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Abstract 

 

This paper gives the notion of orthogonality between the left reverse derivation   

and symmetric left reverse biderivation of a semiprime ring. We prove that if R is 

a semiprime ring, 𝐵 is a reverse biderivation and 𝑑 is a derivation of R are 

orthogonal if and only if any one of the following equivalent conditions hold for 

every 𝑥, 𝑦, 𝑧 ∈ 𝑅. 

(i)𝐵(𝑥, 𝑦)𝑑(𝑧) + 𝑑(𝑥)𝐵(𝑧, 𝑦) = 0        (ii) 𝑑𝐵 = 0  
(iii) 𝑑(𝑥)𝐵(𝑥, 𝑦) = 0    (iv) 𝑑𝐵 is a biderivation. 

 

Keywords: Semiprimering, Derivation, Reverse derivation, Left reverse 

derivation, Left reverse biderivation  

 

Introduction 
 

In [2] Bresar.M and Vukman.J introduce the idea of orthogonality for a pair of 

derivations (d, g) in semiprime rings. Abdul Rhman and H. Majeed worked on  
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orthogonal reverse derivations in semiprime ring in [1]. C. Jaya Subba Reddy and 

Ramoorthy Reddy. B studied orthogonal symmetric bi derivations and orthogonal 

symmetric Bi-(𝜎, 𝜏)on semiprime rings in [4,7]. In [5] C. Jaya Subba Reddy and 

Ramoorthy Reddy. B have proved results on orthogonal symmetric reverse 

biderivations in semiprime rings.In [3] Daif.M.N, Tammam, M.S., El-Sayiad, 

Haetinger are focused on orthogonal derivations and biderivations. Kleinfeld. E 

Proved results on standard and Accessible ring in [9].In [10] P.SVijaya Lakshmi, 

K.Suvarna illustrated on orthogonality of derivations and biderivations in 

semiprime accessible rings in [8].C.Jaya Subba Reddy, Krishna Moorthy analysed 

results on orthogonal symmetric reverse Bi-(𝜎, 𝜏) in semiprime rings.C.Jaya 

Subba Reddy, G. Venkata Bhaskara Rao and B. Ramoorthy Reddy evaluated 

results on symmetric reverse biderivations in prime and semiprime rings in [6]. In 

this paper my aim is to prove new results on orthogonality of reverse derivation 

and reverse bi derivation in semiprime rings. 

 

Preliminaries 
 

Throughout this paper R will be an associative ring. A ring R is said to be 2-

torsion free if 2𝑥 = 0, ∀𝑥 ∈ 𝑅 implies 𝑥 = 0.A ring R is said to be prime if 

𝑥𝑅𝑦 = 0 implies 𝑥 = 0 or 𝑦 = 0, and R is said to be semiprime if 𝑥𝑅𝑥 = 0 

implies 𝑥 = 0. An additive map 𝑑: 𝑅 → 𝑅  is called as reverse derivation if 

𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝑦𝑑(𝑥). An additive map 𝑑: 𝑅 → 𝑅 is called as left reverse 

biderivation then 𝑑(𝑥𝑦) = 𝑥𝑑(𝑦) + 𝑦𝑑(𝑥), ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅. A mapping 𝐵(. , . ): 𝑅 ×
𝑅 → 𝑅 is symmetric mapping if 𝐵(𝑥, 𝑦) = 𝐵(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝑅. A symmetric bi 

additive mapping  𝐵(. , . ): 𝑅 × 𝑅 → 𝑅 is called as bi derivation if  𝐵(𝑥𝑦, 𝑧) =
𝐵(𝑥, 𝑧)𝑦 + 𝑥𝐵(𝑦, 𝑧),𝐵(𝑥, 𝑦𝑧) = 𝐵(𝑥, 𝑦)𝑧 + 𝑦𝐵(𝑥, 𝑧).  
An additive map 𝐵(. , . ): 𝑅 × 𝑅 → 𝑅 is called as reverse biderivation then 
(𝑥, 𝑦𝑧) = 𝐵(𝑥, 𝑧)𝑦 + 𝑧𝐵(𝑥, 𝑦), 𝐵(𝑥𝑦, 𝑧) = 𝐵(𝑦, 𝑧)𝑥 + 𝑦𝐵(𝑥, 𝑧) . 

An additive map 𝐵: 𝑅 × 𝑅 → 𝑅 is termed as left reverse biderivations then 

𝐵(𝑥, 𝑦𝑧) = 𝑦𝐵(𝑥, 𝑧) + 𝑧𝐵(𝑥, 𝑦), 𝐵(𝑥𝑦, 𝑧) = 𝑥𝐵(𝑦, 𝑧) + 𝑦𝐵(𝑥, 𝑧), ∀𝑥, 𝑦 ∈ 𝑅. Let 

two derivations d and g are orthogonal then 𝑑(𝑥)𝑅𝑔(𝑦) = 0 or 𝑔(𝑦)𝑅𝑑(𝑥) = 0. 

Let R be semiprime ring, then derivation 𝑑 and biderivation 𝐵 are called as 

orthogonal, if 𝑑(𝑥)𝑅𝐵(𝑦, 𝑧) = 0 = 𝐵(𝑦, 𝑧)𝑅𝑑(𝑥), ∀𝑥, 𝑦 ∈ 𝑅. 

 

Lemma-1: [[2], Lemma 1]] Let R be a 2-torsion free semiprime ring and a, b ∈
𝑅. Then the following are equivalent: 

 𝑖) 𝑎𝑟𝑏 = 0 , ∀𝑟 ∈ 𝑅  𝑖𝑖) 𝑏𝑟𝑎 = 0, ∀𝑟 ∈ 𝑅  iii) 𝑎𝑟𝑏 + 𝑏𝑟𝑎 = 0, ∀𝑟 ∈ 𝑅 

If any one of the following equivalent conditions hold 𝑎𝑏 = 𝑏𝑎 = 0 

 

Lemma 2 [[10, Lemma 3]: Let R is a 2-torsion free semi prime ring. If an 

additive map 𝑑 on R and a biadditive mapping 𝐵: 𝑅 × 𝑅 → 𝑅 satisfy 

𝐵(𝑥, 𝑦)𝑅𝑑(𝑥) = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑅, then 𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) = 0 
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Lemma 3: Let 𝑑 be a left reverse derivation and 𝐵 be a symmetric left reverse bi 

derivation of a 2-torsion semiprime ring R. Then the following identities hold for 

every  𝑥, 𝑦, 𝑧 ∈ 𝑅. 

𝑑𝐵(𝑥𝑦 , 𝑧) =  𝑑 (𝑥𝐵(𝑦, 𝑧) + 𝑦𝐵(𝑥, 𝑧))  

𝑑𝐵(𝑥𝑦, 𝑧) =  𝑑(𝑥𝐵(𝑦, 𝑧)) + 𝑑(𝑦𝐵(𝑥, 𝑧))  

𝑑𝐵(𝑥𝑦, 𝑧) = 𝐵(𝑦, 𝑧)𝑑(𝑥) + 𝑥𝑑𝐵(𝑦, 𝑧) + 𝑦𝑑𝐵(𝑥, 𝑧) + 𝐵(𝑥, 𝑧)𝑑(𝑦)  

 

Main Results  
 

Theorem1: Let R be a 2 torsion free semiprime ring. A symmetric left reverse bi 

derivation 𝐵 and symmetric left reverse derivation 𝑑 are orthogonal if and only if 

𝐵(𝑥, 𝑦)𝑑(𝑧) + 𝑑(𝑥)𝐵(𝑧, 𝑦) = 0  

 

Proof: Let R be a 2-torsion free semiprime ring, then 

𝐵(𝑥, 𝑦)𝑑(𝑧) + 𝑑(𝑥)𝐵(𝑧, 𝑦) = 0      (1) 

Replace  𝑧 by  𝑥𝑧  in (1) 

𝐵(𝑥, 𝑦)𝑑(𝑥𝑧) + 𝑑(𝑥)𝐵(𝑥𝑧, 𝑦) = 0  

𝐵(𝑥, 𝑦)(𝑥𝑑(𝑧) + 𝑧𝑑(𝑥)) + 𝑑(𝑥)(𝑥𝐵(𝑧, 𝑦) + 𝑧𝐵(𝑥, 𝑦)) = 0  

𝐵(𝑥, 𝑦)𝑥𝑑(𝑧) + 𝐵(𝑥, 𝑦)𝑧𝑑(𝑥) + 𝑑(𝑥)𝑥𝐵(𝑧, 𝑦) + 𝑑(𝑥)𝑧𝐵(𝑥, 𝑦) = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑅  

𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) + 𝐵(𝑥, 𝑦)𝑅𝑑(𝑥) + 𝑑(𝑥)𝑅𝐵(𝑧, 𝑦) + 𝑑(𝑥)𝑅𝐵(𝑥, 𝑦) = 0  

𝐵(𝑥, 𝑦)𝑅𝑑(𝑥) + 𝑑(𝑥)𝑅𝐵(𝑥, 𝑦) = 0  

By lemma (1) 

𝐵(𝑥, 𝑦)𝑅𝑑(𝑥) = 0         (2) 

By lemma (2) 

𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) = 0  

∴ 𝑑 and 𝐵 are orthogonal. 

Conversely, if 𝑑 and 𝐵 are orthogonal then 𝑑(𝑥)𝑅𝐵(𝑦, 𝑧) = 0 also 

 𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑅. 

Since 1∈ 𝑅, 𝑑(𝑥)𝐵(𝑦, 𝑧) = 0  also 𝐵(𝑥, 𝑦)𝑑(𝑧) =  0   (3) 

∴ 𝑑(𝑥)𝐵(𝑦, 𝑧) + 𝐵(𝑥, 𝑦)𝑑(𝑧) = 0 ,∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅. 

 

Theorem 2: Let R be a 2-torsion free semiprime ring. A left reverse bi derivation 

𝐵 and a left reverse derivation 𝑑 are orthogonal if and only if 𝐵(𝑥, 𝑦)𝑑(𝑥) = 

0, ∀ 𝑥, 𝑦 ∈ 𝑅. 

 

Proof: Let 𝐵(𝑥, 𝑦)𝑑(𝑥) = 0                                          (4) 

Then to prove that 𝑑 and 𝐵 are orthogonal 

Replace 𝑦 by 𝑧𝑦  in (4) 

𝐵(𝑥, 𝑧𝑦)𝑑(𝑥) = 0  

(𝑧𝐵(𝑥, 𝑦) + 𝑦𝐵(𝑥, 𝑧))𝑑(𝑥) = 0 

𝑧𝐵(𝑥, 𝑦)𝑑(𝑥) + 𝑦𝐵(𝑥, 𝑧)𝑑(𝑥) = 0       (5)  

Substituting (4) in (5)  

𝑦𝐵(𝑥, 𝑧)𝑑(𝑥) = 0  

Since 𝑦 ≠ 0 ∈ 𝑅, then 𝐵(𝑥, 𝑧)𝑑(𝑥) = 0                                                        (6) 
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Substituting 𝑥 by 𝑥 + 𝑦 in 𝐵(𝑥, 𝑧)  of equation (6), we get 

𝐵(𝑥 + 𝑦, 𝑧)𝑑(𝑥) = 0  

(𝐵(𝑥, 𝑧) + 𝐵(𝑦, 𝑧))𝑑(𝑥) = 0  

𝐵(𝑥, 𝑧)𝑑(𝑥) + 𝐵(𝑦, 𝑧)𝑑(𝑥) = 0       (7) 

From (6) 

𝐵(𝑦, 𝑧)𝑑(𝑥) = 0         (8) 

Replace 𝑥 by 𝑥𝑧  in (8) 

𝐵(𝑦, 𝑧)𝑑(𝑥𝑧) = 0  

𝐵(𝑦, 𝑧)(𝑥𝑑(𝑧) + 𝑧𝑑(𝑥)) = 0 ,∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅 

𝐵(𝑦, 𝑧)𝑅𝑑(𝑧) + 𝐵(𝑦, 𝑧)𝑅𝑑(𝑥) = 0  

By orthogonality condition 

𝐵(𝑦, 𝑧)𝑅𝑑(𝑧) = 0 (by symmetry) 

𝐵(𝑧, 𝑦)𝑅𝑑(𝑧) = 0         (9) 

Replace 𝑧 by 𝑧 + 𝑥 in (9) 

𝐵(𝑧 + 𝑥, 𝑦)𝑅𝑑(𝑧 + 𝑥) = 0  

(𝐵(𝑧, 𝑦) + 𝐵(𝑥, 𝑦))𝑅(𝑑(𝑧) + 𝑑(𝑥)) = 0 

𝐵(𝑧, 𝑦)𝑅𝑑(𝑧) + 𝐵(𝑧, 𝑦)𝑅𝑑(𝑥) + 𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) + 𝐵(𝑥, 𝑦)𝑅𝑑(𝑥) = 0  (10) 

Substituting (2) and (9) in (10), we get  

𝐵(𝑧, 𝑦)𝑅𝑑(𝑥) + 𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) = 0  

𝐵(𝑧, 𝑦)𝑅𝑑(𝑥) = 0 (By orthogonality condition𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) = 0)  

𝐵(𝑦, 𝑧)𝑅𝑑(𝑥) = 0  

∴ 𝑑 and 𝐵 are orthogonal. 

Conversely, if 𝑑 and 𝐵 are orthogonal then 𝐵(𝑥, 𝑦)𝑅𝑑(𝑧) = 0,∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅 (11) 

Replace 𝑧 by 𝑥  in (11) we get 

𝐵(𝑥, 𝑦)𝑅𝑑(𝑥) = 0 (By symmetry) 

Since 1∈ 𝑅, 𝐵(𝑥, 𝑦)𝑑(𝑥) = 0. 

 

Theorem 3: Let R be a 2-torsion free semiprime ring. A left reverse biderivation 

𝐵 and a left reverse derivation 𝑑 are orthogonal if and only if 𝑑𝐵 = 0. 

 

Proof: we assume that 𝑑 and 𝐵 are reverse derivation and reverse biderivation 

then 𝑑𝐵 = 0   
By Lemma (3)  

𝐵(𝑦, 𝑧)𝑑(𝑥) + 𝐵(𝑥, 𝑧)𝑑(𝑦)  =  0      (12) 

Substitute (8) in (12), we get  

𝐵(𝑥, 𝑧)𝑑(𝑦) = 0  

Substitute 𝑧 = 𝑦 and 𝑦 =  𝑥 we get  

𝐵(𝑥, 𝑦)𝑑(𝑥) = 0  

By theorem (2)    

∴ 𝑑 and 𝐵 are orthogonal.  

Conversely, if 𝑑 and 𝐵 are orthogonal then (𝑥)𝑟𝐵(𝑦, 𝑧) = 0 ,∀ 𝑥, 𝑦, 𝑧, 𝑟 ∈ 𝑅 

𝑑(𝑑(𝑥)𝑟𝐵(𝑦, 𝑧)) = 0  

𝑑(𝑥)𝑑(𝑟𝐵(𝑦, 𝑧)) + 𝑟𝐵(𝑦, 𝑧)𝑑(𝑑(𝑥)) = 0  

𝑑(𝑥)(𝑟𝑑𝐵(𝑦, 𝑧) + 𝐵(𝑦, 𝑧)𝑑(𝑟)) + 𝑟𝐵(𝑦, 𝑧)𝑑(𝑥)𝑑(𝑥) = 0  
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The sum of second and third term becomes zero as 𝑑 and 𝐵 are orthogonal. 

𝑑(𝑥)𝑟𝑑𝐵(𝑦, 𝑧) = 0,∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅. 

Put 𝑥 = 𝐵(𝑦, 𝑧) in above equation, we get  

𝑑𝐵(𝑦, 𝑧)𝑟𝑑𝐵(𝑦, 𝑧) = 0  

 Since R is a semi prime (𝑦, 𝑧) = 0 ,∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅 

Hence 𝑑𝐵 = 0. 

 

Theorem 4: Let R be a 2-torsion free semiprime ring. A left reverse derivation 𝑑 

and a left reverse biderivation 𝐵 are orthogonal if and only if 𝑑𝐵 is a left 

biderivation. 

 

Proof: Let 𝑑 and 𝐵 are left reverse derivation and left reverse biderivation then 

𝑑𝐵 is a left biderivation  𝑖. 𝑒 𝑑𝐵(𝑥𝑦, 𝑧) = 𝑦𝑑𝐵(𝑥, 𝑧) + 𝑥𝑑𝐵(𝑦, 𝑧)  

By lemma (3) 

𝐵(𝑦, 𝑧)𝑑(𝑥) + 𝐵(𝑥, 𝑧)𝑑(𝑦) = 0                                                                          (13) 

From (8) 

𝐵(𝑥, 𝑧)𝑑(𝑦) = 0  

Substituting 𝑧 by 𝑦 and 𝑦 by 𝑥 in above equation we get  

𝐵(𝑥, 𝑦)𝑑(𝑥) = 0  

From theorem (2) 

∴ 𝑑 and 𝐵 are orthogonal. 

Conversely, if 𝑑 and 𝐵 are orthogonal to prove that 𝑑𝐵 is a left biderivation 

By lemma (3), we get  

𝑑𝐵(𝑥𝑦, 𝑧) = 𝐵(𝑦, 𝑧)𝑑(𝑥) + 𝑥𝑑𝐵(𝑦, 𝑧) + 𝑦𝑑𝐵(𝑥, 𝑧) + 𝐵(𝑥, 𝑧)𝑑(𝑦)  

From (13), we get 

𝑑𝐵(𝑥𝑦, 𝑧) =  𝑥 𝑑𝐵(𝑦, 𝑧) +  𝑦𝑑𝐵(𝑥, 𝑧)   
∴ 𝑑𝐵 is a left biderivation 

 

Theorem 5: Let R be a 2-torsion free semiprime ring. Then a left reverse 

derivation 𝑑 and a left reverse biderivation 𝐵 are orthogonal if and only if the 

following conditions are equivalent: 

(i)𝐵(𝑥, 𝑦)𝑑(𝑧) + 𝑑(𝑥)𝐵(𝑧, 𝑦) =  0 (ii)𝐵(𝑥, 𝑦)𝑑(𝑥) =  0  (iii)𝑑𝐵 = 0  (iv) 𝑑𝐵 is a 

biderivation. 

 

Proof: It follows easily from theorems 1,2,3,4. 
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