
of their invariants under CCZ-equivalence (having the same ∆f = ∆g and
NL(f) = NL(g), for instance), determining whether or not they are (fully)
CCZ-equivalent can become a serious headache. Recently, researcher R. Car-
ranza constructed a new infinite class of APN functions, more precisely, the
non-monomial exceptional APN (class J(ni)∞i=0

) for which he showed that the
powerful Conjecture about CCZ-inequivalence proposed by Lilya Budaghyan,
Claude Carlet, and Gregor Leander (who also gave the proof for the Gold,
Dobbertin, and Inverse cases) also holds for their Kasami-Welch, Welch, and
Niho cases [112], so that Table 1 is completely covered; the author introduced
his universal method to investigate CCZ-inequivalence. The Dobbertin case
can also be solved via the universal method. Conjecture-BCL has proven to
be very decisive in the area. We will soon be introducing the function Fn, the
Conjecture-BCL, we will also define the class J(ni)∞i=0

, providing the equations
and algorithm applied to obtain it.

Theorem 7.3 [26]. The switching neighbour Fn(x) = x3 + Tr1n
(
x9
)
(other

switching neighbours can be seen in the Ph.D. Dissertation [111]) satisfies:
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a1). For each dimension n, Fn (one Fn for each n) is APN on Fn2 .
a2). is CCZ-inequivalent to the Gold, inverse and Dobbertin APN functions

on F2n when n ≥ 7.
a3). is EA-inequivalent to power functions on F2n when n ≥ 7.
a4). is CCZ-inequivalent to power functions on F27.

Conjecture-BCL (Budaghyan-Carlet-Leander, 2nd page on [26]). For n ≥ 7,
Fn(x) = x3+Tr1n (x

9) is CCZ-inequivalent to any power function (F ′(x) = xt).

Theorem 7.4 [112]. The function Fn(x) = x3 + Tr1n
(
x9
)
and the Kasami-

Welch family of functions Kr(x) = x4
r−2r+1 are CCZ-inequivalent on F2n,

where n > 7 and gcd(r, n) = 1. Moreover, Fn is CCZ-inequivalent to both
functions, WelchW (x) = x2

ω+3 and Niho Nγ(x) = x2
ω+2γ−1, where n = 2ω+1,

γ = 3ω+1
2

if ω is odd, and γ = ω
2
if ω is even.

Following is the coefficient—equaled to zero—of the linear term of degree
2k in the equation that is generated when it is assumed that F ′ and Fn are
CCZ-equivalent (see the body of Theorem 7.4 in [112]):

C2σak + a2
σ

k−σC + a2
σ

k−σ−1ak−1 + ϵr,n
3

(
b2

σ

k−1+r−σbk−1 + b2
σ

k−1−σbk−1+r

)
+

ϵr,n
2

(
a2

σ

k−1+r−σbk−1 + b2
σ

k−1−σak−1+r

)
− a′k +

∑
γ∈Z/nZ

(
C8ak−γ + a8k−γ−3C

+a8k−γ−4ak−γ−1 + ϵr,n
3

(
b8r+k−γ−4bk−γ−1 + b8k−γ−4br+k−γ−1

)
+ ϵr,n

2

(
a8r+k−γ−4bk−γ−1 + b8k−γ−4ar+k−γ−1

))2γ

= 0.

Where the ais, a
′
is, bis, and C define an affine permutation of F2

2n , ϵi,j is
the Kronecker’s delta, and σ ≥ 1. Let n0 ∈ N, and (nk)

∞
k=1 a sequence of

odd numbers other than 1. Let M be the domain F2n0 or any of its field
extensions F

2
∏l

k=0
nk

(for some l), or the union of all these extensions Ω =
∞⋃
l=1

F
2
∏l

k=0
nk
. Let J1 and J2 be functions defined on Ω. The correspondence

J(ni)∞i=0
defined below is a function. J(ni)∞i=0

: M → M , such that for each x in

M an J(ni)∞i=0
(x) is assigned as follows: set ξx =

∑−1+n0

i=0 J2i

2 (x). If ξx ∈ F2, then

define J(ni)∞i=0
(x) = J1(x) + ξx, otherwise set ξx =

∑−1+
∏1

k=0 nk

i=0 J2i

2 (x). If ξx ∈
F2, then define J(ni)∞i=0

(x) = J1(x)+ ξx, otherwise set ξx =
∑−1+

∏2
k=0 nk

i=0 J2i

2 (x).
If ξx ∈ F2, then define J(ni)∞i=0

(x) = J1(x) + ξx, otherwise continue this process
until ξx belongs to F2, then set J(ni)∞i=0

(x) = J1(x) + ξx.
For every l′ > l, the mapping J(ni)∞i=0

: F
2
∏l′

k=0
nk

→ F
2
∏l′

k=0
nk

differs from

Budaghyan’s APN x3 + Tr1n
(
x9
)
: F

2
∏l′

k=0
nk

→ F
2
∏l′

k=0
nk
, where n =

∏l
k=0 nk,



Brand-new highly non-linear functions 139

J1(x) = x2
σ+1, σ is chosen as 1, and J2(x) = x9. If a (ni)

∞
i=0 is established,

then the Carranza-Budaghyan function (shortened) J(ni)∞i=0
on M can also be

named by J ; R. Carranza constructed this new function by transforming an
appropriate infinite sequence (corresponding to (ni)

∞
i=0) of different switching

neighbors APNs of Budaghyan et al.; and also showed that the Conjecture-
BCL (in [112]) proposed by Budaghyan et al. also holds for the other three
main APN mappings in Table 1 (Kasami-Welch, Welch, and Niho (in its two
subclasses)), guaranteeing in one fell swoop that J(ni)∞i=0

has no equivalent with
any APN function and that J(ni)∞i=0

is Exceptional APN, read Figure 4. Only
3 exceptional APN families are known; see Table 2.

Table 2: The two Exceptional APN Monomial Classes and the Non-polynomial
Class (it is enough to choose different sequences (ni)

∞
i=1, while n0 can be chosen

even or odd)
Function Name Exceptional APN Functions Constraints Ref.

Gold x2
r+1 : F2n → F2n gcd(r, n) = 1 [72]

(quadratic) [104]

Kasami-Welch x2
2r−2r+1 : F2n → F2n gcd(r, n) = 1 [81]

(non-quadratic [78]
if it is not AE to x3) [112]

Carranza-Budaghyan J(ni)∞i=0
:

∞⋃
l=0

F
2
∏l

k=0
nk

→
∞⋃
l=0

F
2
∏l

k=0
nk

nk (̸= 1) are odd [112]

(non-polynomial, for J1(x) = x2
σ+1, numbers, ∀ k ≥ 1,

counting non-monomials) σ = 1, J2(x) = x9 n0 is arbitrary in N

7.1.1 Mappings Applied in Conjecture-BCL

As far as the CCZ-inequivalence between the Gold family and the APN func-
tion (Fn) of Budaghyan-Carlet-Leander6 (2009), they show that the follow-
ing affine mapping on variable X, L1(X,F (X)) = L(X) + L′(F (X)) = d′′ +
Tr1n(d

′
1X+d′2F (X)) is not a permutation (refer to [26]), where d′1, d

′
2, d

′′ ∈ F2n ,
by virtue of the inequality:

|L1(X,F (X))| ≤ 2,∀X ∈ F2n .

As regards the CCZ-inequivalence between the Kasami-Welch large fam-
ily (also the Welch and Niho families) and the beautiful Budaghyan7-Carlet-
Leander Gold-based APN function, R. Carranza (2024) showed that the affine
mapping L̃1(X) = (η + ζ) (X) + C cannot be a permutation (refer to [112]),
where χl′′ , C ∈ F2n . For this purpose, he obtained the equation

η + ζ = χl′′ (η + ζ)2 + (η + ζ)4

6(recipient of the George Boole International Prize)
7(winner of the Emil Artin Junior Prize in Mathematics)
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The following inequality holds:

|L̃1(F2n)| ≤ 4.

It is decisive that the research continues in both directions with the common
spirit of determining which functions are not Exceptional APN (in particular,
there has been progress in this direction, considering the polynomial class) and
which are. Open problem 10 Discuss whether there are new Exceptional
APN functions. Start by investigating whether it is possible to build another
Exceptional APN function being: the sum of a Gold or the Kasami function
with a Boolean function piecewise-defined along the field extensions. Open
problem 11 Similarly, what are the formulas for Exceptional differentially δ-
uniform functions?, especially—to provide greater security—for δ as small as
2 < δ ≤ 6.

8 Algebraic-Differential Analysis of Highly Re-

sistant Functions (Part I)

Let’s test a cypher implemented based upon any of the current x−1-dependent
functions, we mainly mean that we will see what opportunities these types
of functions will have against the AAttF2n

(4)-algebraic attack that we will
describe shortly.

Definition 8.1 We will say that a function f : Fn2 → Fn2 is x−1–4th-
dependent, which in short we call x−1-dependent, if it has the form F(Y;B)

in Theorem 8.2, and that it is not resistant against an algebraic attack of 2-
weight equal to 4 (this already includes algebraic attacks with a 2-weight less
than 4).

We state our next straightforward but very useful and decisive principle.

Theorem 8.2 Let

F(Y;B)(x) =

{
F (x), x ∈ B∖ InvIma

(
F −Y

)
(0)

x2
n−2, x ∈

(
F2n ∖B

)⋃
InvIma

(
F −Y

)
(0)

be a function

defined on F2n, where F is a function defined on F2n, InvIma
(
F − Y

)
(0)

is the inverse image of {0} under the function F − Y, Y(x) = x2
n−2, and

1 ≤ |B ∖ InvIma
(
F − Y

)
(0)| ≤ |

(
F2n ∖ B

)⋃
InvIma

(
F − Y

)
(0)|. Let ξ ≥ 3,

with |B ∖ InvIma
(
F −Y

)
(0)| = ξ − 2, then is established the algebraic attack

of 2-weight max
1≤λ≤ξ+1

w2(λ) on F(Y;B) given by the equation below:

x

( ∏
γ∈B∖InvIma

(
F−Y

)
(0)

x+ γ

)(
xF(Y;B)(x) + 1

)
= 0.
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R. Carranza-Budaghyan
Excep. APN Family

Budaghyan†1-Carlet†2,†3
-Leander†4 APN Family

R. Gold
Excep. APN Family

Kasami†5,†6-Welch
Excep. APN Family

≇
CCZ

≇
CCZ

≇
CCZ

≇
CCZ

Figure 4: The Three Exceptional APN Function Families. ≇CCZ : de-
notes CCZ-inequivalence. Excep.: short for exceptional. Wf : denotes the
Walsh-Hadamard spectrum of a function f . Fn: denotes the function of L.

Budaghyan, C. Carlet, and G. Leander. J(ni)∞i=0
:

∞⋃
l=0

F
2
∏l

k=0
nk

→
∞⋃
l=0

F
2
∏l

k=0
nk

denotes the R. Carranza function. The Kasami-Welch (K-W ) and Gold (Go)
families where gcd(r, n) = 1, and J(ni)∞i=0

, have the same Walsh-Hadamard
spectrum, the same uniform differentiability (APN), and are exceptional APN,
becoming almost indistinguishable. Facts:
(1). F. Hernando and G. McGuire proved that it is actually a theorem, the
conjecture that the monomial functions f(x) = xt that are exceptional APN
are only the Gold and Kasami-Welch families with gcd(r, n) = 1 [77]. The
strictly polynomial case remains open [5].
(2). WK-W = WGo (J. F. Dillon and Hans Dobbertin [55, 56]).
(3). Gold functions are pairwise CCZ-inequivalent and they are in general
CCZ-inequivalent to Kasami-Welch (and the Welch) functions (L. Budaghyan,
C. Carlet, and G. Leander [25]).
(4). WFn = WGo (Carl Bracken, Eimear Byrne, Nadya Markin, and Gary
McGuire [16]).
(5). Fn ≇CCZ Go (L. Budaghyan, C. Carlet, and G. Leander [26]), so
J(ni)∞i=0

≇CCZ Go, where J(ni)∞i=0
goes from and to the appropriate extension

F2n of degree n =
∏l

k=0 nk.
(6) J(ni)∞i=0

≇CCZ K-W , Fn ≇CCZ K-W (Conjecture-BCL: proved by R. Car-
ranza [112]), where J(ni)∞i=0

goes from and to the appropriate field extension

F2n of degree n =
∏l

k=0 nk.
(7). Construction of the non-polynomial exceptional APN function family
J(ni)∞i=0

(R. Carranza [112]).
†1: Emil Artin Junior Prize in Mathematics, †2: Mathematics in France Leader
Award, †3: Computer Science in France Leader Award, †4: George Boole In-
ternational Prize, †5: Claude E. Shannon Award, †6: Okawa Prize. Open
Problem 32. Is there any pic similar to this for Fpn with p odd?. Open
Problem 33. (this problem will matter for p even) can there be a fourth
Exceptional APN family?
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Indeed, the attack is measured by max
1≤λ≤ξ+1

w2(λ), that is, by ξ. Thus, a

sufficiently strong F(Y;B) will require a sufficiently large |B∖InvIma
(
F−Y

)
(0)|.

The set of equations with 2-weight at most max
1≤λ≤ξ+1

w2(λ) that correspond to

currently existing functions of the type F(Y;B) as determined in Theorem 8.2
is denoted by INEF2n

(
max

1≤λ≤ξ+1
w2(λ)

)
. On the other hand, we define the class

consisting of the following polynomial equations containing polynomials of
algebraic degree at most four,

AAttF2n
(4) = {X2Y = X, (X2 + X)XY = X2 + X, (X + (α−1

0 +

α−1
m+1)X

2)
m∏
i=0

(X + αi) = X2
m∏
i=0

(X + αi)Y , X2(X + a)(X + a−1)(X + a +

1)(X+a−1+1)(X+(a+1)−1)(X+(a+1)−1+1)Y= X(X+a)(X+a−1)(X+
a+1)(X+a−1+1)(X+(a+1)−1)(X+(a+1)−1+1), (X2k+X)XY = X2k+X,
X2(X+ω)(X+ω2)Y = X(X+ω)(X+ω2), (X2+X5+X6)Y = X+X4+X5,
(X2k1 +X)(X2k2 +X)XY = (X2k1 +X)(X2k2 +X), (X4+X2v2)Y = X3+Xv2,
(X2 + uX)(X2 + vX)Y = X(X + u)(X + v), (X2s + X)XY = X2s + X,
(X2s +X)Y = C(X), (X3 + 1)Y = Q(X), (X2k +X)Y = C(X), XY = X2t ,
(X2s + X+t1)(X

4 + t22X
2)Y = C(X)}, where m ≤ 11, while, C, Q, and A

denote some element of the set of cubic, quadratic, and affine functions, re-
spectively; the involved coefficients belong to the field extension F2n , and the
parameters in the exponents are greater than or equal to 1. This special set,
AAttF2n

(4), establishes the algebraic attacks on the S-boxes that appear in
Tables 3 to 7; among such S-boxes there are some diff. 6(also 8)-uniform, but
notoriously almost all are diff. 4-uniform, also, AAttF2n

(4) contains funda-
mental part of INEF2n

(4).

This attack leaves vulnerable the vast diversity of existing nonlinear func-
tions built as x−1-dependent, starting from the mother function x−1; in other
words, practically no known diff. 4-uniform function is not dependent on x−1.

Regarding the leading properties of S-boxes. It can be considered that in
block ciphers (for instance: XSL ciphers), the only non-linear part is their
S-boxes, meaning that the security of the block cipher rests on the strength
of the S-box they use. Among the conspicuous design criteria for Boolean
functions in an S-box F = (Fi) : Fn2 → Fn2 , where yi = Fi(x1, · · · , xn), we list
the following:

a1). Should be highly nonlinear to provide confusion (refer to Definition
1.17);

a2). Any Fi should have a high algebraic degree (to provide resistance
against algebraic attacks);

a3). A rarely applied aspect of S-box design is that there should not be any
implicit equation Q(x1, · · · , xn, y1, · · · , yn) = 0 with a low algebraic degree.
Furthermore, the greater the number of these implicit equations, the more
compromised the security of the block cipher is. Note. We recommend that all
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researchers in this domain consider this important property in their functions.

The design criterion for a substitution transformation (F ), including round
functions of a DES-like cipher, is identified by Kaisa Nyberg1 [104] as follows:

b1). F must be balanced (automatically satisfied if F is a permutation);

b2). High nonlinearity, large distance from affine functions (NL(F ) high);

b3). High nonlinear order, the degrees of the output bit functions are large
(to provide resistance to algebraic attacks);

b4) Resistance against differential cryptanalysis (δF low; since the S-Box
performs the crucial task of: Confusion); and

b5) Efficient construction and computability.

One way to place the secret key K inside the S-box S is such that the S-box
to be used is f(x) := S(x+K) : Fn2 → Fm2 .

Regarding the Rijndael S-box (encryption adopted by the U.S. National
Institute of Standards and Technology, replacing the Data Encryption Stan-
dard algorithm), this is the multiplicative inverse function on F256, which we
denote as ỹ, composed (to resist plain attacks of an algebraic nature) of a mul-
tivariate affine mapping on F8

2, denoted by Aff, which can also be represented
on F28 . That is, y = Rijndael S-box(x) = Aff(ỹ(x)). The fact x = ỹx2 is
equivalent to having 8 bi-affine equations between the variables xi, yj, since
Aff is a permutation. In a similar way, one can obtain a collection of equations
with which we break the Rijndael security recovering its secret key. In general,
when an S-box is an affine mapping of the multiplicative inverse function on
F2n , one can obtain a system of bi-affine equations to recover the secret key.
EA-equivalent S-boxes to the multiplicative inverse can be ideal against at-
tacks classified as linear, differential and high-order differential [30, 104], but
it has been investigated by Courtois and Pieprzyk [47] that they are the worst
possible in the sense of producing many bi-affine equations, as pointed out by
the (a3) criterion for the design of an S-box.

From the list of permutations in Tables 3 to 7 we can identify possible
candidates for the following (with an earlier version proposed by Courtois
and Pieprzyk; note that this new version is more restrictive) open problem
12: of finding any non-linear S-box F not EA-equivalent (preferably CCZ-
inequivalent) to the multiplicative inverse function over some field F2n that ad-
mits so many implicit equations of the form Q(x1, · · · , xn, y1, · · · , yn) = 0 such
that Q has a low algebraic degree (d0(Q) can be considered to be in the range 2
to 4), but such that both F defining the explicit equation y − F (x) = 0 and its
inverse function F−1 are of high algebraic degree. Candidates should be care-
fully selected to ensure that they are not CCZ-equivalent to the multiplicative
inverse function (most of them comply with this because the large percentage
of crypto properties listed in these tables are CCZ-invariant; a CCZ-invariant

1(winner of the Magnus Ehrnrooth Prize)
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often serves as an indicator of whether two functions are CCZ-equivalent or
not).

From AAttF2n
(4) we can observe the subclass of bi-affine equations and

more generally the quadratic INEF2n
(2)
⋃
{XY = X2t}, where INEF2n

(2) =
{X + X2Y = 0, X3 + Xv2 + (X4 + X2v2)Y = 0}. Moreover, with respect
to X3 + Xv2 + (X4 + X2v2)Y = 0, we obtain a bi-affine system very similar
to the one governing the multiplicative inverse, that is, n equations are true
with very high probability no less than 1− 1

2n−1 , and another 2n that are true
with probability no less than 1 − 1

2n
, this system applies to an S-box (being

diff. 4-uniform over fields with degree of the form n = 4r + 2, and diff. 6-
uniform when n = 4r) CCZ-inequivalent to the multiplicative inverse whose
NL(f) values in both generally differ. Further, it is not difficult to show that
I(0,v)(X) and its inverse have the same optimal algebraic degree, based on
Affine-equivalence, noting that the inverse satisfies I−1

(0,v) − I(0, 1
v
) ≡ 0 for v ̸= 0,

and also on the Theorem: For any (X, Y ) in F2
2n , (X + Y )−1 = X−1 + Y −1 +

2n−1−2∑
i=1

Y 2iX2n−2i−2, where X−1 denotes the multiplicative inverse of X. In this

very gratifying way, we solve the open problem of the previous paragraph, and
in particular the version proposed by Courtois and Pieprzyk. The function
referred to by the equation XY = X2t (produces bi-affine equations) isn’t a
x−1-dependent (further, it is CCZ-inequivalent to x−1) among those attacked
by the AAttF2n

(4)-algebraic attack.
By applying this algebraic attack on all functions corresponding to the

class AAttF2n
(4) we guarantee n − 1 bi-affine equations with constant term

equal to zero, being true for X = 0, which are true with probability greater
than or equal to 1− |B∖InvIma(F−Y)(0)|

2n
, plus one more equation that is true with

probability greater than or equal to 1− |(B∖InvIma(F−Y)(0))
⋃
{0}|

2n
, sinceXY = 1 for

all X /∈
(
B∖ InvIma

(
F−Y

)
(0)
)⋃

{0}. Further, the identity X2θ−X2θ+1
Y 2θ =

Y 2θ − Y 2θ+1
X2θ = 0 holds for arbitrary θ ≥ 0 with probability greater than

or equal to 1− |(B∖InvIma(F−Y)(0))∖{0}|
2n

, and from which other bi-affine equations
can be produced. In this section we have investigated an attack on all block
ciphers whose security shielding is given by some member listed in the class
AAttF2n

(4), in this way we contribute to the novel theoretical-practical attack
investigated in 2002 by Courtois and Pieprzyk, generalizing it to a world of
S-boxes that are non-CCZ-equivalent to the multiplicative inverse function.

8.1 Algebraic Attack to the Best Current Permutations

We have investigated each of the currently known competitive differentially
δ-uniform (non-APN) permutations on F2n for degree n even (this field is of
central interest due to the problems involved; not a single infinite family of
permutations such that δ = 2 has yet been found on these fields), for the best
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three values of δ, i.e. 8 ≥ δ > 2. We perform the comparison based upon the
set of chief attacks as a whole, to determine the few most resistant families for
n odd and n even. In this part, we address the essential cryptanalytic aspect
that will lead us to the Achilles’ heel of current S-BOXes.

Each of these participating families of functions—in Tables 3 to 7—is com-
petitive, presenting some level of resistance against at least one of the dominant
cryptographic attacks: linear, differential, and algebraic degree based attacks.
See Table 1 in [127] for the cryptographic properties of functions. Almost
every function in this list is tied to the algebraic degree n − 1 (classified as
x−1-dependent, see Definition 8.1), which unfortunately cannot be removed by
EA transformations, since it is an EA-invariant; I would suggest non-trivial
transformations of the graph Gf . Remark. In the face of a sudden algebraic
attack based on the parameter n − 1, almost every current diff. 4-uniform
function is simply helpless; there are members of the diff. 4-uniform family
that do not exhibit such a weakness. One of our functions is also affected by
this algebraic attack, but not our other functions. Remember that this topic
is hot, so it attracts persevering people. All participating functions present ar-
chitectures with the potential to be applied to more than one problem. After
such an attack, effective results are almost nonexistent. Open Problem 13.
We invite the design of new families of permutations—even almost permuta-
tions (f) with ∆f ≤ 6, for example, functions that are between 2-to-1 and
1-to-1—with high algebraic degrees without being extremal, keeping NL(f)
high and ∆f low (we recommend exploring the ∆f = 6 case in more detail).
Following our signature style, we achieve top-notch results. Other authors
obtain top-tier functions with different cryptographic properties than ours.

The permutation xs + Tr1n(x
s) for s = −1 presents an attractive formula,

but it is EA-Equivalent to x−1; as for the permutation x2
j+1 + γTr1n(x

2j+1)
[38] for j and n relatively prime, and Tr1n(γ) = 0, this is A-Equivalent to the
Gold (APN). Either way, both are attractive instances. Concerning tables 3
to 7, the notations Tr(x), tr(x), Trn1 (x), Tr

1
n(x), used by other authors mean

Tr1n(x), we will prefer to keep some notations where appropriate. Notes:

Weakness (1∗): having a not high d0(f).

Weakness (2∗): only one (or two) function(s) per finite field.

Just a note: (3∗): it was obtained as a piecewise function or not exhibit an
explicit polynomial formula.

Just a note: (4∗): the given non-monomial function, f , exhibits an explicit
polynomial formula.

Just a note: (5∗): F−1 is the inverse function of F . Whereas just x−1

denotes the multiplicative inverse function on F2n (i.e. 1
x
, with the convention

that 0−1 := 0).

Just a note: (6∗): L1 and L2 are affine permutations over the proper subfield
F
2
n
5
, where 5 | n.
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Weakness (7∗): is immobilized by the AAttF2n
(4)-algebraic attack.

Weakness: we are aware that there is a type of attack that, if not on
the encoding, then on the decoding, that is, targeting the inverse function f−1

when it is subject to a poor algebraic degree.
We recall that the inverse function of any permutation (say f) shares with

f the following: ∆f−1 = ∆f and NL(f−1) = NL(f); the second property was
observed by Kaisa Nyberg (1992, [103]).

Table 3:
Competitive n: EVEN DEGREE Lower Bound d0(f) Ref.

Diff. δ-Uniform (the degree of interest) on Nonlinearity
Permutation f Constraints:
(8 ≥ δ > 2)

With ∆(f) = 4:

x2r+1 n = 2k, k odd, gcd(r, n) = 2 2n−1 − 2
n
2 2 [72, 104]

x22r−2r+1 n = 2k, k odd, gcd(r, n) = 2 2n−1 − 2
n
2 r + 1 [81]

x−1 (:= x2n−2) n is any even, (2∗, 7∗) 2n−1 − 2
n
2 n − 1 [104]

x22r+2r+1 n = 4r, r odd 2n−1 − 2
n
2 3 [59, 18]

(2∗)

αx2s+1 + α2kx2−k+2k+s
n = 3k, k even, (k, 3) = 1, 2n−1 − 2

n
2 2 [17]

(quadratic binomial) k/2 odd, gcd(s, 3k) = 2, 3 | k + s,
(4∗) α : primitive element of F2n

Fu(x) and F ′
u(x) = Fu(x) + x Theorem 4 (and 5), 2n−1 − 2

n
2 [32, 93]

(3∗) Proposition 1, 2 in [93]

From applying EA-equivalence Fu, F ′
u, F ′

u
−1 n+2

2
to quadratic APN bijections. F−1

u ≤ 3
Always, the inverse of Fu can
be attacked instead, as long

as F−1
u has a low d0(F−1

u )

F ′(x) Theorem 6 in [93] 2n−1 − 2
n
2 [32, 93]

(3∗) n + 1 = 3k, k ∈ N
F ′ n+2

2
F ′−1 ≤ 7

x
1

2i+1 + Tr(x) = Fi,γ(x) γ = 1, n = 2m, m odd 2n−1 − 2
n
2 n

2
[38]

(EA-E to the inverse of gcd(i, n) = 2, 2 ≤ i ≤ m

the Gold). Its inverse F−1
i,γ (4∗)

can be attacked instead, d0(F−1
i,γ ) ≤ 3

since d0(F−1
i,γ ) is too low

π(x)−1 =
∑2n−3

i=0 xi n = 2k, k odd, Corollary 1 2n−1 − 2
n
2 n − 1 [92]

(2∗), (4∗), (7∗) in [92], applies the
transposition π = (0, 1)

π(x)−1 = x−1 +
∑m

i=0(x+ n = 2k, k odd, m ≥ 2. 2n−1 − 2
n
2 − m [92]

αi)
2n−1(α−1

i + α−1
i+1) Sufficient conditions for −1

by choosing a cycle π(x)−1 having differential
π(x) = (α0, · · · , αm) uniformity 4 are given.

over F2n , (4∗). If m ≤ 3: Q, Q′ are the quadratics:

Q(x)π(x)−1 = Q′(x) Q : x2
m∏

i=0
(x + αi)

Q′ : (x + (α−1
0 + α−1

m+1)

x2)
m∏

i=0
(x + αi)

First class in [109] 2n−1 − (2)2
n
2 − 2 n − 1 [109]

x2n−2 + Tr
(
x2(x + 1)2

n−2)
(4∗), (2∗)

Second class in [109] d = 3(2t + 1), 2n−2 − 2
n
2

−1 − 1 n − 1 [109]

x2n−2 + Tr
(
x(2n−2)d+ 2 ≤ t ≤ n/2 − 1

(x2n−2 + 1)d
)

(4∗)
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Table 4: -continued from previous page

Competitive n: EVEN DEGREE Lower Bound d0(f) Ref.
Diff. δ-Uniform (the degree of interest) on Nonlinearity
Permutation f Constraints:

With ∆(f) = 4:

IF (x) = F

(
1

F−1(x)

)
, Construction 1 in [79] 2n−1 − 2

n
2 − 4 n − 1 [79]

Carlitz form F = [am+1, Construction 2 in [79] 2n−1 − 2
n
2 − 6 n − 1

am, · · · , a2, a1 + a0x] F−1 denotes the
(3∗), (5∗) compositional inverse

of F

F (x) U = Umax 2n−1 − (3)2
n
2 − 2 n − 1 [127]

(3∗) 0 < |U| < 2n−1−2
n
2 −6

3
2n−1 − 2

n
2 − |U| n − 1

U = Um0 2n−1 − 2
n
2

+2 − 2 n − 1

U = Um1
2n−1 − 2

n
2

+2 − 2 n − 1

f(x) = x−1 + (1 + (x2k + x)2
n−1) k is even or k = 1, 3 & 2n−1 − 2

n
2 − 2k n − 1 [140]

(4∗), (7∗) n
2

is odd (Theor. 3.4) (Theorem 1 in ArXiv)

f(x) = x−1 + (1 + (x2 + (ω + ω2)x n
2

is odd, ω3 = 1 2n−1 − 2
n
2 − 2 n − 1 [140]

+1)2
n−1) in Theorem 3.14 (Theorem 6 in ArXiv)

(2∗, 4∗), (7∗)

f(x) = x−1 + δS(x) n
4

is odd, gcd(n, 5) = 1 2n−1 − 2
n
2 − 4 n − 1 [140]

S = {x ∈ F2n ; x−4 = x−1 + 1} (Theorem 3.15) (Theorem 7 in ArXiv)
(2∗, 4∗), (7∗)

f(x) = x−1 + δS(x) k1 | k2 ⇒ 2n−1 −
⌊
2
n
2
⌋
−
⌊
2
k2
2

+1⌋
n − 1 [140]

S = F
2k1

∪ F
2k2

k1 = 3, gcd(k2, 3) = 1 ⇒ 2n−1 −
⌊
2
n
2
⌋
−
⌊
2
k2
2

+1⌋−6 n − 1

(4∗), (7∗) (Proposition 4.4) (Proposition 3 in ArXiv)
Besides, the functions in
Theorems 3.8-3.9 in [140]

have the same formula as f

F = Inv ◦ (0, 1)(α, β) n: any even. 2n−1 − 2
n
2 − 2 [80]

(the composition of Inv Sufficient conditions for More generally:

with disjoint cycles) F with differential 2n−1 − 2
n
2 − #P

The elements in uniformity 4 are given. 4 ≤ #P : size of P
{0, 1, α, β} are distinct. F (in 2022) generalizes (set of all elements

Inv(x) = x−1 π(x)−1 in [92] in the component
(3∗) (when 0 ∈ P ). cycles of F)

Continued-open
research on F .

F =

{
(x + 1)−1 + 1, x ∈ U

x−1, x ∈ F2n \ U
4 ≤ n (any even) 2n−1 − 2

n
2 − |U| n − 1 [134]

U(union of the sets Sa) (if |U| ≤ 2n−1 − 2)
(3∗), (7∗): U ̸= F2n \ F

22
, |U| is a multiple of 6.

If U = Sa: x2( ∏
l∈U

x + l
)
F (x) a ∈ F2n \ F

22
, Note: Sa and Sb are

= x
∏

l∈U
x + l, i.e. a cubic factor Sa = {a, a−1, a + 1, disjoint iff b /∈ Sa

times F gives another cubic factor (a + 1)−1, a−1 + 1,

(a + 1)−1 + 1}
(x + v)−1 + v(x2 + vx)−1 n

2
= 2r + 1 2n−1 − 2

n
2 − 2 [136]

= I(0,v)(x) v ̸= 0, ∆(I(0,v)) ≤ 4

(4∗), (7∗)

I(u,v)(x) =


v−1, x = u

u−1, x = v

x−1, x ̸= u, v

n is any even, u ̸= v, 2n−1 − 2
n
2 − 2 [136]

Its differentiability does not u ̸= 0, v ̸= 0,

change if it is slightly Tr(uv−1) = Tr(u−1v)
generalized to a function = 1
L2 ◦ I(L1(u),L1(v)) ◦ L1, L1: affine permutation

through affine functions L1, L2. (7∗)
If we take L2 as a permutation,
we also preserve the nonlinearity

f1 = x−1 + t(x2s + x)2
n−1 + t 1st construction in [138] 2n−1 − 2

n
2 − 2s n − 1 [138]

(4∗), (7∗) t ∈ F∗2s
f2 = t1x

−1 + ((t1 + 1)x−1+ 2nd construction in [138] 2n−1 − 2
n
2 − 2s n − 1 [138]

t2)(x
2s + x)2

n−1 + t2 t1, t2 ∈ F2s
(4∗), (7∗) Tr(t−1

1 ) = 1
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Table 5: -continued from previous page
Competitive n: EVEN DEGREE Lower Bound d0(f) Ref.

Diff. δ-Uniform (the degree of interest) on Nonlinearity
Permutation f Constraints:

With ∆(f) = 4:

Ĩx̃0,0(x) = x2n−2 + Tr1n(a1x
2n−2) n: any even 2n−1 − 2

n
2 − 2 n − 1 This

· · ·Tr1n(an−1x
2n−2) paper

(4∗)

Ĩx̃0
(x) = x2n−2 + Tr1n

(
β
(1)
x̃0

(x2n−2 n: any even 2n−1 − 2
n
2 n − 1 This

+x̃0)
)
· · ·Tr1n

(
β
(n−1)
x̃0

(x2n−2 + x̃0)
)

paper

+x̃0
(4∗). It is interesting that: permutation

Ĩx̃0
, in general, is not an involution, since

Ĩx̃0

(
Ĩx̃0

(0)
)̸
= 0 (for: x0 /∈ F2 and x2

0 + x0 ̸= 1).

But it has several properties in common
with them.

With ∆(f) = 6:

Ĩ
(n−i)
x̃0,0 (x) = x2n−2 + Tr1n(a1x

2n−2) n: any even 2n−1 − 2
n
2 − 2i n − 1 This

· · ·Tr1n(an−ix
2n−2), ∀n − 1 ≥ i ≥ 2 paper

4 ≤ ∆
(
Ĩ
(n−i)
x̃0,0

)
≤ 6, (4∗)

F in Corollary 4.1: n = sm, s even,

f(x) + (f(x) + x2k+1)(x2s+ s
2

and m are odd, 2n−1 − 2
n
2 − 2

s
2
+1

n − 1 [28]

x)2
n−1 = F (x) gcd(k, n) = 2. (if s > 2)

A1, A2 are affine
where f = A1 ◦ Inv ◦ A2, permutations

Inv(x) = x−1; (7∗) over F2s , (4∗).
F in Corollary 4.2: n = 4k = sm,

f(x) + (f(x) + x22k+2k+1)(x k and m are odd, 2n−1 − 2
n
2 − 2

s
2
+1

n − 1 [28]

+x2s )2
n−1 A1, A2 are affine (if s > 4)

where f = A1 ◦ Inv ◦ A2, permutations

Inv(x) = x−1 over F2s , (4∗)

f =

{
1

x2+x
, if Tr1n(δx) = 0,

1
δx

, if Tr1n(δx) = 1
n (any even) 2n−1 − (3)2

n
2 − 1 n − 1 [128]

δ ∈ F2n , Tr1n(δ) = 1 (if n ≥ 6)
∆(f) ≤ 6, (3∗)

f1 = x2i+1 + (t2
i+1

1 + t2
i+1

2 )((x2 n
2

is odd, t1 ̸= t2, 2n−1 − 2
n
2 − 2 n − 1 [139]

+(t1 + t2)x + t1t2)
2n−1 + 1) gcd(n, i) = 2 for

f2 = x2i+1 + (x2k + x)2
n−1 + 1 f1, f2, and f3. 2n−1 − 2

n
2 − 2

k
2
+1

n − 1

f3 = (ω2 + ω(x3 + 1)2
n−1)x2i+1 k is even, ω3 = 1 2n−1 − 2

n
2 − 2 n − 1

(4∗), (7∗): (x3 + 1)f3(x) = Q(x), Q: quadratic function

(x2k + x)f2(x) = C(x), C: cubic function
Lf1 is a cubic. Mapping f1 L: affine function

is better than f2, f3 in
the sense that L depends

on (t1, t2) ∈
(
F2n

)2
Gt(x) = x2t−1 n ̸≡ 0 mod (3), kn+1

3
[14]

where t = kn+1
3

kn ≡ 2 mod (3)
(k = 1 or 2

depending of n)
(2∗, 4∗), (7∗)

Gs(x) = x2s−1 n ≡ ±1 mod (6),
(3−k)n+2

3
[14]

where s =
(3−k)n+2

3
kn ≡ 2 mod (3)

(k = 1 or 2
depending of n)
(2∗, 4∗), (7∗)

(x + v)−1 + v(x2 + vx)−1 n
2

= 2r 2n−1 − 2
n
2 − 2 [136]

= I(0,v)(x) v ̸= 0

(4∗), (7∗)

I(u,v)(x) =


v−1, x = u

u−1, x = v

x−1, x ̸= u, v

n: any even 2n−1 − 2
n
2 − 2 [136]

(7∗) u ̸= v, u ̸= 0, v ̸= 0,

Tr(uv−1)Tr(u−1v) = 0

x−1 + γTr(x2n−1−2i−1−1) n (any even), i ̸= n
2
, [38]

= Fi,γ(x) gcd(2i, n) = k, 1 ≤ i < n,

4 ≤ ∆(Fi,γ) ≤ 6 γ ∈ F∗
2k

, Tr(γ2i+1) = 0, (4∗)

f1 = x−1 + t(x2s + x)2
n−1 + t 1st construction in [138] 2n−1 − 2

n
2 − 2s n − 1 [138]

t ∈ F∗2s , s is odd, where

(4∗), (7∗) n
s

is even. s ≥ 5, or s :

 ≥ 5, if n is even
1 or 3, if n/2 is

even
s = 1, 3 and n

2s
is even

f3 = (x + t2)
−1 + (x2s + x+ 3rd construction in 2n−1 − 2

n
2 − 2s n − 1 [138]

t1)
2n−1(x−1 + (x + t2)

−1) in [138] (Theorem 6)
∆(f3) ≤ 6, (4∗) t2 ∈ F∗2s , t1 ∈ F∗2n ,

(7∗) Trsn(t1) = 0,
Based on t1, t2, the f3 offers
more resistance than f1, f2

in [138]

Function families n= 2m, m is odd 2n−1 − 2
n
2 − 2 n − 1 This

Gk′,g(x) in Theorem 4.2 gcd(n, k′) = 2 (if g = n − 1) paper

(4∗), 6 ≤ ∆(Gk′,g) ≤ 8, 2n−1 − 2
n
2 − 4

∃Gk′,g(x)s reaching ∆(Gk′,g) = 8. (if g = n − 2)

Gk′,σ(x) = x2k
′
+1 + (x2k

′
+ x+ n= 2m, m is odd, 2n−1 − 2

n
2 − 2n−σ σ + 1 This

1)Tr1n(a1x) · · ·Tr1n(aσx) gcd(n, k′) = 2, (from 2 paper
(4∗), 6 ≤ ∆(Gk′,σ) ≤ 8 σ ≤ n − 2 to n-1)
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Table 6:
Competitive n: ODD DEGREE Lower Bound d0(f) Ref.

Diff. δ-Uniform Constraints: on Nonlinearity
Permutation f

With ∆(f) = 4:

f in Corollary 3.5-(i) 2n−1 − 2
3n−3

4 − [130]

in [130], (3∗), (6∗) 2
k−1
2 − 2k−1

f in Proposition 3.8 and (where k = n
5
) n − 1

Corollary 3.6 (m = n
5

− 1)

f in Proposition 3.8 and d0(f)

Corollary 3.6 (m =
n
5

+1

2
) ≥ 9n+5

10

F =

{
(x + 1)−1 + 1, x ∈ U

x−1, x ∈ F2n \ U
3 ≤ n (any odd) open case n − 1 [134]

U(union of the sets Sa)
(3∗) U ̸= F2n \ F

22
,

a ∈ F2n \ F
22

,

Sa = {a, a−1, a + 1,

(a + 1)−1, a−1 + 1,

(a + 1)−1 + 1}

x−1 + γTr(x2n−1−2i−1−1) n (any odd), i ̸= n
2
, [38]

= Fi,γ(x) gcd(2i, n) = k, 1 ≤ i < n,

∆(Fi,γ) ≤ 4 γ ∈ F∗
2k

, Tr(γ2i+1) = 0, (4∗)

f1 = x−1 + t(x2s + x)2
n−1 + t 1st construction in [138] 2n−1 − 2

n
2 − 2s n − 1 [138]

(4∗), (7∗) t ∈ F∗2s
f2 = t1x

−1 + ((t1 + 1)x−1+ 2nd construction in [138] 2n−1 − 2
n
2 − 2s n − 1 [138]

t2)(x
2s + x)2

n−1 + t2 t1, t2 ∈ F2s
(4∗), (7∗) Tr(t−1

1 ) = 1

Function families fk,g(x) (4∗) 2n−1 − 2
n−1
2 − 2 n − 1 This

and Ki,g(x) in Theorem 4.2 paper
parameter g = n − 1

Function families fk,g(x) (4∗) 2n−1 − 2
n−1
2 − 4 n − 1 This

and Ki,g(x) in Theorem 4.2 paper
parameter g = n − 2

Ĩx̃0,0(x) = x2n−2 + Tr1n(a1x
2n−2) n: any odd ⌊2n−1 − 2

n
2 ⌋ϵ

2, gcd(⌊2n−1−2
n
2 ⌋,2)

− 2+ n − 1 This

· · ·Tr1n(an−1x
2n−2) (⌊2n−1 − 2

n
2 ⌋ − 1)ϵ

2, gcd(⌊2n−1−2
n
2 ⌋−1,2)

paper

(4∗) where ⌊x⌋ := ℓ ∈ Z, ℓ ≤ x < ℓ + 1,
ϵi,j : Kronecker’s delta

Ĩx̃0
(x) = x2n−2 + Tr1n

(
β
(1)
x̃0

(x2n−2 n: any odd ⌊2n−1 − 2
n
2 ⌋ϵ

2, gcd(⌊2n−1−2
n
2 ⌋,2)

− 2+ n − 1 This

+x̃0)
)
· · ·Tr1n

(
β
(n−1)
x̃0

(x2n−2 + x̃0)
)

(⌊2n−1 − 2
n
2 ⌋ − 1)ϵ

2, gcd(⌊2n−1−2
n
2 ⌋−1,2)

paper

+x̃0, (4∗)

Ĩ
(n−i)
x̃0,0 (x) = x2n−2 + Tr1n(a1x

2n−2) n: any odd ⌊2n−1 − 2
n
2 ⌋ϵ

2, gcd(⌊2n−1−2
n
2 ⌋,2)

− 2i+ n − 1 This

· · ·Tr1n(an−ix
2n−2), ∀n − 1 ≥ i ≥ 2 (⌊2n−1 − 2

n
2 ⌋ − 1)ϵ

2, gcd(⌊2n−1−2
n
2 ⌋−1,2)

paper

(4∗)

With ∆(f) = 6:

Gt(x) = x2t−1 n ̸≡ 0 mod (3), kn+1
3

[14]

where t = kn+1
3

kn ≡ 2 mod (3)
(k = 1 or 2

depending of n)
(2∗, 4∗), (7∗)

Gs(x) = x2s−1 n ≡ ±1 mod (6),
(3−k)n+2

3
[14]

where s =
(3−k)n+2

3
kn ≡ 2 mod (3)

(k = 1 or 2
depending of n)
(2∗, 4∗), (7∗)

Gt(x) = x2t−1 n > 3 n−1
2

[14],
(∆(Gt) = 6 or 8 n ̸≡ 0 mod (3) [13]
depending of n) Theorem 9 in [13]

where t = n−1
2

(2∗, 4∗), (7∗)

Gs(x) = x2s−1 n ̸≡ 0 mod (3) n+3
2

[14]

where s = n+3
2

(2∗, 4∗), (7∗)

f in Corollary 3.5-(ii) 2n−1 − 2
3n−3

4 − [130]

in [130], (3∗), (6∗) 2
k−1
2 − 2k−1

(where k = n
5
)
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Table 7: -continued from previous page

Competitive n: ODD DEGREE Lower Bound d0(f) Ref.
Diff. δ-Uniform Constraints: on Nonlinearity
Permutation f

With ∆(f) = 6:

f3 = (x + t2)
−1 + (x2s + x+ 3rd construction 2n−1 − 2

n
2 − 2s n − 1 [138]

t1)
2n−1(x−1 + (x + t2)

−1) t2 ∈ F∗2s , t1 ∈ F∗2n ,
∆(f3) ≤ 6, (4∗), (7∗) Trsn(t1) = 0

With ∆(f) = 8:

Gt(x) = x2t−1 n > 3 n−1
2

[14],

where t = n−1
2

n ≡ 0 mod (3) [13]
(2∗, 4∗), (7∗) Theorem 9 in [13]

x
1

2i+1 + γTr(x) = Fi,γ(x) n (any odd) 2n−1 − (2)2
n−1
2 n−1

2
[38]

(EA-E to the inverse of gcd(i, n) = 3, 2 ≤ i ≤ m

the Gold). Its inverse F−1
i,γ γ ∈ F8, Tr(γ) = 0, (4∗)

can be attacked instead, d0(F−1
i,γ ) = 3

since d0(F−1
i,γ ) is too low
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Functions Unbroken to AAttF2n
(4)-Algebraic Attack: while also being up

to par with fulfilling the priority cryptographic properties, subject to auto-
matically choosing efficient values for their parameters, i, m, s, |U |, and g, at
least the following functions can be named:

Function families fk,g(x) and Ki,g(x) in Theorem 4.2;
π(x)−1 = x−1 +

∑m
i=0(x+αi)

2n−1(α−1
i + α−1

i+1), refer to [92];

Ĩ
(n−i)
x̃0,0

(x) = x2
n−2 + Tr1n(a1x

2n−2). . . T r1n(an−ix
2n−2) for ∀n− 1 ≥ i ≥ 2;

F (x) for 0 < |U | < 2n−1−2
n
2 −6

3
, refer to [127];

F (x) =

{
(x+ 1)−1 + 1, x ∈ U
x−1, x ∈ F2n \ U for U(union of the sets Sa), refer to [134];

Gk′,g(x) = x2
k′+1 + (x2

k′
+ x+1)Tr1n(a1x) . . . T r

1
n(agx); and

F (x) = f(x) + (f(x) + x2
n/2+2n/4+1)(x+ x2

s
)2

n−1, ref. Corollary 4.2 in [28].
Challenges to Overcome: the scientific community knows this topic is ex-

tremely competitive. Now we, the scientists in these domains, have the expe-
rience we need, gained from differentially 4-uniform functions, to take a new
look at differentially δ-uniform functions, starting with δ = 6 and 8.

Open Problem 14: Bound the second nonlinearity nl2(f) for these func-
tions.

Supplement I-A

Tables 10 and 11 include the Walsh Spectrum and other cryptographic
properties of the monomial family x2

d+1 (to read about Classical Walsh Spec-
trum see [67]). These permit us to see the variety of cases that can occur.
Denote: n = field degree, ∆ = its differential δ uniformity. Unusual values
that are not mentioned in the papers, and that these values represent a weak-
ness of the Gold family, as for example having ∆ = 16, Walsh Spectrum of the
forms {2n−3, 2

n
2 , 0}, {2n−4, 2

n
2 , 0}, {2n+3

2 , 0} and {2n+5
2 , 0} are highlighted in

bold letter. A complete information about it, up to the finite field of degree
15, is a matter of interest for authors in this research area.

Supplement I-B

Table 12 list the primitive polynomials p(x) we used to construct some
finite fields of degree n for this research work.
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n f(x) ∆(f) 1-to-1 nl(f) d0(f)

6 Gold x5 4 yes 24 2
= 2(3) x5 + (x4 + x+ 1)tr(x)tr(ax) 6 yes 22 5
3 odd tr(a2x)tr(a4x)tr(a5x)

x5 + (x4 + x+ 1)tr(x)tr(ax) 6 yes 20 5
tr(a2x)tr(a4x)
Kasami x13 4 yes 24 3

x13 + (x12 + x9 + x8 + x5 + x4 + x+ 6 yes 22 5
1)tr(x)tr(ax)tr(a2x)tr(a4x)tr(a5x)
x13 + (x12 + x9 + x8 + x5 + x4 + x+ 8 yes 20 5

1)tr(x)tr(ax)tr(a2x)tr(a4x) 4 ≤ 8 ≤ 2(4)
7 Kasami x13 2 yes 56 3

x13 + (x12 + x9 + x8 + x5 + x4 + x+ 1) 4 yes 54 6
tr(ax)tr(a2x)tr(a3x)tr(a4x)tr(a5x)tr(a6x)
x13 + (x12 + x9 + x8 + x5 + x4 + x+ 1) 4 yes 52 6
tr(ax)tr(a2x)tr(a3x)tr(a4x)tr(a5x)

Gold x9 2 yes 56 2
x9 + (x8 + x+ 1)tr(ax)tr(a2x) 4 yes 54 6
tr(a3x)tr(a4x)tr(a5x)tr(a6x)
x9 + (x8 + x+ 1)tr(ax) 4 yes 52 6

tr(a2x)tr(a3x)tr(a4x)tr(a5x)
Gold x5 2 yes 56 2

x5 + (x4 + x+ 1)tr(ax)tr(a2x) 4 yes 54 6
tr(a3x)tr(a4x)tr(a5x)tr(a6x)
x5 + (x4 + x+ 1)tr(ax) 4 yes 52 6

tr(a2x)tr(a3x)tr(a4x)tr(a5x)
Gold x3 2 yes 56 2

x3 + (x2 + x+ 1)tr(ax)tr(a2x) 4 yes 54 6
tr(a3x)tr(a4x)tr(a5x)tr(a6x)
x3 + (x2 + x+ 1)tr(ax) 4 yes 52 6

tr(a2x)tr(a3x)tr(a4x)tr(a5x)

Table 8: Gold and Kasami based permutations with optimal algebraic degree
(oad). Where a = α is a primitive element such that the trace of each power
of a appearing in f is zero.
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n f(x) ∆(f) 1-to-1 nl(f) d0(f)

10 Gold x17 4 yes 480 2
= 2(5) x17 + (x16 + x+ 1)tr(x)tr(ax)tr(a2x)tr(a3x) 6 yes 478 9
5 odd tr(a4x)tr((a5 + a7)x)tr(a6x)tr(a8x)tr(a9x)

x17 + (x16 + x+ 1)tr(x)tr(ax)tr(a2x)tr(a3x) 6 yes 476 9
tr(a4x)tr(a6x)tr(a8x)tr(a9x)

Gold x5 4 yes 480 2
x5 + (x4 + x+ 1)tr(x)tr(ax)tr(a2x)tr(a3x) 6 yes 478 9
tr(a4x)tr((a5 + a7)x)tr(a6x)tr(a8x)tr(a9x)
x5 + (x4 + x+ 1)tr(x)tr(ax)tr(a2x)tr(a3x) 8 yes 476 9

tr(a4x)tr(a6x)tr(a8x)tr(a9x)

Table 9: Gold and Kasami based permutations with optimal algebraic degree
(oad). Where a = α is a primitive element such that the trace of each power
of a appearing in f is zero.

n even x2
d+1 ∆ 1-to-1 Walsh coeff. |W

x2d+1(a, b)| |W
x2d+1| form

n = 2 x3 2 no [(0, 3), (4, 1)]; [(2, 4)] {2n, 2
n
2 , 0}

n = 4 x5 4 no [(0, 15), (16, 1)]; [(4, 16)] {2n, 2
n
2 , 0}

x3 2 no [(0, 12), (8, 4)]; [(4, 16)] {2n+2
2 , 2

n
2 , 0}

n = 6 x9 8 no [(0, 63), (64, 1)]; [(8, 64)] {2n, 2
n
2 , 0}

= 2(3) x5 4 yes [(0, 48), (16, 16)] {2n+2
2 , 0}

3 odd x3 2 no [(0, 48),(16, 16)]; [(8, 64)] {2n+2
2 , 2

n
2 , 0}

n = 8 x17 16 no [(0, 255), (256, 1)]; [(16, 256)] {2n, 2
n
2 , 0}

x9, x3 2 all [(0, 192), (32, 64)]; [(16, 256)] {2n+2
2 , 2

n
2 , 0}

x5 4 over [(0, 240), (64, 16)]; [(16, 256)] {2n−2, 2
n
2 , 0}

n = 10 x33 32 no [(0, 1023), (1024, 1)], [(32, 1024)] {2n, 2
n
2 , 0}

= 2(5) x17, x5 4 yes [(0, 768), (64, 256)] {2n+2
2 , 0}

5 odd x9, x3 2 no [(0, 768), (64, 256)]; [(32, 1024)] {2n+2
2 , 2

n
2 , 0}

n = 12 x65 64 no [(0, 4095), (4096, 1)], [(64, 4096)] {2n, 2
n
2 , 0}

x33, x3 2 no [(0, 3072), (128, 1024)], [(64, 4096)] {2n+2
2 , 2

n
2 , 0}

x17 16 yes [(0, 3840), (256, 256)] {2n−4, 0}
x9 8 no [(0, 4032), (512, 64)], [(64, 4096)] {2n−3, 2

n
2 , 0}

x5 4 no [(0, 3840), (256, 256)], [(64, 4096)] {2n−4, 2
n
2 , 0}

n = 14 x129 – no [(0, 16383), (16384, 1)], [(128, 16384)] {2n, 2
n
2 , 0}

= 2(7) x65, x17, x5 4 yes [(0, 12288), (256, 4096)] {2n+2
2 , 0}

7 odd x33, x9, x3 2 no [(0, 12288), (256, 4096)], [(128, 16384)] {2n+2
2 , 2

n
2 , 0}

Table 10: A variety of extended Walsh Spectrum |W
x2d+1 |
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n odd x2
d+1 ∆ 1-to-1 Walsh coeff. |W

x2d+1(a, b)| |W
x2d+1| form

n = 3 x3 2 yes [(0, 4), (4, 4)] {2n+1
2 , 0}

n = 5 x5, x3 2 yes [(0, 16), (8, 16)] {2n+1
2 , 0}

n = 7 x9, x5, x3 2 yes [(0, 64), (16, 64)] {2n+1
2 , 0}

n = 9 x17, x5, x3 2 yes [(0, 256), (32, 256)] {2n+1
2 , 0}

x9 8 yes [(0, 448), (64, 64)] {2n+3
2 , 0}

n = 11 x33, x17, x9, x5, x3 2 yes [(0, 1024), (64, 1024)] {2n+1
2 , 0}

n = 13 x65, x33, x17, x9, x5 2 yes [(0, 4096), (128, 4096)] {2n+1
2 , 0}

x3 – yes

n = 15 x129, x17, x5, x3 – yes [(0, 16384), (256, 16384)] {2n+1
2 , 0}

x65, x9 – all [(0, 28672), (512, 4096)] {2n+3
2 , 0}

x33 – over [(0, 31744), (1024, 1024)] {2n+5
2 , 0}

Table 11: A variety of extended Walsh Spectrum |W
x2d+1 |

p(x)

x2 + x + 1, x3 + x + 1,x4 + x + 1,x5 + x2 + 1,x6 + x + 1,x6 + x4 + x3 + x + 1,x7 + x + 1, x8 + x4 + x3 + x2 + 1,

x9 + x4 + 1, x10 + x3 + 1,x10 + x6 + x5 + x3 + x2 + x + 1, x11 + x2 + 1,x12 + x6 + x4 + x + 1,

x12 + x7 + x6 + x5 + x3 + x + 1, x13 + x4 + x3 + x + 1,x14 + x5 + x3 + x + 1,x14 + x7 + x5 + x3 + 1,

x15 + x + 1,x15 + x5 + x4 + x2 + 1

Table 12: Toolkit: primitive polynomials p(x) used for some F2n .
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9 Analysis of Differential Equations under the

Galois Field (Fpn) Perspective and Its Im-

pact on Communications Security

In this section we produce the analysis with exclusive dedication to differential
operators between Galois fields, in different aspects (in the past there have
been somewhat related constructions that took a completely different route in
which the functions involved had co-domains different from Fpn), containing
surprising analogies with the continuous case, which also—contrary to what
happens in Fpn—is endowed with a total order [73] compatible with the alge-
braic structure of the field. Under the following Kerckhoffs’s principle refor-
mulated by Claude Shannon, “the enemy knows the system being used” [120],
the security of the system relies on the strength of the S-Box being used to
hide the key. Therefore the real need to know its weaknesses is a higher spirit
that accompanies this article. The adversary could be masterminding some
contemporary attack like the following ones, Differential Fault Attack (DFA)
on Stream Ciphers, Filter Permutator FLIP and Improved Filter Permutator
FiLIP, in which the equation si−ṡi = f(ρi(κ⊕uγ))−f(ρi(κ)) = ∂ρi(uγ)f(ρi(κ))
is formulated, where ∂ρi(uγ)f(ρi(κ)) = f(ρi(κ⊕ uγ))− f(ρi(κ)).

Definition 9.1 ∂
(r)
Hr(R[X]) := {f ∈ R[X];∃ϕ ∈ R[X] such that f = ∂

(r)
Hr(ϕ)},

where r ≥ 1, H ∈ R∗. This definition can be extended to other rings besides
R[X] = Fpn [X].

It can be verified that the derivative operator decreases the algebraic degree of
a function by one or more. Classes of our functions, composed with the trace
function, are Boolean functions whose derivatives are also strong, which solve
the problem proposed by Méaux and Roy [98].

There is no loss of generality if we consider that a function f : Fpn → Fpn
is in general in its mod (Xpn − X) format, that is, we will always consider
f = F mod (Xpn −X) for some F ∈ Fpn [X]. Our next result is the criterion
for the algebraic degree of the derivative of a function in general, keeping in
mind that the derivation over the field Fpn is linear.

Theorem 9.2 (Fashionable Theorem)(General characterization of the
algebraic degree of the derivative of a function on Fpn). Let f = F mod (Xpn−
X) be a function such that F ∈ Fpn [X], 2 ≤ d0(f) ≤ (p− 1)(n− 1), p a prime,
and H ∈ Fpn ∖ {0} (an arbitrary direction). Then: the part of maximum
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algebraic degree in f is not an expression of the form∑
SΩX

Ω∈O≺p;f ;n≻

SΩ

∑
ψ
(Ω)
Θ is a term in

∂
(p−1)

Hp−1 (X
Ω) such

that d0(ψ
(Ω)
Θ )=d0(f)

ψ
(Ω)
Θ , for some non-empty set

O≺p;f ;n≻ ⊆ {SΩX
Ω ∈ Fpn [X]∖ {0}; d0(SΩX

Ω)− p+ 1 = d0(f)},
is a necessary and sufficient condition for d0

(
∂H(f)

)
+ 1 = d0(f).

Proof. Let LXU be a term of m.a.d.(maximun algebraic degree) in f , then
there exists the monomial SXΩ with algebraic degree p+ d0(f)− 1 such that

Ω = Ω(p) =
p−1∑
i=1

(
pk

†
i + U

p−1

)
, with k†i ≥ 0 for all i. Let’s think of Ω(p) as a

polynomial evaluated at p; let’s express it in such a way that all its terms have
positive coefficients. The part of m.a.d. in ∂

(p−1)

Hp−1 (SX
Ω) is given below, which

we obtain by repeated application of the derivative with respect to H:

∑
{ζk1 ,...,ζkp−1

}⊆Z[p],
where:
ζk1 is a term in Ω(p),

··· ,
ζkp−1

is a term in

Ω(p)−
p−2∑
ℓ=1

ζkℓ
cff(ζkℓ

)

(
SH

p−1∑
ℓ=1

ζkℓ
cff(ζkℓ

)
p−1∏
γ=1

cff(ζkγ )

)
X

Ω(p)−
p−1∑
ℓ=1

ζkℓ
cff(ζkℓ

)

(Eq. I)

(moreover, this formula works for an arbitrary monomial SXΩ) where
cff(ζkγ ) denotes the coefficient, in this case corresponding to ζkγ in Ω(p) −∑
ℓ≤γ−1

ϵ̄γ,1ζkℓ
cff(ζkℓ )

=

 Ω(p), if γ = 1

Ω(p)−
∑

ℓ≤γ−1

ζkℓ
cff(ζkℓ )

, if γ ≥ 2 . Where ϵ̄γ,1 = 1− ϵγ,1, and ϵi,j

is the Kronecker’s delta. Additionally, LXU appears in this summation when

the
ζki

cff(ζki )
are equal to

ζki
cff(ζki )

= pk
†
i , and furthermore, S is uniquely determined.

Let L′XU′
be any other term in f such that terms in its derivative ∂H(L

′XU′
)

contribute to eliminating m.a.d. terms in ∂H(LX
U). Then necessarily

∣∣U′
set

∣∣−
1 ≯

∣∣Uset ∩ U′
set

∣∣, where Uset :=
⋃

Ξ is a term of U (seen
as a polynomial in p)

{1, · · · , cff(Ξ)} × { Ξ
cff(Ξ)

}, also

the induced mapping U
Γset−→ Uset is invertible. Furthermore, when applying

the operator ∂H to LXU and L′XU′
, these have at most one m.a.d. term in

common (which we shall call Observation 1).

In general, a term of m.a.d. in ∂H(LX
U),

⋆

Fkp(X), is of the form:
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⋆

Fkp(X) =LH

⋆
φkp

cff(
⋆
φkp

) cff(
⋆
φkp)X

U(p)−
⋆
φkp

cff(
⋆
φkp

)

=SH

⋆
φkp

cff(
⋆
φkp

)
+

p−1∑
ℓ=1

pk
†
γ

cff(
⋆
φkp)

( p−1∏
γ=1

cff(pk
†
γ ) in Ω(p)−

∑
ℓ≤γ−1

ϵ̄γ,1p
k†γ

)
X

Ω(p)−
⋆
φkp

cff(
⋆
φkp

)
−

p−1∑
ℓ=1

pk
†
γ

,

where
⋆
φkp is a term in the polynomial U = U(p). Additionally, we use cff(pk

†
γ )

to denote the coefficient of the term whose literal part is pk
†
γ , i.e., the property

cff(pk
†
γ ) = cff(cff(pk

†
γ )pk

†
γ ) is fulfilled. Next, we will identify those L′XU′

such

that a term in its derivative contributes to eliminating the function
⋆

Fkp(X).

We will begin with the case where the powers pk
†
i are mutually distinct. We

introduce pk
†
p such that cff(

⋆
φkp)p

k†p =
⋆
φkp , which need not be different from the

pk
†
i s introduced previously. For each pk

†
i , let us differentiate in the direction H

the term

L
[
⋆
φkp

,i]
X

U
[
⋆
φkp

,i] def
=

SH

p∑
γ=1,γ ̸=i

pk
†
γ( p∏

γ=1,γ ̸=i

1 +
(
cff(pk

†
γ ) in Γ−1

set

(
Uset ∩ U′

set

)))
XΓ−1

set

(
Uset∩U′

set

)
+pk

†
i
,

if (P⋊
0 )set

⋂
{(1, pk

†
p)} = ∅.

SM1/2H

p∑
γ=1,γ ̸=i

pk
†
γ( p∏

γ=1,γ ̸=i

1 +
(
cff(pk

†
γ ) in Γ−1

set

(
Uset ∩ U′

set

)))
XΓ−1

set

(
Uset∩U′

set

)
+pk

†
i
,

where M1/2 =
2+cff(pk

†
p ) in Γ−1

set

(
Uset∩U′

set

)
1+cff(pk

†
p ) in Γ−1

set

(
Uset∩U′

set

) , if (P⋊
0 )set

⋂
{(1, pk

†
p)} ≠ ∅.

Then, from its derivative, we select the m.a.d. term given below:

L
[
⋆
φkp

,i]
Hpk

†
i
(
cff(pk

†
i ) in Γ−1

set

(
Uset ∩ U′

set

)
+ pk

†
i

)
XΓ−1

set

(
Uset∩U′

set

)
=

SH

p∑
γ=1

pk
†
γ( p∏

γ=1
1 +

(
cff(pk

†
γ ) in Γ−1

set

(
Uset ∩ U′

set

)))
XΓ−1

set

(
Uset∩U′

set

)
,

if (P⋊
0 )set

⋂
{(1, pk

†
p)} = ∅.

SM1/2H

p∑
γ=1

pk
†
γ( p∏

γ=1
1 +

(
cff(pk

†
γ ) in Γ−1

set

(
Uset ∩ U′

set

)))
XΓ−1

set

(
Uset∩U′

set

)
,

where M1/2 =
2+cff(pk

†
p ) in Γ−1

set

(
Uset∩U′

set

)
1+cff(pk

†
p ) in Γ−1

set

(
Uset∩U′

set

) , if (P⋊
0 )set

⋂
{(1, pk

†
p)} ≠ ∅.

= ϕ(X,
⋆
φkp , p

k†1 , · · · , pk
†
p), for Γ−1

set

(
Uset ∩ U′

set

)
= U(p) − pk

†
p , where P⋊

0 :=
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p−1∑
i=1

pk
†
i . Summing the functions ϕ(X,

⋆
φkp , p

k†1 , · · · , pk
†
p) whose sum is denoted

by S(X,
⋆
φkp

,pk
†
1 ,··· ,pk

†
p ) we have that p divides S(X,

⋆
φkp

,pk
†
1 ,··· ,pk

†
p ), that is, equals zero,

and the L
[
⋆
φkp

,i]
X

U
[
⋆
φkp

,i] are our L′XU′
, and even our LXU. It is worth noting

that no matter which pk
†
i we use, we obtain the same ϕ(X,

⋆
φkp , p

k†1 , · · · , pk
†
p).

We observe that the L
[
⋆
φkp

,i]
X

U
[
⋆
φkp

,i] are terms of the same ∂
(p−1)

Hp−1 (SX
Ω).

Similarly, new L
[
⋆
φkp

,i]
X

U
[
⋆
φkp

,i] are defined for when the powers pk
†
i s (now a

term in P⋊
0 can have its coefficient different from 1) are not necessarily dif-

ferent from each other, knowing this, we will then deal with the rest of the

terms with m.a.d. generated by the derivative of the L
[
⋆
φkp

,i]
X

U
[
⋆
φkp

,i] . For all

ℓ ∈ [1, p] we have that {X (∞)

ℓ,
⋆
φkp,1

in ∂H
(
L
[
⋆
φkp,1

,ℓ]
X

U
[
⋆
φkp,1

,ℓ]
)
}\

p⋃
s=1, pk

†
s ̸=pk

†
ℓ

{X (∞)

s,
⋆
φkp,1

in

∂H
(
L
[
⋆
φkp,1

,s]
X

U
[
⋆
φkp,1

,s]
)
}= {X

ℓ,
⋆
φkp,1

in ∂H
(
L
[
⋆
φkp,1

,ℓ]
X

U
[
⋆
φkp,1

,ℓ]
)
}, because the L

[
⋆
φkp,1

,s]

X
U
[
⋆
φkp,1

,s]
are different from L

[
⋆
φkp,1

,ℓ]
X

U
[
⋆
φkp,1

,ℓ]
, followed by the application of

Observation 1 (an alternative reason is based on restricting X adequately,

e.g. to range Fpn ∖ {0, 1}, then we apply that cff(pk
†
ℓ ) in logX

( X
ℓ,
⋆
φkp,1

cff
(
X

ℓ,
⋆
φkp,1

)) >
cff(pk

†
ℓ ) in logX

( X
s,

⋆
φkp,1

cff
(
X

s,
⋆
φkp,1

)) ≥ 0, where the discrete logarithm verifies that

logX X
a is a, with 0 ≤ a ≤ pn − 1), where X (∞)

i,
⋆
φkp,1

means a term of m.a.d.

in a given function, and X
i,

⋆
φkp,1

means a term of m.a.d. in a given func-

tion, fulfilling X
i,

⋆
φkp,1

̸= ϕ(X,
⋆
φkp,1 , p

k†1 , · · · , pk
†
p,1), where ϕ has already been

exploited before. Otherwise, if pk
†
ℓ = pk

†
s , where 1 ≤ s ≤ p, s ̸= ℓ, then

{X (∞)

ℓ,
⋆
φkp,1

in ∂H
(
L
[ℓ,

⋆
φkp,1

]
X

U
[ℓ,

⋆
φkp,1

])} ={X (∞)

s,
⋆
φkp,1

in ∂H
(
L
[s,

⋆
φkp,1

]
X

U
[s,

⋆
φkp,1

])}, and con-

sidering the chain of equal sets in this way, adding produces the terms µX (∞)

ℓ,
⋆
φkp,1

,

for some µ = cff
(
pk

†
ℓ

)
in P⋊

0 +
⋆
φkp,1

cff(
⋆
φkp,1

)
, and 2 ≤ µ < p, such that the value of

d0(SXΩ) is maintained. In either of these two scenarios, none of the m.a.d.

terms in the derivative of one of the functions L
[s,

⋆
φkp,1

]
X

U
[s,

⋆
φkp,1

]
can contribute

to eliminating the X
ℓ,

⋆
φkp,1

of another, or it is not sufficient to eliminate it. It
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is essential to ensure that the X
ℓ,

⋆
φkp,1

in ∂H
(
L
[ℓ,

⋆
φkp,1

]
X

U
[ℓ,

⋆
φkp,1

]
)
terms are elim-

inated. Terms of type X (∞)

ℓ,
⋆
φkp,1

(include the X
ℓ,

⋆
φkp,1

) always exist, being the

target to eliminate even if we had to obtain 0ϕ repeatedly. So the purpose
is to find all the eliminator terms. An essential aspect is that, since the al-
gebraic degree of XP⋊

0 is p − 1, we always have the following representation:

P⋊
0 =

r∑
ℓ=1

µℓp
a⋆ℓ and U =

r∑
ℓ=1

µℓp
a⋆ℓ +

n∑
ℓ′=r+1

zℓ′p
a⋆
ℓ′ are such that µℓ + µℓ ≤ p − 1

∀ℓ ≤ r, in order that the value of d0(SXΩ) is maintained,
r∑
ℓ=1

µℓ = p − 1,

for some r ≤ p − 1, and {a⋆i }ni=1 can be seen as the ring with cyclic additive

group Z/nZ. Thus, d0(LXU) =
r∑
ℓ=1

µℓ +
n∑

ℓ′=r+1

zℓ′ ≤
r∑
ℓ=1

p − 1 − µℓ +
n∑

ℓ′=r+1

zℓ′

≤ (r − 1)(p − 1) +
n∑

ℓ′=r+1

p − 1, i.e. d0(f) ≤ (p − 1)(n − 1). When p = 2,

(P⋊
0 )set ∩ Uset = ∅, in order to maintain the value of d0(SXΩ).

An eliminator term belonging to ∂
(p−1)

Hp−1 (SX
Ω) necessarily has the form (the

following type of term is required) L
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

,iϑ]
X

U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

,iϑ]
,

for all ϑ ≥ 2, so that it eliminates the m.a.d. term L
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

]

X
U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

]
(these are the X

ℓ,
⋆
φkp,1

in ∂H
(
L
[
⋆
φkp,1

,ℓ]
X

U
[
⋆
φkp,1

,ℓ]
)
, for ϑ =

2) that appears in the derivative of its predecessor

L
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ−1

,iϑ−1]
X

U
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ−1

,iϑ−1] , where U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

]
=

U
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ−1

,iϑ−1]
−

⋆
φkp,ϑ

cff(
⋆
φkp,ϑ

)
, U

[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

,iϑ]
= U

[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

]
+

iϑ
cff(iϑ)

,
⋆
φkp,1 is a term in U(p), and

⋆
φkp,ϑ is a term in U(p)−

∑ϑ−1
r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
. Specif-

ically, the following is satisfied: for all
⋆
φkp,ϑ , we have that,

∑
iϑ is a term in

⋆
φkp,ϑ

cff(
⋆
φkp,ϑ

)
+

P⋊
0 +

∑ϑ−1
r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
− ir

cff(ir)

L
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ

,iϑ]
H

iϑ
cff(iϑ)

(
cff(iϑ) in U

[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ

,iϑ]

)

X
U
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ

]
=
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∑
iϑ is a term in

⋆
φkp,ϑ

cff(
⋆
φkp,ϑ

)
+

P⋊
0 +

∑ϑ−1
r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
− ir

cff(ir)

SH
P⋊
ϑ+

iϑ
cff(iϑ)

(
p−1∏
γ=1

cff(jϑγ ) in Ω(p)−
∑

ℓ≤γ−1

ϵ̄γ,1jϑℓ

cff(jϑℓ
)

) (
cff(iϑ) in

U
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ

,iϑ]

)
X

U
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ

]
=

∑
iϑ is a term in

⋆
φkp,ϑ

cff(
⋆
φkp,ϑ

)
+

P⋊
0 +

∑ϑ−1
r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
− ir

cff(ir)

SHP⋊
ϑ

(
p∏

γ=1

cff(πϑγ ) in Ω(p)−

∑
ℓ≤γ−1

ϵ̄γ,1πϑℓ

cff(πϑℓ
)

)
X

U
[
⋆
φkp,1

,i1,··· ,
⋆
φkp,ϑ

]
= 0, this sum cancels out because the addend

within the summation is constant, , which is being added p times, thus pro-

ducing the elimination, where we take the term i1 in
⋆
φkp,1

cff(
⋆
φkp,1

)
+ P⋊

0 , and iℓ

in
⋆
φkp,ℓ

cff(
⋆
φkp,ℓ

)
+ P⋊

0 +
∑ℓ−1

r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
− ir

cff(ir)
, for all ℓ ≤ ϑ, ϑ ≤ d0(f), in addi-

tion, P⋊
ϑ = P⋊

0 +
∑ϑ

r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
− ir

cff(ir)
. Let jϑ1 be a term in P⋊

ϑ , and the next

jϑγ be a term in P⋊
ϑ −

∑γ−1
r=1

jϑr

cff(jϑr )
for γ ≥ 2. Additionally, jϑp :=

iϑ
cff(iϑ)

, which

is equivalent to considering an enumeration (the πϑγs) in P⋊
ϑ = P⋊

ϑ + iϑ
cff(iϑ)

, in

the same way, it is respected that πϑγ is a term in P⋊
ϑ −

∑γ−1
r=1

πϑr

cff(πϑr )
, based

on the associativity and commutativity of the composition between derivative
operators. In particular, the jϑγ′s are πϑγs. These terms that we shall call elimi-
nators take place successively, and for this purpose we defineW

≺X,⋆φkp
,pk

†
1 ,··· ,pk

†
p≻

as the set that collects this type of terms.

On the other hand, a term of the form L′′X
U
[
⋆
φkp,1

,i1,
⋆
φkp,2

]
in ∂H

(
L
[
⋆
φkp,1

,i1]

X
U
[
⋆
φkp,1

,i1]
)
can in general be eliminated via terms of algebraic degree d0(f) of

the form L̃
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2]
X

U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2] where ĩ2 ∈
⋆
φkp,2

cff(
⋆
φkp,2

)
+ P̃⋊

0 +
⋆
φkp,1

cff(
⋆
φkp,1

)
−

i1
cff(i1)

, such that P̃⋊
0 is not necessarily equal to P⋊

0 . That is, L̃[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2]

X
U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2] ∈ ∂
(p−1)

Hp−1 (S̃X
Ω̃) for some Ω̃ ̸= Ω. We define the following
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set of functions: W̃
≺X,⋆φkp

,pk
†
1 ,··· ,pk

†
p≻

def
=
{
L̃
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2]
X

U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2] , . . . ,

L̃
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2,··· ,
⋆
φkp,ϑ

,ĩϑ]
X

U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2,··· ,
⋆
φkp,ϑ

,ĩϑ]
; d0(f) ≥ ϑ ≥ 2

}⋃ {
L
[
⋆
φkp,1

,i1]

X
U
[
⋆
φkp,1

,i1]
}
, such that when ĩ2

cff(ĩ2)
is

⋆
φkp,2

cff(
⋆
φkp,2

)
, the term L̃

[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2]

X
U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,ĩ2] coincides with L
[
⋆
φkp,1

,i1]
X

U
[
⋆
φkp,1

,i1] . Then L̃
[
⋆
φkp,1

,i1,
⋆
φkp,2

,
⋆
φkp,2

]
=

L
[
⋆
φkp,1

,i1]
, i.e.

S̃H P̃⋊
2

∏
θ(ϑ=2)γ

in P̃⋊
2

(
cff(θ(ϑ=2)γ

) in Ω̃(p)−
∑

ℓ≤γ−1

ϵ̄γ,1θ(ϑ=2)ℓ

cff(θ(ϑ=2)ℓ
)

)
=

SHP⋊
1

∏
j(ϑ=1)γ

in P⋊
1

(
cff(j(ϑ=1)γ

) in Ω(p) −
∑

ℓ≤γ−1

ϵ̄γ,1j(ϑ=1)ℓ

cff(j(ϑ=1)ℓ
)

)
, where ĩ1 is i1, while

the θ(ϑ=2)γ
s are terms in P̃⋊

2 := P̃⋊
0 +

∑2
r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
− ĩr

cff(ĩr)
respecting that

θ(ϑ=2)γ
is a term in P̃⋊

2 −
∑γ−1

r=1

θ(ϑ=2)r

cff(θ(ϑ=2)r
)
for γ ≥ 2, in particular this equa-

tion works for H = 1, providing us with the respective identity between

their coefficients. Then considering H arbitrary again, we have, H P̃⋊
2 = HP⋊

1

for all H ∈ Fpn \ {0}, and including 0, then P̃⋊
0 +

∑2
r=1

⋆
φkp,r

cff(
⋆
φkp,r

)
− ĩr

cff(ĩr)
=

P⋊
1 . Since ĩ2

cff(ĩ2)
=

⋆
φkp,2

cff(
⋆
φkp,2

)
, we have P̃⋊

0 = P⋊
0 . Then W̃

≺X,⋆φkp
,pk

†
1 ,··· ,pk

†
p≻

=

W
≺X,⋆φkp

,pk
†
1 ,··· ,pk

†
p≻
.

It is possible that the polynomial mapping ∂
(p−1)

Hp−1 (SX
Ω) contains some

m.a.d. term outside W
≺X,⋆φkp

,pk
†
1 ,··· ,pk

†
p≻
. Next we guarantee that there are

no surplus m.a.d. terms in ∂
(p−1)

Hp−1 (SX
Ω), that is to say that those elimina-

tors L
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

,iϑ]
X

U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,ϑ

,iϑ]
are all. We provide an

enumeration to the terms of the form Ξ
cff(Ξ)

(i.e., monic) such that
(
1, Ξ

cff(Ξ)

)
does not belong to (P⋊

0 )set, which are subtracted (due to the derivation pro-
cesses involved) from U, as follows: t

pω1 , · · · , tpωβ
. And we enumerate the

terms of the form Ξ
cff(Ξ)

(i.e., Ξ1

cff(Ξ1)
, . . . ,

Ξβ

cff(Ξβ)
), such that

(∑
1≤ℓ≤β

Ξℓ

cff(Ξℓ)

)
set

⊆(
P⋊
0 −
∑

σ∈{terms of form Ξ
cff(Ξ)

subtracted from P⋊
0 } σ

)
set
, as follows: pω1 , . . . , pωβ

, where

0 < β ≤ p− 1. Let g(X) be any term of m.a.d. in ∂
(p−1)

Hp−1 (SX
Ω) \ {XU,LXU}

(except these), we write it in the form g(X) = LgX
U+pω1−tpω1

+...+pωβ
−t

pωβ . The
term g(X) can be rewritten as follows,

g(X) = LgX
U+pω1−tpω1

+...+pωβ
−t

pωβ
+t

pωβ+1
−t

pωβ+1
+...+t

pωm−t
pωm

= LgX
U+

∑m
c=1 ξωc−tpωc , where m = d0(f), Lg ∈ F∗

pn , ξωc = pωc for all c ≤ β,
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ξωc = t
pωc for all m ≥ c ≥ β+1, (1, pω1) ∈

(
P⋊
0

)
set
, (1, pωc) ∈

(
P⋊
0 −

∑c−1

ℓ=1
pωℓ

)
set

for all β ≥ c ̸= 1. That is, (1, pωc)∈
(
t

pωc + P⋊
0 +

∑c−1

ℓ=1
t

pωℓ
− pωℓ

)
set

for all β ≥
c ̸= 1. In all cases (1, ξωc)∈

(
t

pωc +P⋊
0 +

∑c−1

ℓ=1
t

pωℓ
−pωℓ

)
set

for all m ≥ c ̸= 1, and

(1, ξω1)∈
(
t

pω1+P⋊
0

)
set
, satisfying ∅ ̸=

(
P⋊
0

)
set

\
(∑

1=ℓ≤β−1 pωℓ

)
set
. Additionally,

LgX
U+

∑m
c=1 ξωc−tpωc = LgX

Ω−(P⋊
0 +

∑m
c=1 tpωc−ξωc ) = LgX

U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,β

,iβ ]
=

LgX
U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,m

,im]
, where this choice of parameters satisfies t

pωc =
⋆
φkp,c

cff(
⋆
φkp,c

)
and ξωc =

ic
cff(ic)

, for all c ≤ m. Since g(X) is the term in ∂
(p−1)

Hp−1 (SX
Ω)

of degree U
[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,β

,iβ ]
, then Lg = L

[
⋆
φkp,1

,i1,
⋆
φkp,2

,i2,··· ,
⋆
φkp,β

,iβ ]
. Remem-

ber that W
≺X,⋆φkp

,pk
†
1 ,··· ,pk

†
p≻

contains LXU. Then, the set of terms of m.a.d. in

∂
(p−1)

Hp−1 (SX
Ω) ⊆ W

≺X,⋆φkp
,pk

†
1 ,··· ,pk

†
p≻
. Since W

≺X,⋆φkp
,pk

†
1 ,··· ,pk

†
p≻

is contained in the

set of terms of m.a.d. in ∂
(p−1)

Hp−1 (SX
Ω), we obtain the equality: the set of

terms of m.a.d. in ∂
(p−1)

Hp−1 (SX
Ω) = W

≺X,⋆φkp
,pk

†
1 ,··· ,pk

†
p≻
, and this happens for

each LXU. Let us denote by SΩψ
(Ω)
Θ the elements of W

≺X,⋆φkp
,pk

†
1 ,··· ,pk

†
p≻
. Then

these SΩψ
(Ω)
Θ are all the m.a.d. terms required in f so that the m.a.d. terms

in the ∂H(SΩψ
(Ω)
Θ )s eliminate the corresponding ones present in ∂H(LX

U)
and each other, which is equivalent to: the m.a.d. terms in f (such that

d0
(
∂H(f)

)
̸= d0(f)−1) add up to

∑
SΩX

Ω∈O≺p;f ;n≻

SΩ

∑
ψ
(Ω)
Θ is a term in ∂

(p−1)

Hp−1 (X
Ω)

ψ
(Ω)
Θ ,

with d0(ψ
(Ω)
Θ ) = d0(f), for some non-empty set O≺p;f ;n≻ ⊆ {SΩX

Ω ∈ Fpn [X]∖
{0}; d0(SΩX

Ω) − p + 1 = d0(f)}. Thus, taking the negation of this equiva-
lence gives us an equivalence again, which is effectively the statement of this
theorem. □

Corollary 9.3 Let f = F mod (X2n − X) be a function such that F ∈
F2n [X], 2 ≤ d0(f) ≤ n− 1, and H ∈ F2n ∖ {0} (an arbitrary direction). Then:
the part of maximum algebraic degree in f is not an expression of the form

∑
SΩX

Ω∈O≺2;f ;n≻

SΩ

∑
ψ
(Ω)
Θ is a term in

∂H(XΩ) such

that d0(ψ
(Ω)
Θ )=d0(f)

ψ
(Ω)
Θ , for some non-empty set

O≺2;f ;n≻ ⊆ {SΩX
Ω ∈ F2n [X]∖ {0}; d0(SΩX

Ω)− 1 = d0(f)},
is a necessary and sufficient condition for d0

(
∂H(f)

)
+ 1 = d0(f).

If d0(f) > n− 1, then d0
(
∂H(f)

)
+ 1 = d0(f).
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Proof. Applying Theorem 9.2, it only remains to investigate the case d0(f) >
n − 1. An f of this size (in this form) has a single term of m.a.d. whose
derivative consists of terms of algebraic degree n − 1. Moreover, ∂H(J) ̸=
the function 0, for any non-constant monomial J . Thus, d0

(
∂H(f)

)
= d0(f)−

1. □
∂
(p−1), d0=r

Hp−1 Fpn [X]
def
= Fd0=rpn [X]

⋂
∂
(p−1)

Hp−1 (Fpn [X] mod (Xpn−X)) will be called
the Near 0 Kelvin-Galois-Carranza’s Class of Degree r—its element with max-
imum number of terms will be called Near 0 Kelvin-Carranza Function of De-

gree r—while Fd
0≤r
pn [X]

⋂
∂
(p−1)

Hp−1 (Fpn [X] mod (Xpn −X)) is called the Kelvin-
Galois-Carranza Space of Degree r, also KGC Space of Degree r. This results
in the astonishing existence of non-constant functions of a vast diversity of
degrees whose derivative (under Definition I of derivative, in accordance with
Subsection 1.1) is zero, just as is the case with constant functions. In this sense
we have discovered abstract functions of the constant function. Note that if we
consider a function, ψ, from the Space of Piecewise Constant Functions on Fpn ,
which we denote as S(Fpn), then in general ∂h(ψ) is distinct from the function
01 2 3. We give an urgent concern in the following Open Problem 15: ex-
plore the existence of any other space or structure of functions whose derivative
is zero. Also achieve the unification of these structures. The supplementary
case of Theorem 9.2 can be demonstrated in a similar way to that established
by this theorem in mention; furthermore, Little Open Problem 16. Prove
Theorem 9.2 regarding the case d0(f) > (p− 1)(n− 1), but by a substantially
different channel than the applicable analogous procedure corresponding to
the one established in Theorem 9.2.

Those interested in Markov ciphers can read Xuejia Lai, James L. Massey,
and Sean Murphy [87, 88], where in Propositions 1-2 in [87] the algebraic degree
of the derivative of a multivariate function is observed for the inequality case.
We answer (by an if and only if) the question of when equality is possible. On
the other hand, to see research on functions f : GF (p)n → GF (p) where their
codomain is the prime field GF (p), and various results in another direction,
you can see the article by Ana Sălăgean, Richard Winter, Matei Mandache-
Sălăgean, and Raphael C.-W. Phan. [126].

A salient inference from the algebraic degree analysis is that in the Fpn-
algebra, Fpn [X], there will not exist a function analogous to the transcendental
function y = exp(x), which is very beneficial in Euclidean spaces. We shall

1Let us for a moment consider the case of the normed Lebesgue space L1(R) (constituted
by equivalence classes of equal functions, except for a set of zero measure). The important
Step Function Space S(R) (its functions, ϕ : R → R, are finite sums of the form ϕ =∑m

k=1 AkXIk , i.e. bounded functions, where each characteristic function XIk equals 1 on
the bounded interval Ik and 0 outside it) is a dense vector subspace of L1(R).

2Now, any of the side derivatives (with respect to the usual definition in R, endowed with
its usual metric) of ϕ at every point equals zero, too.

3In the context of Fpn , the derivative is also taken with respect to some direction h( ̸= 0).
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see that F2n [X] was made to make Laplace’s equation hold. One can directly
confirm that the derivative operator ∂h(.) is linear; there are other equations
that are obtained fairly straightforwardly. Just as the historical Gaussian
quantity i ∈ C∖R appearing in the Schrödinger equation, for our formulation
of the Fpn-Schrödinger equation, one could pick out the analogous element to
i in some difference of fields, F2ℓ1 ∖ F2ℓ2 . Our approach is to work properly
with functions whose codomain is the Galois field, which by the way does
not accept a total ordering, as a substantial difference compared to the f
assumed in the theory of weighted graphs or networks where the codomain of
f is R+

0 , which is also associated with a Lebesgue measure (see Royden [116]),
the treatment being different and of course such theory does not cover finite
fields. The fundamental theorem of calculus as well as a product rule are
fulfilled, all exclusively-“vip” for functions between Galois fields. Here we will
give a brief approach with notable steps in this direction of the theory. The
reader interested in differential equations on networks can find information
in that direction in the articles by Richard James Duffin, Edward B. Curtis,
James A. Morrow, Enrique Bendito, Ángeles Carmona, Andrés M. Encinas,
Soon-Yeong Chung, Yun-Sung Chung, and Jong-Ho Kim [64, 49, 9, 48]. In the
Fpn-context, the new solutions will no longer be the conventional wavefunctions
(defined on a separable Hilbert space) in quantum mechanics, they will suffer
a truly dramatic transformation in their nature, pointing out the fact that
some of their properties collapse. According to the Corollary 9.4, we have that
a significant range of differential equations over Fpn will have no solution, in
this sense differential equations with solutions become scarce. In the literature
written in German and English, there is the research of Bernd Steinbach and
Christian Posthoff [123], who developed Boolean Differential Equations (BDE),
as equations that include derivative operations and differential operators of a
set of unknown Boolean functions f : GF (2)n → GF (2). Additionally, they
gave their Boolean Differential Calculus (BDC) published in the Journal of
Computational and Theoretical Nanoscience. For our part, independently of
the elegant research on BDE, we have developed Differential Equations for
functions over finite fields, f : Fpn → Fpn , which generalizes the Boolean
approach. Based upon the fact that d0(f)−1 ≥ d0(∂h(f)), the algebraic degree
on both sides of the equation is not the same, then the next two conclusions

follow directly. For λ ∈ Fpn ∖ {0}, the differential operator
m∑
σ=1

Ah1···hσ∂
(σ)
h1···hσ :

Fpn [X] → Fpn [X] has no eigenfunction (an f such that it satisfies the equation
appearing in the Corollary 9.4).

Corollary 9.4 (Non-existence of solutions). Given λ in Fpn ∖ {0}, m ≥ 1.
Let Ah1 , . . . , Ah1···hm be elements of Fpn, and let (h1, . . . , hm) be a direction

vector in
(
F∗
pn

)m
. The linear differential equation

m∑
σ=1

Ah1···hσ∂
(σ)
h1···hσ(f) = λf
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has no non-trivial (non-zero) solutions on Fpn [X].

Corollary 9.5 Given λ and h in Fpn ∖ {0}, and the differential equation
∂h(f) = λf . For λ = 1, it follows that there are no non-trivial fixed points in
the derivative operator.

Quantum computing and quantum error-correcting codes are another at-
tractive domain. There, Constanza Riera, Matthew G. Parker, and Pante-
limon Stănică have generalized the so-called pure graph states—described by
simple undirected graphs Gs; G corresponds to a quadratic and homogeneous
Boolean function whose coefficients are entries in the adjacency matrix of G—
to quantum states via graphs that can consist of edges of both types (di-
rected/undirected), for which they obtain their associated Clifford group op-
erators, see [114]. Other interesting material can be found in [75, 100, 96, 66].

9.1 Algebraic-Differential Analysis of Highly Resistant
Functions (Part II)

In this section, we contribute to the powerful problem proposed by Pierrick
Méaux and Dibyendu Roy [98], of finding Boolean functions whose derivative
also has a high algebraic degree. We can ignore the maximal algebraic degree,
since it corresponds to a function of notable vulnerability. Thus, the non-linear
Boolean functions we produce have the highest effective algebraic degrees.

Theorem 9.6 For all n,m, u ≥ 1, u ̸= n − m, and n ≥ m + 2 ≥ 3, it
is satisfied that: d0

(
(x2

u
+ x + 1)Pm(x)

)
= m + 1 and d0

(
x2

u+1 + (x2
u
+ x +

1)Pm(x)
)
= m+ 1.

Proof. By Theorem 5.1, Ldt(Pm(x)) = Ax2
n−1+...+2n−m

, where A ̸= 0, n− 1 ≥
m ≥ 1, and Ldt(g) denotes the leading term (of a polynomial, g). Then,
x2

u
Pm(x) has its polynomial representation with degree no more than 2n −

1 given by Ldt
(
x2

u(
Pm(x)

)2u−(n−m−1))
= A2u−(n−m−1)

x2
n−1+...+2u+2u−(n−m)+...+20

if u ≥ n − m, and Ldt(x2
u
Pm(x)) = Ax2

n−1+...+2n−m+2u if u ≤ n − m − 1.
Furthermore, Ldt(xPm(x)) = Ax2

n−1+...+2n−m+20 . Which we summarize as: if
u > n−m, Ldt(x2

u
Pm(x)+xPm(x)) = Ax2

n−1+...+2n−m+20 , while if u ≤ n−m−1,
Ldt(x2

u
Pm(x) + xPm(x)) = Ax2

n−1+...+2n−m+2u . Considering that theorem 5.1
implies that d0(Pm(x)) = m, we accomplish to generalize Theorem 5.2, which
we shall preserve because of its demonstration that has been motivating other
demonstrations. On the other hand, Ax2

n−1+...+2n−m+2u prevails as the leading
term for x2

u+1 + (x2
u
+ x+ 1)Pm(x). □

Theorem 9.7 Let x2
u+1 : F2n → F2n be Differentially δ-Uniform, n > 4,

n−3
2

≥ u ≥ 1, and u ̸= 2. Then, there exists a linear subspace S̃ ⩽ (Fn2 ,+)
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such that ∀h ∈ S (where S = F2n ∖ S̃ and |S| = 2n − δ), d0(∂h((x
2u + x +

1)Pn−2(x))) = (n− 1)− 1 = n− 2.

Proof. Let M
(0)
Zu

be the max algebraic degree part in Zu, where Zu(x) =

(x2
u
+x+1)Pn−2(x). Next we obtain part M

(0)
Zu
, for which we proceed similarly

to the proof we made in theorem 5.2, for which we multiply the monomial
factors of degrees 20 and 2u by the maximum algebraic degree part in Pn−2,
considering each z in the range 0 ̸= z ≤ n−1

2
, so that all possible terms of

algebraic degree d0(Zu) are considered. We do this analysis for n > 4, and
bounded u ̸= 2, 1 ≤ u ≤ n−3

2
.

M
(0)
Zu
(x) =

( ∑
1≤z≤n−1

2

κzx
−2z + κ2−z

z x−2−z

+ κ2u

z x
−2z+u

+ κ2u−z

z x−2u−z)
+ pD2|nκn/2x−2

n
2 (κ2u−1

n/2 x(1−2u)2
n
2 + 1) =

( ∑
1≤z≤n−1

2

κzx
−2z+

∑
1≤z≤n−1

2

κ2−z

z x−2−z

+
∑

u+1≤z≤u+n−1
2

κ2
z−ux

−2z +
∑

1−u≤z≤n−1
2

−u

κ2−z

z+ux
−2−z)

+ pD2|nκn/2x−2
n
2 (κ2u−1

n/2 x(1−2u)2
n
2 + 1)

Regrouping, M
(0)
Zu
(x) =

( ∑
1−u≤z<0

(κ2−z

z+u + κ−z)x
−2−z

+
∑
z=u

κzx
−2z+∑

u+1≤z≤n−1
2

(κz + κ2
z−u)x

−2z +
∑

n+1
2

≤z≤u+n−1
2

(κ2
z−u + κ2z

−z)x
−2z+

∑
1≤z≤n−1

2
−u

(κ2−z

z + κ2−z

z+u)x
−2−z

+
∑
z=0

κ2−z

z+ux
−2−z)

+ pD2|nκn/2x−2
n
2 (κ2u−1

n/2 x(1−2u)2
n
2 + 1)

, where the κzs belong to F2n , and pD2|n
def
= 1, if 2 divides n, and is 0 otherwise.

In view of Corollary 9.3, M
(0)
Zu

is the derivative of some expression if and only if

d0(∂h(Zu)) ≤ d0(Zu)−2. In case M
(0)
Zu

is the derivative of some expression, let’s
name itNZu (see Eq. I in Theorem 9.2 concerning the derivative of monomials),
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then due to size d0(NZu), the part M
(0)
Zu

can only consist of n nonzero terms
belonging to the derivative of a single term. I.e. h(̸= 0) obeys the following
nonlinear system of n equations, κ2−z

z+u+κ−z = h2
−z

for 1−u ≤ z < 0, κz = h2
z

for z = u, κz + κ2
z−u = h2

z
for u + 1 ≤ z ≤ n−1

2
, κ2

z−u + κ2z

−z = h2
z
for

n+1
2

≤ z ≤ u + n−1
2
, κ2−z

z + κ2−z

z+u = h2
−z

for 1 ≤ z ≤ n−1
2

− u, κ2−z

z+u = h2
−z

for
z = 0. Analyzing in the coordinates z = 0, z = u, we obtain h2

u
= κu = h.

If gcd(n, u) = 1 (i.e. x2
u+1 is APN), then h ∈ F2. Regarding the APN case,

to avoid that the part M
(0)
Zu

coincides with the derivative of some function, it
is enough to choose h outside F2 (in general, if the function is differentially
δ-uniform, then h can acquire 2n − δ values). Which together with Theorem
9.6 give us an exceptionally high value for d0(∂h(Zu)), concluding the theorem.
□

Corollary 9.8 For all h ∈ F2n ∖ F2, n > 4, n−3
2

≥ u ≥ 1, u ̸= 2, such that
gcd(n, u) = 1, we have that d0(∂h((x

2u +x+1)Pn−2(x))) = (n−1)−1 = n−2.

Open Problem 17. Investigate the quantity d0(∂
(2)
hh∗(Zu)), for a pair of appro-

priate directions h, h∗, with h ̸= h∗, as in the Corollary 9.8 or in Theorem 9.7.
Note. The properties ofM

(0)
Zu

found by Theorem 9.7 together with the linearity
of the derivative operator imply the following trade-off (between differentiation

and the maximal part), M
(0)
∂h(Zu)

= ∂h
(
M

(0)
Zu

)
. Then, d0(∂

(2)
hh∗(Zu)) = d0(Zu)− 2

occurs only if it is shown that ∂h
(
M

(0)
Zu

)
is not the derivative in the h∗ direction

of any function. Open Problem 18. What about d0(∂h((x
2u +x+1)Pm(x)))

when n − 2 > m? Open Problem 19. Similarly, attack this problem when
considering the other family so important in theory and practice, (x2

2u−2u +
x2

2u−(2)2u+1+x2
2u−(2)2u+x2

2u−(3)2u+1+x2
2u−(3)2u+. . .+x2

u+1+x2
u
+x+1)Pm(x)

with the factor Pm for m ≥ 1.

Theorem 9.9 Given a non-constant function, f from and to F2n. Then
the following trace property holds: there exist at least 2n−1 elements ζ ∈ F∗

2n

such that d0
(
Tr1n

(
ζf
))
= d0

(
f
)
.

Proof. Let M
(0)
f be the maximum algebraic degree part in f . Since M

(0)
f is

non-constant, ∃µ, µ′ ∈ F2n with µ = M
(0)
f (α), µ′ = M

(0)
f (α′), and µ−µ′ ∈ F∗

2n ,
for some α, α′ ∈ F2n . Let m verifying m | n, L : F2n → F2m be a linear

function, and the non-empty inverse images, U ′ :=
(
M

(0)
f

)−1
(µ′) and U :=(

M
(0)
f

)−1
(µ). Then ∃ ζL,f,µ−µ′ ∈ F∗

2n such that L
(
ζL,f,µ−µ′µ− µ′)∈ F∗

2m . Then

L
(
ζL,f,µ−µ′M

(0)
f (U)

)
−L
(
ζL,f,µ−µ′M

(0)
f (U ′)

)
= L

(
ζL,f,µ−µ′µ

)
−L
(
ζL,f,µ−µ′µ

′)=
L
(
ζL,f,µ−µ′µ− µ′)̸= 0. That is, L

(
ζL,f,µ−µ′M

(0)
f

)
does not vanish, or rather, it

is not a constant function. Since d0
(
L
(
ζL,f,µ−µ′x

))
= 1 (here we are writing the

function with its independent variable x), the terms in L
(
ζL,f,µ−µ′M

(0)
f

)
have
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the same algebraic degree as M
(0)
f . We can then bound as follows, d0

(
M

(0)
f

)
=

max
(
d0
(
L
(
ζL,f,µ−µ′M

(0)
f

))
, d0
(
L
(
ζL,f,µ−µ′

(
f − M

(0)
f

))))
= d0

(
L
(
ζL,f,µ−µ′f

))
≤

d0
(
f
)
. Thus, d0

(
L
(
ζL,f,µ−µ′f

))
= d0

(
f
)
. In particular, if L = Tr1n, at least

2n−1 = |{x ∈ F∗
2n ;L

(
(µ− µ′)x

)
∈ F∗

2m}| of these ζL,f,µ−µ′ are obtained. □
Specifically, we apply the Theorem 9.9 to the functions ∂h(Zu) and Zu,

since they have very high algebraic degrees, d0(∂h(Zu)) and d0(Zu), and we
immediately obtain the new product d0

(
Tr1n

(
ζ1∂h(Zu)

))
d0
(
Tr1n

(
ζ2Zu

))
, which

is also very high; we will now express this.

Theorem 9.10 Let n > 4, n−3
2

≥ u ≥ 1, u ̸= 2, δ = ∆x2u+1, S̃ ⩽ (Fn2 ,+) a

linear subspace, S = F2n ∖ S̃, |S| = 2n−δ, and Zu be as in Theorem 9.7. Then
∀h ∈ S, there are 2n−1 elements ζ1 (also 2n−1 elements ζ2) ∈ F∗

2n satisfying,

d0
(
Tr1n

(
ζ1∂h(Zu)

))
= n− 2 and d0

(
Tr1n

(
ζ2Zu

))
= n− 1.

Corollary 9.11 Let n > 4, n−3
2

≥ u ≥ 1, u ̸= 2, gcd(n, u) = 1, and Zu be
as in Theorem 9.7. Then ∀h ∈ F2n ∖F2, there are 2n−1 elements ζ1 (and 2n−1

elements ζ2) ∈ F∗
2n verifying the following identities,

d0
(
Tr1n

(
ζ1∂h(Zu)

))
= n− 2 and d0

(
Tr1n

(
ζ2Zu

))
= n− 1.

Open Problem 20: When can nl(∂h(f)) be bounded in terms of nl(f)?

9.2 The Boundary Value Problem for Galois Fields

An important component of the miscellaneous techniques for the design of
control laws are based upon the solution of the boundary value problem. Let
us consider F

(
Θ, ∂s(Θ), Θ̃

)
= 0, where F

(
Θ, ∂s(Θ), Θ̃

)
= Θ̃− ∂s(Θ), and Θ̃ is a

signal (function) with values in the field Fpn ; in Theorem 9.13 we obtain the
desired trajectory Θ (for the first and exclusive time for Fpn) required to pass
through the points (xt, yt); forming a valuable part of the so-called trajectory
control, for which some guiding parameters must be embedded in F . In a
typical boundary value problem for functions such as those defined on Rn,
taking into account the type of smoothness and geometry of the domain pre-
assigned to the unknown function are compromised with the structure of the
problem-solving method. In the discrete case, the domain may be a subset of
points, which will not be relevant here; therefore, we shall consider all of Fpn .
We provide new results in this respect in the field of finite fields Fpn . During
these years, F2n , which presents the underlying structure of {0, 1}n, has been
gaining special attention in the field of artificial intelligence. From part of the
proof of Theorem 9.13, Theorem 9.12 can be deduced.
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Theorem 9.12 (Existence of solutions of the I.V.P.) Let Θ̃ : Fpn → Fpn,
s ∈ Fpn ∖ {0}, ∂s(Θ̃) = 0, 2 ≤ d0(Θ̃) ≤ (p − 1)(n − 1), n ≥ 3, and

(x0, y0) ∈
(
Fpn
)2
, such that the following initial value problem (I.V.P.) is

satisfied, ∂s(Θ) = Θ̃, and (x0, y0) belongs to the graph GΘ. Then there ex-

ists a solution set, of the form Θ0 + ∂
(p−1)

sp−1

(
Fpn [X]

)
, for this problem, where

Θ0 : Fpn → Fpn is some function satisfying ∂s(Θ0) = Θ̃.

Theorem 9.13 (Existence and form of solutions of the B.V.P.). Let p be

a prime number. Let Θ̃ : Fpn → Fpn, a0 = (x0, y0) and at = (xt, yt) two points

in
(
Fpn
)2
, xt ̸= x0, n ≥ 3, t ≥ 1, 2 ≤ d0(Θ̃) ≤ (p − 1)(n − 1), ∂s(Θ̃) = 0,

and s ∈ Fpn ∖ {0}, such that the following boundary value problem (B.V.P.)
governs:  ∂s(Θ) = Θ̃,

Θ(x0) = y0,
Θ(xt) = yt

There exists a function Θ0 : Fpn → Fpn satisfying ∂s(Θ0) = Θ̃, and the

solutions of the B.V.P. are the functions of the form Θ0 + ∂
(p−1)

sp−1 (φ̌), where
φ̌ ∈ Fpn [X]. Specifically, it happens that:

A1). If p ̸= 2 and some odd integer other than 1 divides n, there are

solutions such that φ̌(x) = ω(a0,at)ϕ(x)

∂
(p−1)

sp−1 (ϕ)(xt)
+ y0−Θ0(x0)

(p−1)!sp−1x
p−1, ϕ(x) = (x−x0)

pξ+p−1−
cξ(x

p−1−x0)
(p−1)!sp−1 , ω(a0, at) = yt − y0 + ∂x0−xt(Θ0)(xt), cξ = ∂

(p−1)

sp−1

(
xp

ξ+p−1
)
(0), and

ϱ(x− x0) = (x− x0)
pξ+1 is a Perfect Nonlinear (PN) function.

A2). If p = 2: for all xt /∈ x0 + sF2, there are solutions such that ϕ(x) =

ϕ̌(x − x0) −
∂
(p−1)

sp−1 ϕ̌(0)(x
p−1−x0)

(p−1)!sp−1 , and ϕ̌ is any Almost Perfect Nonlinear (APN)

function. If at = (x0+s, yt), the B.V.P. has a solution only when Θ̃(x0)+y0 =
yt.

Proof. Since ∂s(Θ̃) = 0, Theorem 9.2 applied to each part of a different

algebraic degree in Θ̃ implies that there exists a function Θ0 = ∂
(p−2)

sp−2 (φ), for

some φ ∈ Fpn [X], such that ∂s(Θ0) = Θ̃ (i.e. Θ0 is a particular solution to the

associated differential equation of the B.V.P.). Let ΘG = Θ0+ψ̃ be the general

solution of ∂s(Θ) = Θ̃, then ∂s(Θ0) + ∂s(ψ̃) = Θ̃. Again, by Theorem 9.2, any

solution to the homogeneous equation ∂s(ψ̃) = 0 is given by ψ̃ = ∂
(p−1)

sp−1 (φ̌),

for some φ̌ ∈ Fpn [X]. Then, the ΘG = Θ0 + ∂
(p−1)

sp−1 (φ̌) constitute the solution

set of ∂s(Θ) = Θ̃ on Fpn [X]. The boundary conditions applied to ΘG provide
constraints on the (p− 1)-th derivative of φ̌ in the direction s; decomposing φ̌
as its linear combination over Fpn of xp−1 and a function ϕ, those conditions
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become the following system for ϕ:{
ω(a0,at)

vt
∂
(p−1)

sp−1 (ϕ)(x0) + ∂
(p−1)

sp−1

(
y0−Θ0(x0)
(p−1)!sp−1x

p−1
)
(x0) = y0 −Θ0(x0),

ω(a0,at)
vt

∂
(p−1)

sp−1 (ϕ)(xt) + ∂
(p−1)

sp−1

( y0−Θ0(x0)
(p−1)!sp−1x

p−1
)
(xt) = yt −Θ0(xt)

where ω(a0, at) = yt − y0 + ∂x0−xt(Θ0)(xt), vt = ∂
(p−1)

sp−1 ϕ(xt), with vt ̸= 0.

Moreover, ∂
(p−1)

sp−1 (xp−1) = (p − 1)!sp−1 is obtained by Eq. I in Theorem 9.2;
clearly there cannot be parts of lower algebraic degree when the part of m.a.d.
(maximum algebraic degree) is a constant. Such boundary conditions reduce

to finding ϕ that fits: ∂
(p−1)

sp−1 ϕ(x0) = 0 and ∂
(p−1)

sp−1 ϕ(xt) = vt, where vt ̸= 0.

Case: p an odd prime. Given n > ξ ≥ 1, we apply the high-order derivative
operator to obtain:

∂
(p−1)

sp−1

(
xp

ξ+p−1
)
=sp−1(p− 1)!xp

ξ

+ (p− 1)!sp
ξ+p−2x+ cξ

=(p− 1)!sp−2∂s
(
xp

ξ+1
)
+ĉξ on Fpn

Where cξ, ĉξ ∈ Fpn . For any F ∈ Fpn [X], A ∈ Fpn , and k ≥ 1, it is straight-

forward to show that ∂
(k)

sk
(F (x + A)) = ∂

(k)

sk
F (x + A), where the right-hand

side is the function k-th derivative of F evaluated at x+A. Then ∂
(p−1)

sp−1

(
(x−

x0)
pξ+p−1

)
= ∂

(p−1)

sp−1 x
pξ+p−1(at x− x0) = (p− 1)!sp−2∂s

(
(x− x0)

pξ+1
)
+ĉξ. Then

ϕ(x) = (x − x0)
pξ+p−1 − cξ(x

p−1−x0)
(p−1)!sp−1 exists verifying ∂

(p−1)

sp−1 ϕ(x0) = 0. Suppose

∂
(p−1)

sp−1 ϕ(xt) = ∂
(p−1)

sp−1 ϕ(x0), then (p − 1)!sp−2∂s
(
(x − x0)

pξ+1
)
(xt) + ĉξ − cξ =

(p − 1)!sp−2∂s
(
(x − x0)

pξ+1
)
(x0) + ĉξ − cξ. Then, ∂s

(
(x − x0)

pξ+1
)
(xt) =

∂s
(
(x − x0)

pξ+1
)
(x0) = µ, for some µ ∈ Fpn , which contradicts property

max
a∈Fpn∖{0}, b∈Fpn

δϱ(a, b) = 1 of the planar function ϱ(x − x0) = (x − x0)
pξ+1

(at this point we are dealing with the planar function defined by Dembowski
and Ostrom in [53]; also called perfect nonlinear; it always exists for p ̸= 2),
such that some odd integer other than 1 divides n, and n/ gcd(n, ξ) is odd (see
[63, 45, 74]). Then the remaining condition is met:

∂
(p−1)

sp−1 ϕ(xt) ̸= 0 for all xt in Fpn ∖ {x0}.

Case: p = 2, the even characteristic. d0(Θ̃) can be arbitrary. We choose

ϕ(x) = ϕ̌(x − x0) −
∂
(p−1)

sp−1 ϕ̌(0)(x
p−1−x0)

(p−1)!sp−1 such that ϕ̌ is any APN (also known as

semi-planar [46]) function over F2n (it always exists; thus φ̌ is APN too; see
Table 1), such that xt /∈ x0 + sF2. If at = (x0 + s, yt): we can deal with this
part directly. □

There is a wide variety of functions Θ̃ verifying ∂s(Θ̃) = 0. When looking
for the integral curves (solutions of I.V.P. or B.V.P.) it is essential to solve
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the associated homogeneous equation. Let the sis ( ̸= 0) be mutually distinct
directions, where r ≥ 1. More generally, the function spaces over the field Fpn
given below play a leading role.

The kernel DFpn ;s1,...,sr
def
= {f ∈ Fpn [X]; ∂(r)s1,...,sr

(f) = 0},
The Space of R. Carranza given below
◦
CFpn ;s1,...,sr

def
= {f ∈ Fpn [X]; f = ∂

(p−1)

sp−1
1

(φ1) + . . .+ ∂
(p−1)

sp−1
r

(φr) + L(d0≤r−1)+

m∑
ℓ=1

L
(d0=r−1)
ℓ ∂

(rp−r)
sp−1
1 ,...,sp−1

r
(ψℓ), where m is an integer, each φℓ, ψℓ is in Fpn [X],

L(d0≤r−1) ∈ Fd
0≤r−1
pn [X], and each L

(d0=r−1)
ℓ ∈ Fd0=r−1

pn [X] (see Definition 1.13)}.

In the scenario where there is barely a particular solution Θ0 for the equa-
tion of the form ∂

(r)
s1,...,sr(Θ) = Θ̃, for the case p = 2 there automatically exists

an f in
◦
CFpn ;s1,...,sr , with an φ1 APN in its formula, such that the trajectory

Θ = Θ0 + f fits the given boundary conditions. For any prime p, these vector
spaces respect the subspace relation given below:

◦
CFpn ;s1,...,sr ⩽ DFpn ;s1,...,sr ⩽ Fpn [X]

Problem 21. Is subspace
◦
CFpn ;s1,...,sr equal to DFpn ;s1,...,sr?

Problem 22. Investigate the homogeneous differential equation Fpn asso-
ciated with each situation given below (especially when the directions si( ̸= 0)

are mutually distinct), where Θ̃ : Fpn → Fpn is some appropriate function:

P1). ∂
(3)
s1s2s3(f) + ∂

(3)
s4s5s6(f) + ∂

(3)
s7s8s9(f) = Θ̃ on F2n .

P2). For p even or odd, for some pair k, m in N,
m∑
ℓ=1

∂
(k)
sℓ1 ...sℓk

(f) = Θ̃ on Fpn .

Note that when there is no ambiguity, we are free to use ∂
(3)
s1s2s3(f) (without

commas) to denote ∂
(3)
s1,s2,s3(f).

Let n,m ≥ 1, we say that a function f in Fpn [X1, · · · , Xm] is harmonic
when it is a solution to Laplace’s equation, i.e. ∇2(f) = 0, where the first

member of this equation symbolizes the Laplacian operator of f : ∇2(f)
def
=

m∑
i=1

∂
(2)
Xi=Hi,Xi=Hi

(f), with respect to some vector (H1, . . . , Hm) ∈
(
F∗
pn

)m
, also

the subfix Xi = Hi, Xi = Hi means that the first order derivative is taken
with respect to the variable Xi in the direction Hi, followed by the first or-
der derivative with respect to the variable Xi in the direction Hi, again. As
we have seen before, symbols like ∆(f) are reserved to indicate the uniform
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differentiability of f . Let us denote by Fpn-Harm(H1,...,Hm), and in compact
notation by Fpn-Harm, the space of harmonic functions on Fpn relative to the
vector (H1, . . . , Hm) ∈

(
F∗
pn

)m
. We encourage readers interested in exploring

interesting connections in the context of Continuum Mechanics and Finite El-
ements—in addition to their pertinent differential operators—to consult the
work of Lev Steinberg and R. Kvasov [125, 124], as well as research by R. Car-
ranza with Steinberg [110]. In the field of Deep Learning, methods are being
developed to deal with BVP (on Rn). E.g., Ziad Aldirany, Régis Cottereau,
Marc Laforest, and Serge Prudhomme [1] recently published a method capa-
ble of capturing smaller scales of the solution at each level of the process by
applying an appropriate neural network in charge of minimizing the resulting
residual (and therefore the size of its corresponding numerical error). There is
a stream of work in this regard [3, 137]. Let’s dive into our next result.

Theorem 9.14 Let p be a prime number; n,m ≥ 1, 1 ≤ i ≤ m, and
(H1, · · · , Hm) ∈

(
F∗
pn

)m
. Then: Fpn [X1, · · · , Xm] ⊆ ker

(
∂
(p)

Xp
i

)
, where each

derivative operator ∂Xi
runs along Hi.

Proof. We will begin by applying the principle of mathematical induction in
Z+. Let’s choose a polynomial function with coefficients in the finite field Fpn ,
i.e. ζ ∈ Fpn [X1, · · · , Xm]. Let’s suppose that for σ ∈ Z+ we have:

∂̃
(σ)
hσ (ζ) =

σ∑
θ=0

h−σ(−1)θ
(
σ
θ

)
ζ((σ− θ)h+ id) = h−σ(−1)σζ +

σ−1∑
θ=0

h−σ(−1)θ
(
σ
θ

)
(h∂̃(σ−θ)h(ζ) + ζ), it can be seen that this is true for σ = 1. We apply the
derivations with respect to the variable Xi, and in the direction Hi, which we
will denote by h. The other variables are considered constant. Next, we obtain
the version of this equation corresponding to σ + 1.

∂̃h(∂̃
(σ)
hσ (ζ)) = h−σ(−1)σ∂̃h(ζ) +

σ−1∑
θ=0

h−σ(−1)θ
(
σ
θ

)
( ˜∂(σ+1−θ)h(ζ) + h−1ζ)+

σ−1∑
θ=0

h−σ(−1)θ+1
(
σ
θ

)
(∂̃(σ−θ)h(ζ) + h−1ζ) =h−σ∂̃(σ+1)h(ζ) + (1 + (−1)σ+1)h−σ−1ζ +

σ∑
θ=1

h−σ(−1)θ
(
σ
θ

)
( ˜∂(σ+1−θ)h(ζ)+h

−1ζ)+
σ−1∑
θ=0

h−σ(−1)θ+1
(
σ
θ

)
(∂̃(σ−θ)h(ζ)+h

−1ζ) =

h−σ∂̃(σ+1)h(ζ)+ (1+(−1)σ+1)h−σ−1ζ+
σ∑
θ=1

h−σ(−1)θ
(
σ
θ

)
( ˜∂(σ+1−θ)h(ζ)+h

−1ζ)+

σ∑
κ1=1

h−σ(−1)κ1
(

σ
κ1−1

)
( ˜∂(σ+1−κ1)h(ζ)+h

−1ζ) =h−σ∂̃(σ+1)h(ζ)+h
−σ−1ζ+(−1)σ+1

h−σ−1ζ+
σ∑

κ2=1

h−σ(−1)κ2
((

σ
κ2

)
+
(

σ
κ2−1

))
( ˜∂(σ+1−κ2)h(ζ)+h

−1ζ) =
σ+1∑
κ2=0

h−σ(−1)κ2(
σ+1
κ2

)
( ˜∂(σ+1−κ2)h(ζ) + h−1ζ). This is the same expression in the inductive hy-

pothesis, but for σ+1 instead of σ. That is, this formula holds for all σ ∈ Z+.
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If we choose σ = p to be a prime number, then σ|
(
σ
θ

)
for all 1 ≤ θ ≤ σ − 1.

Then, the operator ∂̃
(σ)
hσ under mod (p) takes the following form:

∂̃
(σ)
hσ (ζ) = h−σ(−1)σζ + h−σ(h∂̃σh(ζ) + ζ) ≡ 0. Besides, inductively we can

obtain that ∂
(σ)
hσ (ζ) = hσ∂̃

(σ)
hσ (ζ). Then, ∂

(p)
hp (ζ) = (0)hp = 0 on Fpn , for all

ζ ∈ Fpn [X1, · · · , Xm], which completes the demonstration. □
So the derivative of order p with respect to the same direction h applied to

any function ζ of Fpn [X1, · · · , Xm] is the function 0, for all n,m ≥ 1.

Corollary 9.15 Let n,m ≥ 1, and (H1, · · · , Hm) ∈
(
F∗
2n

)m
. Then:

F2n [X1, · · · , Xm] ⊆ F2n-Harm(H1,...,Hm).

We will leave Theorem 9.16 as an exercise; its proof is quite straightforward.
The transformation ∂H(.) : Fpn [X] → Fpn [X] is a Fpn-Derivation over the
algebra Fpn [X], that is, it is Fpn-linear and satisfies the Leibniz product rule
that will be given shortly, even with that form it takes it is still capable of
supporting very beautiful implications.

Theorem 9.16 (A Product Rule) Let F and G be in Fpn [X], with variable
X in Fpn, and H ∈ F∗

pn. Then ∂H(FG) = ∂H(F )G(id+H) + F∂H(G).

9.3 What Is Beyond the Fractional Derivative?

In article [68], motivated by article [15], the formula c∂a(f) = f(x+a)− cf(x)
(c-derivative of f with respect to a) was introduced to study the size of the
important set {x ∈ Fpn ; c∂a(f) = b} associated with a function f , which can

go from a Fpn to a Fpm , for points (a, (b, c)) ∈ Fpn ×
(
Fpm

)2
; the idea is to

broaden the landscape that was founded on the basis of Definition 1.19. We
recommend visiting Section 1.1 and Table 1. Fortunately, such transformation

c∂a is linear. The classical product rule is not fulfilled, but a property that can
be demonstrated directly is fulfilled, which can be understood as its generaliza-
tion, covering the case c ̸= 1: c∂a(fg)(x) = g(x+a)c∂a(f)(x)+cf(x)∂a(g)(x) =
g(x + a)c∂a(f)(x) + cf(x)1∂a(g)(x). Note. this formula reveals that the new

c∂a (seen as a Derivation) “has not yet properly freed itself from its prede-
cessor, ∂a”. It is therefore important to investigate both worlds, for c ̸= 1
and for c = 1. On the other hand, research has been carried out aimed at
obtaining properties of differentially (c, δ)-uniform functions using this toy of
recent arrival. This section introduces our treatment of the subject from a
different perspective. A few centuries have passed since the discovery of the
fractional derivative (year 1695). As if we were exploring beyond our solar
system, we investigate whether or not there might be other types of derivative
order beyond the fractional one. Let E be an operator in general, and ℓ ≥ 2
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be an integer. In a rather customary manner, the symbol E(ℓ) denotes the
corresponding operator of order ℓ, i.e., E(ℓ) = E ◦ E(ℓ−1), where E(1) = E.

Our Point of View: Let us introduce the following objects.

Definition 9.17 Let a ∈ Fpn (i.e., direction 0 is included). For each c ∈
Fpn \ {1}, the operator Ip−1,a,1−c :=

(
c∂a
1−c

)(p−1)
will be termed as the mod (p)-

c-integral operator of R. Carranza-Ellingsen-Felke-Riera-Stănică-Tkachenko-
Borisov-Chew-Johnson-Wagner in the direction a. On the other hand, c∂a

1−c
will be termed as the mod (p)-c-derivative operator of R. Carranza et al.

Theorem 9.18 (Novel Fundamental Theorem of Calculus (FTC)) Let
p be a prime number, a ∈ Fpn, c ∈ Fpn \ {1}, and id

F
(
Fpn ,Fpn

) be the identity

map over the function space F
(
Fpn ,Fpn

)
. Then,

Ip−1,a,1−c ◦ c∂a
1− c

= id
F
(
Fpn ,Fpn

).
Proof. Next we shall apply the principle of mathematical induction. Let us
suppose that for an integer, σ, and a function ζ ∈ F

(
Fpn ,Fpn

)
we have that:(

c∂a
1−c

)(σ)
(ζ) =

(
c∂a
1−c ◦ · · · ◦ c∂a

1−c
(σ times)

)
(ζ) =

σ∑
θ=0

(−c)θ(σθ)
(1−c)σ ζ((σ − θ)a + idFpn

). Next,

we obtain the version of this equation corresponding to σ + 1.(
c∂a
1−c

)(σ+1)
(ζ) =

(
c∂a
1−c ◦

(
c∂a
1−c

)(σ))
(ζ) =

σ∑
θ=0

(−c)θ(σθ)
(1−c)σ

c∂a
1−c

(
ζ((σ− θ)a+ idFpn

)
)
=

ζ(idFpn+(σ+1)a)

(1−c)σ+1 +
( σ∑
θ=1

(−c)θ(σθ)
(1−c)σ+1 ζ(idFpn

+(σ+1−θ)a)+
σ−1∑
θ2=0

(−c)θ2+1( σ
θ2
)

(1−c)σ+1 ζ(idFpn
+(σ−

θ2)a)
)
+
ζ(idFpn )(−c)σ+1

(1−c)σ+1 =
ζ(idFpn+(σ+1)a)+ζ(idFpn )(−c)σ+1

(1−c)σ+1 +
σ∑
θ=1

(−c)θ
(
(σθ)+(

σ
θ−1)
)

(1−c)σ+1 ζ(idFpn

+(σ + 1− θ)a) =
σ+1∑
θ=0

(−c)θ(σ+1
θ )

(1−c)σ+1 ζ((σ + 1− θ)a+ idFpn
). Also, it is not difficult

to verify this identity for σ = 1. Thus the equation is valid for every positive
integer σ. In particular, taking σ = the field characteristic, it follows that only

the first and last term survive. That is,
(

c∂a
1−c

)(σ)
(ζ) =

ζ(idFpn+0)+(−c)pζ(idFpn )

(1−c)p =

ζ(idFpn
). Note: idFpn

denotes id over Fpn . This equation implies FTC. □
Remark. Let us observe that Ω(c) = 1− c is the only function that makes

the operator of form c∂a
Ω(c)

satisfy this FTC. It also follows that:

Corollary 9.19 Let a ∈ Fpn, c ∈ Fpn \ {1}. Then,
(

c∂a
1−c

)(p+1)
= c∂a

1−c .

In light of Corollary 9.19, the operator c∂a
1−c is seen as the 1

p+1
-th derivative

(fractional). So we can talk about the ℓ
p+1

-th derivative. Remark. It is
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Derivative Order Type:
complex

(Euler-Leibniz(1695)-disciples)
rational
integer

(Property λ: ∀ ϕ ∈ P̃(Fpn)
(polynomial function space),

∃ m ∈ Z with ∂
(m)
a (ϕ)=0).

Derivative Order
Type: integer (based
on operator 1∂a:=∂a,
see Sections 1.1, 9.3.

Property λ is met. Vital
results in Section 9.4

are satisfied).

Derivative Order
Type: ξ (for ξ ∈ Fp)
(R. Carranza (2025)-
Ellingsen-Felke-Riera-
Stănică-Tkachenko-
Borisov-Chew-Johnson-
Wagner). Property λ for
c∂a

1−c isn’t fulfilled, making
it more distinct.

Figure 5: Derivative Order Taxonomy Beyond Fractional Derivatives.

appropriate to refer to this system of derivatives as follows,
(

c∂a
1−c

)(ξ)
is the

mod (p)-c-derivative of (co-class) order ξ of R. Carranza-Ellingsen-Felke-Riera-
Stănică-Tkachenko-Borisov-Chew-Johnson-Wagner, with ξ belonging to the
group Zp, since the following isomorphism is fulfilled (Eureka!):

〈 c∂a
1− c

〉∼= Zp

where the operator c∂a
1−c is a generator under the composition operation. R.

Carranza realizes this magnificent fact, then, now we are aware of this exotic
nature of the operators we were dealing with. Open Problem 23: will
there or will there not be some kind of derivative such that ξ ∈ Fpn? Does the
derivative of order ξ (where ξ ∈ Fpn , or to a generalRing) exist? In general, we
have gradually come to understand the derivative order type (integer, rational,
real, and complex), which acts on functions f : S1 → S2 where S1

⋃
S2 ⊆ C.

For our part, we have determined a kind of operator of derivative order type
ξ where ξ belongs to field Fp. Warning that the scenario established by
operator 1∂a on functions f : Fpn → Fpn has been very different compared to
that of mod (p)-c-derivative de R. Carranza-Ellingsen-Felke-Riera-Stănică-
Tkachenko-Borisov-Chew-Johnson-Wagner, read Figure 5 and Remark for
Sec. 9.3.
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9.4 An Exotic Chain Complex and an Intriguing Dis-
cussion on the Algebra Fpn[X1, ..., Xm]

Let’s get started—deeper—with a powerful result, by exploiting Theorem 9.2.

Theorem 9.20 (A New Yorker Principle) Let θ be a function from and to

Fpn, and k ≥ 1. Then, ∂
(k)

Xk(θ) = 0 if and only if θ = ∂
(p−k)
Xp−k (σ), for some σ in

the algebra Fpn [X].

Proof. As indicated at the beginning of Theorem 9.13, the notable Theorem 9.2
applied to portions with different algebraic degrees in θ, such that ∂

(1)
X

(
θ
)
= 0,

establishes that θ = ∂
(p−1)

Xp−1

(
σ
)
, for some σ in Fpn [X]. Further, one can follow

a procedure analogous to that of Theorem 9.2 by excluding the restriction on
d0(f) corresponding to its protagonist function f , such that if it is fulfilled that

∂
(1)
X

(
f
)
= 0 (where θ is taken as f) with d0(f) greater than the upper bound

(p−1)(n−1), then there exists some σ in Fpn [X] satisfying θ = ∂
(p−1)

Xp−1

(
σ
)
(the

case d0(f) = 1 is fundamentally a consequence); while when f is constant, there
is no need to talk about the quantity d0(f) in order to construct a function σ
in Fpn [X] such that f is the (p− 1)-th derivative of that function. Now let us
apply the principle of induction on the (direct) conditional statement, assume

that this is true for k, and prove it for k + 1. We start from ∂
(k+1)

Xk+1 (θ) = 0,

that is, ∂
(k)

Xk

(
∂
(1)
X (θ)

)
= 0. By the assumption for k, we have that, ∂

(1)
X (θ) =

∂
(p−k)
Xp−k (σ), form some σ in Fpn [X]. Then, ∂

(1)
X

(
θ − ∂

(p−k−1)

Xp−k−1 (σ)
)
= 0. Applying

the statement for k = 1, we have that θ−∂(p−k−1)

Xp−k−1 (σ) = ∂
(p−1)

Xp−1 (σ̄), form some σ̄

in Fpn [X]. That is, θ = ∂
(p−k−1)

Xp−k−1 (¯̄σ), where ¯̄σ = σ + ∂
(k)

Xk(σ̄) belongs to Fpn [X].
The converse statement follows immediately from Theorem 9.14. □

Theorem 9.20 also applies when more than one variable is used. Let
k ≥ 1, we pose the intriguing problem of when one derivative can be con-
verted into another derivative, more precisely, whether there exist functions
of several variables, F and G, satisfying ∂Xi

(F ) = ∂
(k)

Xk
j
(G), such that F does

not have the format ∂
(k)

Xk
j
(Γ) + ∂

(p−1)

Xp−1
i

(ψ) for any pair of functions (Γ, ψ)—

note that, when F has that format, the fact ∂Xi
(F ) = ∂

(k)

Xk
j
(G) becomes

obvious—and how large this class of functions can be. More generally, we
investigate how much one differential operator, say ∂Xi

, can be converted into

another, say ∂
(k)

Xk
j
. We shall see that over a fairly large function space (for G),

M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · , Xm], such a conversion is not possible, so in this sense

the operators are independent of each other (this independence is measured

by the size of M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · , Xm]; Open Problem 24: find another

space besides M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · , Xm], with a similar role.).
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The problem of finding the form of F such that ∂Xi
(F ) = ∂

(k)

Xk
j
(G) will be

answered shortly by our next very sharp theorem. Remark. Furthermore,
given a function G, for instance, of class as in Theorem 9.21, it can be in-
terpreted that the set of F s (or that the generic function F ) constitutes the

integral (indefinite integral with respect to some variable, Xi) of ∂
(k)

Xk
j
(G). For

an arbitrary F satisfying the equation ∂Xi
(F ) = ∂

(k)

Xk
j
(G), it is possible to agree

on a slight abuse of the notation, and denote F =
∫
∂
(k)

Xk
j
(G)dXi, understanding

that, F ∈
∫
∂
(k)

Xk
j
(G)dXi. In addition, Theorem 9.21 indicates that there is an

interchange between the integral operator with respect to Xi and the operator
∂
(k)

Xk
j
. Theorem 9.21, for β = 1, gives us

∫
∂
(k)

Xk
j
(G)dXi = ∂

(k)

Xk
j
(Γ)+∂

(p−1)

Xp−1
i

(pΓ); due

to the configuration of this formula with the appearance of the part ∂
(k)

Xk
j
(Γ)

on the right-hand side, we say that: there is an interchange in the weak sense
(caused by the necessary presence of the extra function ∂

(p−1)

Xp−1
i

(pΓ)) between the

integral with respect to Xi and the differential operator ∂
(k)

Xk
j
.

Theorem 9.21 (Train or Centipede Theorem) Given m ≥ 1, let F,G
be in the multivariate polynomial ring Fpn [X1, · · · , Xm] over the field Fpn, and
indices i, j, k, β ≥ 1 (with j ̸= i), such that ∂

(β)

Xβ
i

(F ) = ∂
(k)

Xk
j
(G), while G belongs

to the set given below:

Let Ξ be in Z+ with p − 1 ≥ Ξ ≥ k, every term of G, except possibly for
that of lowest degree, with respect to Xj (i.e. Gℓ(X

∗
j )X

ℓ
j ) decomposes such that

d0(XΞ+ℓ(−)

j ) = d0(XΞ
j ) + d0(Xℓ(−)

j ), where ℓ(−) := ℓ − Ξ , Gℓ(X
∗
j ) ∈ Fpn [X∗

j ],
and X∗

j symbolizes the variables list X1, · · · , Xm, but without the variable Xj.
Then:

F ∈
∫
∂
(k)

Xk
j
(G)dXβ

i is given by F = ∂
(k)

Xk
j
(Γ) + ∂

(p−β)
Xp−β

i

(pΓ)

for some (Γ, pΓ) in
(
Fpn [X1, · · · , Xm]

)2
, where∫

∂
(k)

Xk
j
(G)dXβ

i :=
∫
· · ·
∫
∂
(k)

Xk
j
(G) dXi . . . dXi (which contains β nested inte-

grals with respect to the single variable Xi).

Proof. Let’s define the function Λ
(k)
j := ∂

(k)

Xk
j
(G). We proceed to decompose G

into the form, G =
pn−1∑
ℓ=0

Gℓ(X
∗
j )X

ℓ
j . Recall that, as G0(X

∗
j )X

0
j = G0(X

∗
j ), an

exponent equal to 0 means that the matching indeterminate does not appear in

the term. We apply the linear operator ∂
(k)

Xk
j
, so ∂

(k)

Xk
j
(G) =

pn−1∑
ℓ=0

Gℓ(X
∗
j )∂

(k)

Xk
j
(Xℓ

j ).
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Similarly, we express F as F =
pn−1∑
ξ=0

Fξ(X
∗
j )X

ξ
j ; whose β-th partial derivative

with respect to Xi is ∂
(β)

Xβ
i

(F ) =
pn−1∑
ξ=0

∂
(β)

Xβ
i

(Fξ(X
∗
j ))X

ξ
j .

We observe that the ∂
(k)

Xk
j
(Xℓ

j ) are linear combinations of the basis vectors

Xξ
j of the Fpn-linear subspace Fpn [Xj], thanks to the fact that the Fpn-linear

subspace relation ∂
(k)

Xk
j
(Fpn [Xj]) ⩽ Fpn [Xj] holds. By definition, the kth-order

derivative, Gℓµ(X
∗
j )∂

(k)

Xk
j
(X

ℓµ
j ), contains a term of the form U (k)(ℓµ;Hj)Gℓµ(X

∗
j )

X
ℓ
(−)
µ

j , which is not similar to any term in any other Gℓϱ(X
∗
j )∂

(k)

Xk
j
(X

ℓϱ
j )—

the condition on the algebraic degree in the hypothesis is determinative over
terms with maximal degrees with respect to Xj in Gℓµ(X

∗
j )∂

(k)

Xk
j
(X

ℓµ
j ) and

Gℓϱ(X
∗
j )∂

(k)

Xk
j
(X

ℓϱ
j )—for which degXj

(Gℓϱ(X
∗
j )X

ℓϱ
j ) < degXj

(Gℓµ(X
∗
j )X

ℓµ
j ), where

U (k)(ℓµ;Hj) ̸= 0 denotes a monomial expression for Hj, while degX computes

the degree with respect to the (stated) variable X. Hence, ∂
(β)

Xβ
i

(F
ℓ
(−)
µ

(X∗
j )) =

U (k)(ℓµ;Hj)Gℓµ(X
∗
j ). If we make this choice such that degXj

(Gℓµ(X
∗
j )X

ℓµ
j ) =

degXj
(G), then ∂

(β)

Xβ
i

(F )− 1
U(k)(ℓµ;Hj)

∂
(β)

Xβ
i

(F
ℓ
(−)
µ

(X∗
j ))∂

(k)

Xk
j
(X

ℓµ
j ) = ∂

(β)

Xβ
i

(
⊡(1)
G,k,Xj

F
)
=

pn−1∑
ℓµ ̸=ℓ=0

Gℓ(X
∗
j )∂

(k)

Xk
j
(Xℓ

j ), where ⊡(1)
G,k,Xj

F = F − 1
U(k)(ℓµ;Hj)

F
ℓ
(−)
µ

(X∗
j )∂

(k)

Xk
j
(X

ℓµ
j );

Note that ∂
(k)

Xk
j
(X

ℓµ
j ) is also considered a constant function of Xi. We choose

G(2) :=
pn−1∑
ℓµ ̸=ℓ=0

Gℓ(X
∗
j )X

ℓ
j as our new functionG (also, G(1) := G), and we repeat

the previous procedure over and over again until we have ∂
(β)

Xβ
i

(
⊡

(tG,k,Xj
)

G,k,Xj
F
)
= 0,

where tG,k,Xj
is the finite number of summands (those non-zeros) of type

Gℓ(X
∗
j )∂

(k)

Xk
j
(Xℓ

j ) in ∂
(k)

Xk
j
(G); let us denote Gℓµ1

(X∗
j )X

ℓµ1
j = Gℓµ(X

∗
j )X

ℓµ
j , at

each step a term of the sequence Gℓµ1
(X∗

j )X
ℓµ1
j , Gℓµ2

(X∗
j )X

ℓµ2
j , . . . is gener-

ated. The powerful Theorem 9.20 applied to the partial differential equation

∂
(β)

Xβ
i

(
⊡

(tG,k,Xj
)

G,k,Xj
F
)
= 0 finally decodes the form of⊡

(tG,k,Xj
)

G,k,Xj
F , that is, ⊡

(tG,k,Xj
)

G,k,Xj
F =

∂
(p−β)
Xp−β

i

(pΓ) for some pΓ in Fpn [X1, · · · , Xm]. Decoding also the form of F , i.e.,

F = ∂
(p−β)
Xp−β

i

(pΓ)+
tG,k,Xj∑
α=1

1
U(k)(ℓµα ;Hj)

F
ℓ
(−)
µα

(X∗
j )∂

(k)

Xk
j
(X

ℓµα
j ) = ∂

(p−β)
Xp−β

i

(pΓ)+
tG,k,Xj∑
α=1

∂
(k)

Xk
j

(
1

U(k)(ℓµα ;Hj)
F
ℓ
(−)
µα

(X∗
j )X

ℓµα
j

)
. Therefore, F = ∂

(k)

Xk
j
(Γ)+∂

(p−β)
Xp−β

i

(pΓ), for some (Γ, pΓ)

in
(
Fpn [X1, · · · , Xm]

)2
, Γ =

tG,k,Xj∑
α=1

1
U(k)(ℓµα ;Hj)

F
ℓ
(−)
µα

(X∗
j )X

ℓµα
j . Erledigt!. There
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is another fundamental fact, since Λ
(k)
j = ∂

(β)

Xβ
i

(F ), we have obtained that for

such Γ in Fpn [X1, · · · , Xm] we have that Λ
(k)
j = ∂

(k+β)

Xβ
i X

k
j

(Γ). □

Open Problem 25: Theorem 9.21 should be investigated for other classes
of functions G, more precisely, to determine all possible G for which the par-
tial differential equation of Theorem 9.21 is solved for F . Moreover, I sug-
gest investigating Centipede Theorem for the equation with the silhouette

∂
(β)

Xβ
i

(F ) = ∂
(k)

Xk
j
(G) + ∂

(k̃)

X k̃
j̃

(G̃); we are talking about the conditions on the pair

(G, G̃). Based on the experience acquired with such a wonderful theorem, we
define the sets below.

Definition 9.22 The symbol X∗
j stands for the variables list X1, · · · , Xm,

but without the variable Xj, and be Ξ and k in Z+ with p − 1 ≥ Ξ ≥ k. We

define M(k,Ξ)
pn,Xj

[X1, · · · , Xm] := {G ∈ Fpn [X1, · · · , Xm]; each term of G with

respect to Xj(i.e. Gℓ(X
∗
j )X

ℓ
j ) is such that ℓ − Ξ = ℓ(−) and d0(XΞ+ℓ(−)

j ) =

d0(XΞ
j ) + d0(Xℓ(−)

j ), where Gℓ(X
∗
j ) ∈ Fpn [X∗

j ]}.

Theorem 9.23 can handle important problems that Theorem 9.21 cannot,
and is obtained by slightly modifying the demonstration of Theorem 9.21;
let’s summarize how to obtain it. Throughout the proof, we replace the op-
erator ∂

(r−1)
Xj1

···Xjr−1
by the operator ∂Xi

, when β = 1, we stop at the equation

∂
(r−1)
Xj1

···Xjr−1
(F

ℓ
(−)
µ

(X∗
jr)) = U (k)(ℓµ;Hjr)Gℓµ(X

∗
jr), more precisely, we obtain the

following sequence of identities, ∂
(r−1)
Xj1

···Xjr−1
(F

ℓ
(−)
µ1

(X∗
jr)) = U (k)(ℓµ1 ;Hjr)Gℓµ1

(

X∗
jr), ∂

(r−1)
Xj1

···Xjr−1

((
⊡(1)
G,k,Xj

F
)
ℓ
(−)
µ2

(X∗
jr)
)
= U (k)(ℓµ2 ;Hjr)Gℓµ2

(X∗
jr), . . . , ∂

(r−1)
Xj1

···Xjr−1((
⊡

(tG,k,Xj
−1)

G,k,Xj
F
)
ℓ
(−)
µtG,k,Xj

(X∗
jr)
)
= U (k)(ℓµtG,k,Xj

;Hjr)GℓµtG,k,Xj

(X∗
jr); from which

we rewrite ∂
(k)

Xk
jr

(G), i.e. the sum
tG,k,Xjr∑
s=1

Gℓµs (X
∗
jr)∂

(k)

Xk
jr

(X
ℓµs
jr

), which takes the

form Λ
(k)
jr

= ∂
(k+r−1)

Xj1
···Xjr−1

Xk
jr

(φ), for some φ in Fpn [X1, · · · , Xm]. Travail accom-

pli!

Theorem 9.23 Let m, r − 1 ≥ 1, let the algebra Fpn [X1, · · · , Xm] in m
variables, of which, let Xj1 , · · · , Xjr−1 , and Xjr , be r variables (different from
each other, of course). Let F be in the algebra Fpn [X1, · · · , Xm] and k ≥ 1, such

that ∂
(r−1)
Xj1

···Xjr−1
(F ) = ∂

(k)

Xk
jr

(G), where G belongs to the set M(k,Ξ)
pn,Xjr

[X1, · · · , Xm].

Let Λ
(k)
jr

:= ∂
(k)

Xk
jr

(G). Then ∃ Γ in Fpn [X1, · · · , Xm] such that the following

fundamental fact holds, Λ
(k)
jr

= ∂
(k+r−1)

Xj1
···Xjr−1

Xk
jr

(Γ).
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Definition 9.24 The symbol X∗
j denotes the variables list X1, · · · , Xm, but

without the variable Xj, let k in Z+, and let Ξk, · · · ,Ξpn−1 be p
n−k elements in

Z+
0 bounded by p−1 ≥ maxpn−1≥λ≥k d

0(XΞλ
j ) ≥ minpn−1≥λ≥k d

0(XΞλ
j ) ≥ k. We

define M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · , Xm] := {G ∈ Fpn [X1, · · · , Xm]; if two terms

Gℓ1(X
∗
j )X

ℓ1
j and Gℓ2(X

∗
j )X

ℓ2
j , of G expressed with respect to Xj, satisfy that

d0(Xℓ1
j ) = d0(Xℓ2

j ) = λ (some) in Z+, then d0(XΞλ+ℓ
(−)
z

j ) = d0(XΞλ
j )+d0(Xℓ

(−)
z
j )

and ℓz − Ξλ = ℓ
(−)
z . Moreover, Ξλ = Ξλ(p) viewed as a polynomial in Z[P ]

with coefficients in [0, p−1] followed by an evaluation at P = p is such that,

ℓ
(−)
z = pdegP (Ξλ)Θλ,ℓz , where Θλ,ℓz = Θλ,ℓz(p) ∈ Z+

0 , Gℓz(X
∗
j ) ∈ Fpn [X∗

j ], and z
∈ {1, 2}}.

The identity Λ
(k)
jr

= ∂
(k+r−1)

Xj1
···Xjr−1

Xk
jr

(Γ) ensures smoothness gain, i.e., differentia-

bility of a higher class; which in turn is obtained as a sum (not, for example, a

product) of the participating differentiability classes. M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · ,

Xm] has a vector space structure over Fpn , M(k,Ξ)
pn,Xj

[X1, · · · , Xm] is a special case

of M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · , Xm].

Theorem 9.25 Theorems 9.21 and 9.23 also hold for G belonging to

M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · , Xm].

Theorem 9.26 Let m, r − 2 ≥ 1, consider the algebra Fpn [X1, · · · , Xm] in
m variables, of these, let Xj1 , · · · , Xjr−1 , and Xjr be r variables, it is understood

that they are different from each other. Let Ξ1, · · · ,Ξpn−1, Ξ̆p−1, · · · , Ξ̆pn−1 be

in Z+
0 bounded so that the pair

(
d0(XΞλ

jr−2
), d0(X

Ξ̆λ̆
jr

)
)
belongs to the segment

[1, p − 1] × {p − 1} as long as (λ, λ̆) is in the rectangle [1, pn − 1] × [p −
1, pn − 1]. Let F ∈ M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−2
[X1, · · · , Xm] such that ∂

(2)
Xjr−2

Xjr−1
(F ) =

∂
(p−1)

Xp−1
jr

(Qr) for some Qr ∈ M((p−1),Ξ̆p−1,··· ,Ξ̆pn−1)

pn,Xjr
[X1, · · · , Xm]. Furthermore, let

∂
(p−1)

Xp−1
jr

(φr) in M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−2
[X1, · · · , Xm] be a function with one of its sec-

ond order derivatives given by ∂
(p−1)

Xp−1
jr

(Qr) = ∂
(2)
Xjr−2

Xjr−1

(
∂
(p−1)

Xp−1
jr

(φr)
)
. Then:

∂
(3)
Xjr−2

Xjr−1
Xjr

(F ) = 0 if and only if F =
r∑

ℓ=r−2

∂
(p−1)

Xp−1
jℓ

(Γℓ), for some (Γr−2,Γr−1,

Γr) in
(
Fpn [X1, · · · , Xm]

)3
.

Proof. The converse conditional statement is easy to obtain. Let us demon-
strate the direct conditional statement. Given ∂

(1)
Xjr

(∂
(2)
Xjr−2

Xjr−1
(F )) = 0, Theo-

rem 9.20 is responsible for ∂
(1)
Xjr−1

(∂
(1)
Xjr−2

(F )) = ∂
(p−1)

Xp−1
jr

(Qr), for some Qr, by hy-
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pothesis one can locate some Qr precisely in M((p−1),Ξ̆p−1,··· ,Ξ̆pn−1)

pn,Xjr
[X1, · · · , Xm];

let Λ
(p−1)
jr

:= ∂
(p−1)

Xp−1
jr

(Qr). Theorem 9.23, version for G (which in this case

is Qr) belonging to M((p−1),Ξ̆p−1,··· ,Ξ̆pn−1)

pn,Xjr
[X1, · · · , Xm], states that Λ

(p−1)
jr

=

∂
(p+1)

Xjr−2
Xjr−1

Xp−1
jr

(φr) for some φr in Fpn [X1, · · · , Xm], capturing important in-

formation about the equation ∂
(2)
Xjr−2

Xjr−1
(F ) = ∂

(p−1)

Xp−1
jr

(Qr); by hypothesis we

shall consider such ∂
(p−1)

Xp−1
jr

(φr) in M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−2
[X1, · · · , Xm]. Thus, the prop-

erties of associativity and commutativity between differential operators al-
low us to conveniently rewrite in an equation with the format, ∂

(1)
Xjr−1

(β) =

0 with β in Fpn [X1, · · · , Xm], Theorem 9.20 tells us that there exists pFr−1

in Fpn [X1, · · · , Xm] such that, ∂
(1)
Xjr−2

(F ) = ∂
(p)

Xp−1
jr

Xjr−2

(φr) + ∂
(p−1)

Xp−1
jr−1

(
pFr−1

)
=

∂
(p)

Xp−1
jr

Xjr−2

(φr)+∂
(p)

Xp−1
jr−1

Xjr−2

(
p̌Fr−1

)
. To obtain the summand ∂

(p)

Xp−1
jr−1

Xjr−2

(
p̌Fr−1

)
we have followed the following algorithm, by hypothesis F ∈ M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−2

[X1, · · · , Xm], also ∂
(p−1)

Xp−1
jr

(φr) ∈ M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−2
[X1, · · · , Xm], then the combi-

nation F −∂(p−1)

Xp−1
jr

(φr) belongs to the Fpn-vector space M
((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−2
[X1, · · · ,

Xm]. Then, Theorem 9.21 in its version for G (which in this case is F −
∂
(p−1)

Xp−1
jr

(φr)) inM((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−2
[X1, · · · , Xm], applied to the equation ∂

(p−1)

Xp−1
jr−1

(
pFr−1

)
= ∂

(1)
Xjr−2

(
F − ∂

(p−1)

Xp−1
jr

(φr)
)
reveals that pFr−1 has the form ∂

(1)
Xjr−2

(
p̌Fr−1

)
, in-

ferring that, ∂
(p−1)

Xp−1
jr−1

(
pFr−1

)
is of the form ∂

(p)

Xp−1
jr−1

Xjr−2

(
p̌Fr−1

)
, for some p̌Fr−1

in Fpn [X1, · · · , Xm]. Then now we can separate the equation ∂
(1)
Xjr−2

(F ) =

∂
(p)

Xp−1
jr

Xjr−2

(φr)+∂
(p−1)

Xp−1
jr−1

(
pFr−1

)
, as, ∂

(1)
Xjr−2

(Φ1) = ∂
(p)

Xp−1
jr

Xjr−2

(φr) and ∂
(1)
Xjr−2

(Φ2) =

∂
(p)

Xp−1
jr−1

Xjr−2

(
p̌Fr−1

)
, with F = Φ1 + Φ2. Then, it is enough to apply Theorem

9.20 in each of these last two equations to arrive at that, Φ1 = ∂
(p−1)

Xp−1
jr

(φr) +

∂
(p−1)

Xp−1
jr−2

(
pκr−2

)
and Φ2 = ∂

(p−1)

Xp−1
jr−1

(p̌Fr−1) + ∂
(p−1)

Xp−1
jr−2

(
pπr−2

)
. We recover F as, F =

∂
(p−1)

Xp−1
jr

(φr) + ∂
(p−1)

Xp−1
jr−2

(
pκr−2 + pπr−2

)
+∂

(p−1)

Xp−1
jr−1

(p̌Fr−1), for some (Γr−2,Γr−1,Γr) in(
Fpn [X1, · · · , Xm]

)3
, where Γr−2 = φr, Γr−1 = pκr−2 + pπr−2, and Γr = p̌Fr−1. □

Open Problem 26: generalize Theorem 9.21 so that it covers partial dif-
ferential equations of the form ∂

(β)

Xβ
i

(F ) = ∂
(r+k−2)

Xj1
···Xjr−2

Xk
jr−1

(G). Open Problem

27: investigate whether Theorem 9.26 holds for F ∈ Fpn [X1, · · · , Xm] as arbi-
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trary as possible (it would be a great achievement), while m ≥ 2; for m = 1 it
holds without restrictions. For such a goal, do not rule out the construction of
specially molded bases for Fpn [X1, · · · , Xm] and for its derived linear spaces;
we perceive that this might require a maximal state of mind.

Theorem 9.27 Let us denote the variables list X1, · · · , Xm by the symbol
X1:m. Considering Theorem 9.26, let us consider differential operators, be-
ing restrictions of ∂

(3)
Xjr−2

Xjr−1
Xjr

and ∂
(p−1)

Xp−1
jℓ

respectively, of the following form,

y∂(3)Xjr−2
Xjr−1

Xjr
: ∂

(−3)

X
(−1)
jr−2

X
(−1)
jr−1

X
(−1)
jr

(
∂
(1)
Xjr−1

(
M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−1
[X1:m]

))⋂
∂
(−3)

X
(−1)
jr−2

X
(−1)
jr−1

X
(−1)
jr

(
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

))
−→ ∂

(1)
Xjr−1

(
M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−1
[X1:m]

)⋂
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
and {

∂
(p−1)

Xp−1
jℓ

: ∂
(1)
Xjr−1

(
M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−1
[X1:m]

)⋂
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
−→ ∂

(1)
Xjr−1

(
M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−1
[X1:m]

)⋂
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
, where ∂

(−1)

X
(−1)
jr−1

is used to de-

note the inverse image of a set under the differential operator ∂
(1)
Xjr−1

, similarly

∂
(−3)

X
(−1)
jr−2

X
(−1)
jr−1

X
(−1)
jr

is used to denote the inverse image of a set under ∂
(3)
Xjr−2

Xjr−1
Xjr

.

Then we get an equality, Im
(
y∂(3)Xjr−2

Xjr−1
Xjr

)
=

r⋂
ℓ=r−2

ker
(

{

∂
(p−1)

Xp−1
jℓ

)
.

In addition, the vector subspace relation shown in the chain below holds:

∂
(2)
Xjr−2

Xjr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
⩽ M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m] ⩽ ∂

(−2)

X
(−1)
jr−2

X
(−1)
jr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr

[X1:m]
)
⩽ ∂

(−3)

X
(−1)
jr−2

X
(−1)
jr−1

X
(−1)
jr

(
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

))
.

Proof. It is not difficult to see that the operators in play are well defined;
in passing, let us notice that, the operator ∂

(2)
Xjr−2

Xjr−1
—which is mainly con-

stituent of y∂(3)Xjr−2
Xjr−1

Xjr
—respects the following inclusion, ∂

(2)
Xjr−2

Xjr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
⊆ M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m], this is because if we rep-

resent an element f of M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m] as a polynomial in the variable

Xjr , we can see that the operator ∂
(2)
Xjr−2

Xjr−1
will only transform the coeffi-

cients of f , being able to cancel some coefficients, and the terms linked to them,
which does not affect the membership relationship between ∂

(2)
Xjr−2

Xjr−1
(f) and

M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]. Obtaining the first vector subspace relation in the chain

of spaces, ∂
(2)
Xjr−2

Xjr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
⩽ M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]. From

applying a function followed by taking the inverse image of such function, we

see that, M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m] ⊆ ∂

(−1)

X
(−1)
jr

(
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

))
; then,
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to this inclusion we apply ∂
(−2)

X
(−1)
jr−2

X
(−1)
jr−1

, then ∂
(−2)

X
(−1)
jr−2

X
(−1)
jr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
⊆ ∂

(−3)

X
(−1)
jr−2

X
(−1)
jr−1

X
(−1)
jr

(
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

))
, due to three things, (1).

That the inverse image behaves as an increasing function with respect to the
inclusion relation, (2). Applying the inverse image formula of a composition of
transformations that are not necessarily invertible, and (3). Commutativity of
the composition between these differential operators. We know the first inclu-

sion in the chain, ∂
(2)
Xjr−2

Xjr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
⊆ M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m];

applying ∂
(−2)

X
(−1)
jr−2

X
(−1)
jr−1

leads us to ∂
(−2)

X
(−1)
jr−2

X
(−1)
jr−1

(
∂
(2)
Xjr−2

Xjr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
)
⊆ ∂

(−2)

X
(−1)
jr−2

X
(−1)
jr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
, but as before, we observe that

M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m] ⊆ ∂

(−2)

X
(−1)
jr−2

X
(−1)
jr−1

(
∂
(2)
Xjr−2

Xjr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

))
,

since we have applied the linear operator ∂
(2)
Xjr−2

Xjr−1
and then its inverse image.

Therefore, by transitivity,M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m] ⩽ ∂

(−2)

X
(−1)
jr−2

X
(−1)
jr−1

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr

[X1:m]
)
.

The inclusion Im
(
y∂(3)Xjr−2

Xjr−1
Xjr

)
⊆

r⋂
ℓ=r−2

ker
(

{

∂
(p−1)

Xp−1
jℓ

)
is simple to verify,

where the properties of associativity and commutativity between differential
operators with respect to the composition operation are also exploited. We will

now focus on complementary inclusion. Given f ∈
r⋂

ℓ=r−2

ker
(

{

∂
(p−1)

Xp−1
jℓ

)
, by Theo-

rem 9.20 we infer that ∀ r ≥ ℓ ≥ r−2, ∃ σℓ in some subspace of Fpn [X1, · · · , Xm]

such that f = ∂
(1)
Xjℓ

(σℓ). Since f = ∂
(1)
Xjr−2

(σr−2) = ∂
(1)
Xjr−1

(σr−1), for some σr−1 ∈

M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−1
[X1:m], Theorem 9.25 implies that ∃ yσr−1 in Fpn [X1, · · · , Xm]

such that σr−2 = ∂
(1)
Xjr−1

( yσr−1); then f = ∂
(1)
Xjr−2

(∂
(1)
Xjr−1

( yσr−1)) = ∂
(1)
Xjr

(σr), for

some σr ∈ M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]. Using Theorem 9.25 on this last equation we

infer that ∃ qΩ in Fpn [X1, · · · , Xm] such that f = ∂
(3)
Xjr−2

Xjr−1
Xjr

(qΩ); adding the

fact that f is in ∂
(1)
Xjr−1

(
M((1),Ξ1,··· ,Ξpn−1)

pn,Xjr−1
[X1:m]

)⋂
∂
(1)
Xjr

(
M((1),Ξ̆1,··· ,Ξ̆pn−1)

pn,Xjr
[X1:m]

)
,

we obtain f ∈ Im
(
y∂(3)Xjr−2

Xjr−1
Xjr

)
. □

Theorem 9.28 Let m, r ≥ 1. Consider the restrictions of ∂
(r)
Xj1

···Xjr
and
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∂
(p−1)

Xp−1
jℓ

arranged in the following sequence of differential operators,

Fpn [X1, · · · , Xm]
∂
(r)
Xj1

···Xjr−→ ∂
(r)
Xj1

···Xjr

(
Fpn [X1, · · · , Xm]

) ­

∂
(p−1)

X
p−1
jℓ−→ D̃pn

where D̃pn ⩽ Fpn [X1, · · · , Xm] is an arbitrary Fpn-vector subspace. Then,

Im
(
∂
(r)
Xj1

···Xjr

)
=

r⋂
ℓ=1

ker
(

­

∂
(p−1)

Xp−1
jℓ

)
.

Proof. With the experience of Theorem 9.27, we simply apply the useful
Theorem 9.20. □

We are glad that θ in Theorem 9.20 (fact derived from the powerful Theo-
rem 9.2) has the form it does; this introduces a new symmetry property, a new
idea of symmetry over the space of differential operators, such that in a pair,(
∂
(p−k)
Xp−k , ∂

(k)

Xk

)
, one component can be said to be p-co-differential of the other.

Definition 9.29 Let p be a prime number, let n,m ≥ 1, and m ≥ i ≥
1. Due to the product differentiation rule and the Theorem 9.14 it follows
that, given qζ and ζ in Fpn [X1, · · · , Xm], and γ ≥ 1, then ∂

(p−1)

Xp−1
i

(ζ)∂
(γ)

Xγ
i
(qζ) =

∂Xi

(
∂
(p−1)

Xp−1
i

(ζ)∂
(γ−1)

Xγ−1
i

(qζ)
)
= · · · = ∂

(γ)

Xγ
i

(
∂
(p−1)

Xp−1
i

(ζ)qζ
)
= ∂

(γ)

Xγ
i
(y) belongs to ∂

(γ)

Xγ
i

(
Fpn

[X1, · · · , Xm]
)
, where y = ∂

(p−1)

Xp−1
i

(ζ)qζ is in Fpn [X1, · · · , Xm]. From this fact it

follows that ∂
(p−1)

Xp−1
i

(
Fpn [X1, · · · , Xm]

)
∂
(γ)

Xγ
i

(
Fpn [X1, · · · , Xm]

)
⊆ ∂

(γ)

Xγ
i

(
Fpn [X1, · · · ,

Xm]
)
, in particular, taking p− γ = 1 the Fpn-vector space ∂

(p−1)

Xp−1
i

(
Fpn [X1, · · · ,

Xm]
)
is closed with respect to multiplication. The subalgebra of Fpn [X1, · · · , Xm]

over the field Fpn given by ∂
(p−1)

Xp−1
i

(
Fpn [X1, · · · , Xm]

)
will be called R. Carranza-

Galois Algebra (type 1). In a similar fashion, the subalgebra of Fpn [X1, · · · , Xm]

mod (Xpn

1 − X1, . . . , X
pn

m − Xm) over the field Fpn, ∂(p−1)

Xp−1
i

(
Fpn [X1, · · · , Xm]

mod (Xpn

1 −X1, . . . , X
pn

m −Xm)
)
, will also be appointed as R. Carranza-Galois

Algebra (type 2). One of the applications of this stellar algebraic structure,
intrinsic to Fpn, lies at the heart of the time-dependent Schrödinger equation
on Fpn [X,T ], serving for the construction of abundant wave functions from a
single one.

Theorem 9.30 Theorems 9.14, 9.16, and 9.20 also hold if:
1). Fpn [X1, . . . , Xm] is substituted by Fpn [X1, . . . , Xm] mod (Xpn

1 −X1, . . . ,
Xpn

m −Xm),
2). F and G are considered in Fpn [X] mod (Xpn −X),
3). θ belong to the algebra Fpn [X]. Similarly, it happens to the other results

throughout this Section.
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Proof. We will demonstrate item (3), the other two are done in a similar
enough way. Let us consider ξ in Fpn [X] having deg(ξ) ≥ pn and ∂a(ξ) = 0,
where a ∈ F∗

pn . In the Integral Domain Fpn [X], we have Xpn − X ∈ F∗
pn [X].

Further, Fpn [X] is a Euclidean Domain, so ξ takes the following form, ξ(X) =
λ(X)(Xpn −X) +S(X), where S(X) = 0 or deg(S(X)) < pn. The product
rule (Theorem 9.16) combined with the facts ∂a(X

pn−X) = 0 and that ∂a is lin-
ear implies ∂a(ξ) = (Xpn −X)∂a(λ(X))+∂a(S(X)). Therefore, −∂a(S(X)) =
(Xpn − X)∂a(λ(X)). Let us separate this into two cases. Case ∂a(λ) ̸= 0:
deg((Xpn −X)∂a(λ(X))) = deg(Xpn −X)+deg(∂a(λ(X))) ≥ deg(Xpn −X) =
pn and deg(−∂a(S(X))) ≤ deg(S(X)) − 1 ≤ pn − 2, this case leads to the
contradiction pn − 2 ≥ deg(−∂a(S(X))) ≥ pn, if −∂a(S) ̸= 0. On the con-
trary, if −∂a(S) = 0, then the facts (∂a(λ(X)), Xpn − X) ∈ (F∗

pn [X])2 and
(Xpn−X)∂a(λ(X)) = 0 (independent of the indeterminate) cannot coexist un-
der the integral domain Fpn [X]. Consequently, only case ∂a(λ) = 0 can occur; a
fact that will be applied systematically in what follows. Case ∂a(λ) = 0: hence

∂a(ξ) = ∂a(S(X)) = 0. Applying Theorem 9.20 to S we have, S = ∂
(p−1)

ap−1 (σ),
for some σ in the algebra Fpn [X]. Note that λ ̸= 0; the contrary assumption
is trivial. Two subcases are presented. Sub-case deg(λ(X)) < pn: Theo-

rem 9.20 applied to λ implies λ = ∂
(p−1)

ap−1 (σ̂), where σ̂ is in Fpn [X]. Theorem

9.16 implies, ξ(X) = (Xpn − X)∂
(p−1)

ap−1 (σ̂(X)) + ∂
(p−1)

ap−1 (σ(X)) = ∂
(p−1)

ap−1 (Z(X)),
where Z = (Xpn − X)σ̂ + σ belongs to Fpn [X]. Sub-case deg(λ(X)) ≥ pn:
let us apply to λ the preceding algorithm that has been applied so far to
ξ. By applying to λ the division algorithm with divisor Xpn − X, a new
quotient is obtained, which we label λ2. Furthermore, λ2 ̸= 0, since oth-
erwise we fall into the already solved case deg(λ(X)) < pn. Again, two
subcases are presented, deg(λ2(X)) < pn and deg(λ2(X)) ≥ pn, only now
deg(λ2(X)) = deg(λ(X))−pn. If the worst case were to occur, we obtain a se-
quence (λℓ(X))Lℓ=2 such that λℓ−1(X) = λℓ(X)(Xpn−X)+Sℓ(X), ∂a(λℓ−1) = 0,
∂a(λL) = 0, λ1 = λ, deg(Sℓ) < pn or Sℓ = 0, and deg(λL(X)) < pn, for some

integer L. Theorems 9.16 and 9.20 imply, λL−1(X) = ∂
(p−1)

ap−1 (ZL−1(X)) for some
ZL−1 in Fpn [X]. Differentiating λL−2(X) = λL−1(X)(Xpn −X)+SL−1(X), we

have, ∂a(SL−1(X)) = 0. Theorem 9.20 implies, SL−1(X) = ∂
(p−1)

ap−1 (
⌢

SL−1), for

some
⌢

SL−1 in the algebra Fpn [X]. Then, λL−2(X) = (Xpn −X)∂
(p−1)

ap−1 (ZL−1) +

∂
(p−1)

ap−1 (
⌢

SL−1). Again, by Theorem 9.16, λL−2(X) ∈ ∂
(p−1)

ap−1 (ZL−2(X)), where

ZL−2 = (Xpn − X)ZL−1 +
⌢

SL−1 belongs to Fpn [X]. In this way we can also

get λL−3(X) ∈ ∂
(p−1)

ap−1 (ZL−3(X)) for some ZL−3 in Fpn [X], and continue until

λ = ∂
(p−1)

ap−1 (Z1) for some Z1 in Fpn [X]. Using this expression of λ and Theorem

9.16, we obtain that, ξ = ∂
(p−1)

ap−1 (G), for some G in Fpn [X]. Complementar-

ily, if ξ = ∂
(p−1)

ap−1 (G) for some G in Fpn [X], then, Theorem 9.14 reveals that
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∂a(ξ) = 0. This result can be easily generalized to a derivation order greater
than 1. It follows that, Theorem 9.20 is also applicable if we only consider θ
in the algebra Fpn [X]. □

Following the notation of Theorem 9.14, the following sequences—which
are exact, and will be termed R. Carranza-Galois Exact Sequences—of a class
of Fpn-linear mappings (chosen as the derivatives, according to Definition I, of
order r) between Fpn-vector spaces are established:

Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm]

Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm]

Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm] Fpn [X1, · · · , Xm]

∂
(p)

X
p
j

∂
(0)

X0
j

∂
(p)

X
p
j

∂
(p−r)

X
p−r
j

∂
(r)

Xr
j

∂
(p−r)

X
p−r
j

∂
(0)

X0
i

∂
(p)

X
p
i

∂
(0)

X0
i

Figure 6: R. Carranza-Galois Exact Sequences.

We obtain the following sequence—similar to an exact one, which will be
termed R. Carranza-Galois Atomic Sequence—of Fpn-linear mappings (chosen
as the derivatives, according to Definition I, of orders 3 and p − 1): see Fig.

7; due to Theorem 9.27 the equality Im
(
y∂(3)Xjr−2

Xjr−1
Xjr

)
=

r⋂
ℓ=r−2

ker
(

{

∂
(p−1)

Xp−1
jℓ

)
takes place.

Regarding the sequence of Fpn-modules, together with Fpn-module homo-
morphisms of the following type

C• :=

(
Fpn [X1, · · · , Xm]

∂
(p−σµ)

X
p−σµ
jµ−→ Fpn [X1, · · · , Xm]

∂
(
∑r

ℓ=1 σℓ)

X
σ1
j1

···Xσr
jr−→ Fpn [X1, · · · , Xm]

∂
(p−σν )

X
p−σν
jν−→ Fpn [X1, · · · , Xm]

)

where 1 ≤ µ, ν ≤ r, so that Xjµ and Xjν belong to the set of variables

Xj1 · · ·Xjr ; H2(C•) = ker
(
∂
(
∑r

ℓ=1 σℓ)

X
σ1
j1

···Xσr
jr

)
/Im

(
∂
(p−σµ)
X

p−σµ
jµ

)
and H1(C•) = ker

(
∂
(p−σν)
Xp−σν

jν

)
/Im

(
∂
(
∑r

ℓ=1 σℓ)

X
σ1
j1

···Xσr
jr

)
are the 2-th and 1-th homology modules of the chain complex

C•, which measure their deviation from being an exact sequence. Where: each
derivative operator ∂Xi

runs along Hi; 1 ≤ σℓ, 1 ≤ ℓ ≤ r,
∑r

ℓ=1 σℓ < p; ∂
(0)

X0
i

(acting as the identity function) represents the zeroth derivative with respect to
the variable Xi. It is an excellent idea to apply machinery used in Homological
Algebra and see what else can be obtained.

The field structure on the Galois ring Fpn does not accept a total order,
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F
p
n[X

1 ,···
,X

m
]

∂
(−

3
)

X
(−

1
)

j
r−

2
X

(−
1
)

j
r−

1
X

(−
1
)

j
r (

∂
(1
)

X
j
r−

1 (M
((1

),Ξ
1
,···,Ξ

p
n
−
1
)

p
n
,X

j
r−
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Verifying the following properties:

r∑
ℓ=1

Im
( ⌣

∂
(p−1)

Xp−1
jℓ

)
⊆ ker

(
y∂(3)Xjr−2

Xjr−1
Xjr

)
Im
(
y∂(3)Xjr−2

Xjr−1
Xjr

)
=

r⋂
ℓ=r−2

ker
(

{

∂
(p−1)

Xp−1
jℓ

)
.

moreover, it never admits a non-trivial partial order ⪯ 4 5 compatible with
the field structure. Since the complex field C is partially ordered, the inves-
tigation on Fpn complements it in order to obtain a general overview that
can cover both fields, C and Fpn , turning this finite structure (but for infi-
nite pairs (p, n)) into a unique-unparalleled underlying scenario. We abstract
in the exploration of the solution of which we shall call Fpn-Schrödinger-type
equation (abbreviated to Fpn-Schrödinger equation), this mathematical model
describes the relationship between the derivatives (refer to Subsection 1.1) of
the involved functions defined on Fpn—the wave function Ψ and the poten-
tial energy function V (remember that the derivatives of V do not usually
participate)—its form is given by the equations in Theorem 9.32. As for clas-
sical and current references about the conventional Schrödinger equation, we
recommend [102, 132, 69, 118, 19, 2, 83, 141] Hermann Weyl, the theory of
groups and quantum mechanics. In quantum theory, to identify the state of a
quantum system we use Ψ : R2 → C usually assumed in a Hilbert space (being
the continuous case, it has basic characteristics to ensure existence, such as:
every Cauchy sequence converges), we know that R ⩽ C; in the perspective

we are exploring it corresponds to use Ψ :
(
Fpn
)2 → Fpn belonging to its cor-

responding space of functions. In this mathematical model, µ refers to the
reduced Planck’s constant ℏ and the mass m, considering them divided by
their respective physical units, dimensionless; since, in general − ℏ2

2m
belongs to

R, the constant µ is taken in Fpn . In this setting, taking advantage of the pre-
ceding machinery, especially Theorem 9.14 and Corollary 9.15, we investigate
how rare the new wave function Ψ can be; we summarize these implications
shortly.

Definition 9.31 Let r ≥ 1, f :
(
Fpn
)r → Fpn be a function in the variables

X1, . . . , Xr, and let (H1, . . . , Hr) ∈
(
F∗
pn

)r
be a vector. The r-th derivative

(derivative of order r) of f denoted by ∂
(r)
X1=H1,...,Xr=Hr

(f), is obtained by ap-
plying to f the first order derivative with respect to the variable X1 in the
direction H1 (see subsection 1.1), followed by the first order derivative with

4Partial order: when for an arbitrary pair (a, b) of elements of the set it is not required
that a is comparable with b. It is understood that a is comparable with b when at least one
of the inequalities is ensured: a ⪯ b or b ⪯ a.

5(⪯ trivial: a ⪯ b if and only if a = b, where every element of the set is maximal (also
minimal))
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respect to the variable X2 in the direction H2, continuing until the r variables
are exhausted. As long as there is no ambiguity, we are free to use the compact
notation ∂

(r)
X1...Xr

(f). In this, the independent variables can be equal.

Theorem 9.32 (Schrödinger Equation on F
((
Fpn
)2
,Fpn

)
, for the first

time for functions whose co-domain is strictly the Galois Field). Let n be a
positive integer, let γ, µ be non-zero constants in the field Fpn, and (H, H̄) ∈(
F∗
pn

)2
. Let us consider the time-dependent Fpn-Schrödinger equation on the

space of functions F
((
Fpn
)2
,Fpn

)
with coefficients γ, µ, given by:

HFpn
f(X,T ) = γ∂T=H̄(f(X,T ))

With the following ingredients: a1). HFpn
is called the Fpn-Hamiltonian of

the system; we consider systems that behave according to the Fpn-Hamiltonian

HFpn
:= −µ∇2 + V , a2). ∇2(f) := ∂

(2)
X=H,X=H(f), a3). V ∈ F

((
Fpn
)2
,Fpn

)
is called the potential energy of the particle, and a4). Ψ, called wavefunction,
denotes a function that satisfies the posed equation. In cases where the set

VV [X,T ] := {f ∈ F
((
Fpn
)2
,Fpn

)
;−µ∇2

(
f
)
+ V (X,T )f = γ∂T=H̄(f)} is non-

empty, it has a vector space structure. Let VV [X,T ] ̸= ∅ with Ψ ∈ VV [X,T ],
for some Ψ ∈ F

((
Fpn
)2
,Fpn

)
, then we determine subspaces of solutions to the

Fpn-Schrödinger equation, also regions consisting of non-solutions, as follows:
1i). ΨFpn ⊆ VV [X,T ].
2i).

(
Ψ+ F∗

pn

)⋂
VV [X,T ] = ∅, if V ̸= 0.

3i). The following vector subspace relation on Fpn holds:(
∂
(p−1)
X=H,...,X=H

(p−1 times)

(Fpn [X] mod (Xpn −X)) + ∂
(p−1)

T=H̄,...,T=H̄
(p−1 times)

(Fpn [T ] mod (T p
n −

T ))
)
Ψ ⩽ VV [X,T ].
3.1i). In particular, for even-characteristic fields:(
∂X=H(F2n [X] mod (Xpn−X))+∂T=H̄(F2n [T ] mod (T p

n−T ))
)
Ψ ⩽ VV [X,T ].

4i). If Γ(X,T ) in F
((
Fpn
)2
,Fpn

)
is such that ∂T=H̄(Γ) is a nonzero func-

tion, degX(Γ) ≤ pn− degX(Ψ)− 1 (respectively, degX
(
∂T=H̄

(
Γ(X,T )

))
≤ pn−

degX(Ψ(X,T ))−1), and degX(∂T=H̄(Γ)) ≥ degX(Γ)−1 (this condition occurs
in a large class of functions Γ(X,T )) (respectively, degX

(
∂T=H̄

(
Γ(X,T )

))
≥

degX
(
∂X=H

(
Γ(X,T )

))
), then Γ(X,T )Ψ /∈ VΨ[X,T ]. Note that an arbitrary

function Φ ∈ F
((
Fpn
)2
,Fpn

)
can be identified as an element of the algebra

Fpn [X,T ] mod (Xpn −X,T p
n − T ).

Proof. VV [X,T ] is a vector space (it can be verified via the characterization
for a subspace). The part (1i) is sufficiently visible. 2i). It can be immediately
seen that a translation Ψ + k belongs to the set VV [X,T ], for k in F∗

pn , if and
only if kV= 0, that is, V = 0, which is not possible due to the hypothesis
V ̸= 0. 3i). Given ζ(T ) ∈ F

(
Fpn ,Fpn

)
with ∂T=H̄

(
ζ(T )

)
= 0 ∀ T ∈ Fpn , then
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ζ(T )Ψ ∈ VV [X,T ]; note that it becomes necessary to indicate on which variable
the function ζ depends, so we can use ζ(T ) and ζ without distinction, keeping
in mind that ζ(T ) usually means the value of such a function at T . Similarly,
A(X)Ψ ∈ VV [X,T ] for any A(X) ∈ F

(
Fpn ,Fpn

)
such that ∂X=H

(
A(X)

)
= 0

∀ X ∈ Fpn . The space F
((
Fpn
)2
,Fpn

)
can be represented as the bivariate

algebra Fpn [X,T ] mod (Xpn −X) mod (T p
n − T ) over Fpn , by means of La-

grange interpolation. By applying Theorem 9.20—which also applies when
more than one variable is involved—we construct the set, closed with respect
to addition and multiplication by scalars, Ψ∂

(p−1)
X=H,...,X=H(Fpn [X] mod (Xpn −

X)) + Ψ∂
(p−1)

T=H̄,...,T=H̄
(Fpn [T ] mod (T p

n − T ))(⩽ VV [X,T ]); obtaining that the
elements defined as a dilation of Ψ in space plus a dilation of Ψ in time form a
subspace of the solution vector space VV [X,T ], such dilations are delimited by
an Algebra of R. Carranza-Galois. 4i). After replacing Γ(X,T )Ψ and apply-
ing the product rule, Theorem 9.16 (which also adapts to several variables), in
Fpn-Schrödinger equation, this is reduced to −γ∂T=H̄(Γ(X,T ))Ψ(X,T + H̄) =
µ∇2

(
Γ(X,T )

)
Ψ(X+2H,T )+2µ∂X=H(Γ(X,T ))∂X=H(Ψ(X+H,T )). We have

the fact that the function −γ∂T=H̄(Γ(X,T ))Ψ(X,T + H̄) can be represented
in Fpn [T ][X] mod (T p

n − T,Xpn − X), and that similarly to the algebraic
degree it is observed that degX(∂X=H(κ(X,T ))) ≤ degX(κ(X,T )) − 1 for κ
in Fpn [T ][X] mod (T p

n − T,Xpn − X), combining these facts we have that:
degX(−γ∂T=H̄(Γ(X,T ))Ψ(X,T + H̄)) = degX(∂T=H̄(Γ)) + degX(Ψ(X,T +
H̄)) > max

{
degX(Γ)− 2 + degX(Ψ), degX(∂X=H(Γ)) + degX(Ψ)− 1

}
≥ max

{
degX

(
µ∇2

(
Γ(X,T )

)
Ψ(X+2H,T )

)
, degX

(
2µ∂X=H(Γ(X,T ))∂X=H(Ψ(X+H,T

))
)}

≥ degX
(
µ∇2

(
Γ(X,T )

)
Ψ(X + 2H,T ) + 2µ∂X=H(Γ(X,T ))∂X=H(Ψ(X +

H,T ))
)
; in case that for example 2µ∂X=H(Γ)∂X=H(Ψ(X+H,T )) is function 0,

we only use the degrees of part µ∇2
(
Γ(X,T )

)
Ψ(X+2H,T ), also by hypothesis

both parts cannot vanish at the same time, neither their sum; under the hy-
pothesis that degX(Γ) ≤ pn−degX(Ψ)−1 the quantity degX(−γ∂T=H̄(Γ(X,T ))
Ψ(X,T +H̄)) is bounded; similarly it is carried out for the more general condi-
tions degX

(
∂T=H̄

(
Γ(X,T )

))
≤ pn−degX(Ψ(X,T ))−1 and degX

(
∂T=H̄

(
Γ(X,T )))

≥ degX
(
∂X=H

(
Γ(X,T )

))
. Then we have a contradiction with the functions

on both sides of the equation −γ∂T=H̄(Γ(X,T ))Ψ(X,T + H̄) = µ∇2
(
Γ(X,T )

)
Ψ(X+2H,T )+2µ∂X=H(Γ(X,T ))∂X=H(Ψ(X+H,T )) being equal, concluding
that such Γ cannot exist. □

The wave function in the Fpn-Schrödinger equation bears several similar-
ities as well as some marked differences to the continuous case in Quantum
Mechanics, as can be seen in Theorem 9.32. Much more can be done regard-
ing the investigation of the Schrödinger equation for the universe Fpn . Open
Problem 28. Generalize the Theorem 9.32 for the Schrödinger equation on

F
((
Fpn
)2
,Fpn

)
, where Fpn is the algebraic closure of Fpn .
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In the geometric Brownian motion outlook, the Black-Scholes equation

0 = ∂t(V ) +
σ2

2
S2∂

(2)

S2 (V ) + rS∂S(V )− rV

(where V = V (S, t) is the value of the option as a function of stock price
S ≥ 0 and time t ∈ [0, T ], while σ is the volatility (σ2: the variance rate of the
return on the stock), and r is the risk-free interest rate) is a type of parabolic

PDE (since its associated matrixM =

(
0 0

0 σ2

2
S2

)
satisfies det(M) = 0) which

through a change of variables it can be transformed into the diffusion heat-
transfer equation

∂t̄(U) = cσ,r∂
(2)

S̄2 (U)

where cσ,r (the thermal constant of the material) belongs to R+. The Black-
Scholes equation is usually equipped with conditions at the maturity date T ,
that is, we know V (S, T ) ∀S; which is translated into conditions at the initial
time and at the boundary—we know U(S̄, t̄ = 0), ∀S̄ ∈ R—applied to the
heat-transfer equation.

Remark. We explore the newest abstraction corresponding to this math-
ematical model within the field structure Fpn ; this research is supplementary
with the purpose of gaining a global view-comprehension that can cover both
fields, R and Fpn . Regarding the equation we investigated above, ∂

(β)

Xβ
i

(F ) =

∂
(k)

Xk
j
(G), we find solution subspaces for a relevant case of G = F (refer to

Theorem 9.33), for β = 1 and k = 2, observing that in this case, G does not

necessarily inhabit M((k),Ξk,··· ,Ξpn−1)

pn,Xj
[X1, · · · , Xm].

Theorem 9.33 (Newest Black-Scholes equation). Let n be a positive

integer, cσ,r a non-zero constant in the field Fpn, and (H, H̄) ∈
(
F∗
pn

)2
. Let us

consider the partial differential equation on the space of functions F
((
Fpn
)2
,Fpn

)
,

called Fpn-Black-Scholes-Merton equation (or just Fpn-Black-Scholes eq.), given
by:

∂t̄(U) = cσ,r∂
(2)

S̄2 (U)

Then the following is a subspace of solutions:



192 Roberto C. Reyes Carranza

BScσ,rFpn
=
{
U ∈ F((Fpn)2,Fpn);U(S̄, t̄) =

∑
A,S are some

maps in F(Fpn)

∂
(p−2)

S̄p−2 (A(S̄))∂
(p−2)

t̄p−2 (S(t̄))

+ ∂
(p−4)

S̄p−4 (A(S̄))∂
(p−1)

t̄p−1 (S(t̄)) +
∑

S̃,K are some
maps in F(Fpn),
and d0

S̄
(K) ≤ 3

∂
(2)

S̄2 (K(S̄))∂
(p−2)

t̄p−2 (S̃(t̄))+

K(S̄)∂
(p−1)

t̄p−1 (S̃(t̄))
}
.

Proof. The associativity-commutativity properties of these differential opera-
tors together with the powerful Theorem 9.20 (consequence of Theorem 9.2)

allow us to directly infer that the function ϑ(S̄, t̄) = ∂
(2p−3)

t̄p−1S̄p−2(β(S̄, t̄)) is a so-

lution to all β ∈ F
((
Fpn
)2
,Fpn

)
, where the derivations with respect to S̄ are

along the direction H, and those with respect to t̄ are along the direction H̄.
Now, if ωU(S̄, t̄) := ∂t̄(U) = cσ,r∂

(2)

S̄2 (U) is identically zero, then by Theorem
9.20—which also applies when more than one variable comes into play—we
get U = ∂

(p−1)

t̄p−1 (θ(S̄, t̄)), for some function θ. Since U must be selected from

the function space ∂
(p−1)

t̄p−1

(
F
(
(Fpn)2,

Fpn
))
, and expressing U in the form U =

∑
ℓ ϕℓ(t̄)ξℓ(S̄) such that (ϕℓ)ℓ is a basis

of ∂
(p−1)

t̄p−1

(
F
(
Fpn
))
, together with the fact that cσ,r∂

(2)

S̄2 (U) =
∑

ℓ cσ,rϕℓ(t̄)∂
(2)

S̄2 (ξℓ

(S̄)) = 0, then cσ,r∂
(2)

S̄2 (ξℓ(S̄)) = 0 for all ξℓ within U . Thus, ξℓ(S̄) = ∂
(p−2)

S̄p−2 (θ̃ℓ(S̄))

for some θ̃ℓ ∈ F
(
Fpn
)
for all ξℓ. Hence U =

∑
ℓ ϕℓ(t̄)∂

(p−2)

S̄p−2 (θ̃ℓ(S̄)), and

also has the form of some function ∂
(2p−3)

t̄p−1S̄p−2(β̃(S̄, t̄)). Therefore we have ob-

tained that, {U ∈ F((Fpn)2,Fpn);ωU(S̄, t̄) is identically equal to 0} = ker
(
∂t̄ :

F((Fpn)2,Fpn) → F((Fpn)2,Fpn)
)⋂

ker
(
cσ,r∂

(2)

S̄2 : F((Fpn)2,Fpn) → F((Fpn)2,
Fpn)

)
= ∂

(2p−3)

t̄p−1S̄p−2

(
F
(
(Fpn)2,Fpn

))
. On the other hand, we observe that func-

tions of the type ∂
(p−2)

S̄p−2 (A(S̄))∂
(p−2)

t̄p−2 (S(t̄))+∂
(p−4)

S̄p−4 (A(S̄))∂
(p−1)

t̄p−1 (S(t̄)) satisfy the

Fpn-Black-Scholes-Merton equation, as well as some of the type ∂
(2)

S̄2 (K(S̄))∂
(p−2)

t̄p−2

(S̃(t̄)) + K(S̄)∂
(p−1)

t̄p−1 (S̃(t̄)), and therefore also the Fpn-linear combinations of

both, where A,S, S̃,K are maps in F(Fpn). More precisely, we establish the
following class of functions with abundant solutions, Us,

U(S̄, t̄) =
∑

A,S are some
maps in F(Fpn )

∂
(p−2)

S̄p−2 (A(S̄))∂
(p−2)

t̄p−2 (S(t̄))+∂
(p−4)

S̄p−4 (A(S̄))∂
(p−1)

t̄p−1 (S(t̄))+

∑
S̃,K are some

maps in F(Fpn ),

and d0
S̄
(K)≤3

∂
(2)

S̄2 (K(S̄))∂
(p−2)

t̄p−2 (S̃(t̄))+K(S̄)∂
(p−1)

t̄p−1 (S̃(t̄)). This class forms a Fpn-

vector space that also contains the space ∂
(2p−3)

t̄p−1S̄p−2

(
F
((
Fpn
)2
,Fpn

))
. □
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Open Problem 29. Investigate what portion of the solution space of
the Fpn-Black-Scholes equation is the vector space BScσ,rFpn

. What about those

functions that reside outside BScσ,rFpn
?

Open Problem 30. Construct bases of different types for the function
space ker

(
∂t̄ − cσ,r∂

(2)

S̄2

)
. More generally, consider the space with the extra

variable ˜̄S, ker
(
∂t̄ − cσ,r∂

(2)

S̄ ˜̄S

)
.

Open Problem 31. In [4] the Black-Scholes model of the form 0 = ∂t(V )+

Θ̃S2∂
(2)

S2 (V ) + rS∂S(V )− rV is investigated when Θ̃ = f
(
S, t, ∂S(V ), ∂

(2)

S2 (V )
)

is a function rather than a constant. Obtain a theorem for this Black-Scholes
model (treat Θ̃ as a function of (S, t)), a result connected to Theorem 9.32
concerning the Fpn-Schrödinger equation.

In conclusion we have contributed a series of new methods, techniques
contained in theorems, definitions, and conceptualization that solve current
challenges in number theory and algebra, combinatorics, differential equations,
cryptanalysis, coding theory, information security, etc.
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