International Journal of Algebra, Vol. 19, 2025, no. 4, 245 - 250 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2025.91966

Orthogonality of Left Reverse Derivation and

Symmetric Left Reverse Biderivation

in Semiprime Rings

C. Jaya Subba Reddy ¹, Kotha Raghavendra *,2, K. Chennakesavulu ³

¹Department of Mathematics, S.V. University Tirupathi, Andhra Pradesh, India

²Research Scholar, Department of Mathematics S.V. University, Tirupathi, A.P, India and Asst.Prof in G.P.R.E.C, Kurnool, India

³ Department of Mathematics, P.V.K.K.I.T, Anantapuram, India * Corresponding author

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2025 Hikari Ltd.

Abstract

This paper gives the notion of orthogonality between the left reverse derivation and symmetric left reverse biderivation of a semiprime ring. We prove that if R is a semiprime ring, B is a reverse biderivation and d is a derivation of R are orthogonal if and only if any one of the following equivalent conditions hold for every $x, y, z \in R$.

$$(i)B(x,y)d(z) + d(x)B(z,y) = 0$$
 $(ii) dB = 0$
 $(iii) d(x)B(x,y) = 0$ $(iv) dB$ is a biderivation.

Keywords: Semiprimering, Derivation, Reverse derivation, Left reverse derivation, Left reverse biderivation

Introduction

In [2] Bresar.M and Vukman.J introduce the idea of orthogonality for a pair of derivations (d, g) in semiprime rings. Abdul Rhman and H. Majeed worked on

orthogonal reverse derivations in semiprime ring in [1]. C. Jaya Subba Reddy and Ramoorthy Reddy. B studied orthogonal symmetric bi derivations and orthogonal symmetric Bi- (σ, τ) on semiprime rings in [4,7]. In [5] C. Jaya Subba Reddy and Ramoorthy Reddy. B have proved results on orthogonal symmetric reverse biderivations in semiprime rings.In [3] Daif.M.N, Tammam, M.S., El-Sayiad, Haetinger are focused on orthogonal derivations and biderivations. Kleinfeld. E Proved results on standard and Accessible ring in [9].In [10] P.SVijaya Lakshmi, K.Suvarna illustrated on orthogonality of derivations and biderivations in semiprime accessible rings in [8].C.Jaya Subba Reddy, Krishna Moorthy analysed results on orthogonal symmetric reverse Bi- (σ, τ) in semiprime rings.C.Jaya Subba Reddy, G. Venkata Bhaskara Rao and B. Ramoorthy Reddy evaluated results on symmetric reverse biderivations in prime and semiprime rings in [6]. In this paper my aim is to prove new results on orthogonality of reverse derivation and reverse bi derivation in semiprime rings.

Preliminaries

Throughout this paper R will be an associative ring. A ring R is said to be 2-torsion free if 2x = 0, $\forall x \in R$ implies x = 0. A ring R is said to be prime if xRy = 0 implies x = 0 or y = 0, and R is said to be semiprime if xRx = 0 implies x = 0. An additive map $d: R \to R$ is called as reverse derivation if d(xy) = d(y)x + yd(x). An additive map $d: R \to R$ is called as left reverse biderivation then d(xy) = xd(y) + yd(x), $\forall x, y, z \in R$. A mapping $B(.,.): R \times R \to R$ is symmetric mapping if B(x,y) = B(y,x), $\forall x,y \in R$. A symmetric bi additive mapping $B(.,.): R \times R \to R$ is called as bi derivation if B(xy,z) = B(x,z)y + xB(y,z), B(x,yz) = B(x,y)z + yB(x,z).

An additive map $B(.,.): R \times R \to R$ is called as reverse biderivation then (x,yz) = B(x,z)y + zB(x,y), B(xy,z) = B(y,z)x + yB(x,z).

An additive map $B: R \times R \to R$ is termed as left reverse biderivations then $B(x, yz) = yB(x, z) + zB(x, y), B(xy, z) = xB(y, z) + yB(x, z), \ \forall x, y \in R$. Let two derivations d and g are orthogonal then d(x)Rg(y) = 0 or g(y)Rd(x) = 0. Let R be semiprime ring, then derivation d and biderivation B are called as orthogonal, if $d(x)RB(y, z) = 0 = B(y, z)Rd(x), \forall x, y \in R$.

Lemma-1: [[2], Lemma 1]] Let R be a 2-torsion free semiprime ring and a, $b \in R$. Then the following are equivalent:

i) arb = 0, $\forall r \in R$ ii) bra = 0, $\forall r \in R$ iii) arb + bra = 0, $\forall r \in R$ If any one of the following equivalent conditions hold ab = ba = 0

Lemma 2 [[10, Lemma 3]: Let R is a 2-torsion free semi prime ring. If an additive map d on R and a biadditive mapping $B: R \times R \to R$ satisfy $B(x,y)Rd(x) = 0, \forall x,y,z \in R$, then B(x,y)Rd(z) = 0

Lemma 3: Let d be a left reverse derivation and B be a symmetric left reverse bi derivation of a 2-torsion semiprime ring R. Then the following identities hold for every $x, y, z \in R$.

$$dB(xy,z) = d(xB(y,z) + yB(x,z)) dB(xy,z) = d(xB(y,z)) + d(yB(x,z)) dB(xy,z) = B(y,z)d(x) + xdB(y,z) + ydB(x,z) + B(x,z)d(y)$$

Main Results

Theorem1: Let R be a 2 torsion free semiprime ring. A symmetric left reverse bi derivation B and symmetric left reverse derivation d are orthogonal if and only if B(x,y)d(z) + d(x)B(z,y) = 0

Proof: Let R be a 2-torsion free semiprime ring, then B(x,y)d(z) + d(x)B(z,y) = 0(1) Replace z by xz in (1) B(x,y)d(xz) + d(x)B(xz,y) = 0B(x,y)(xd(z) + zd(x)) + d(x)(xB(z,y) + zB(x,y)) = 0 $B(x,y)xd(z) + B(x,y)zd(x) + d(x)xB(z,y) + d(x)zB(x,y) = 0, \forall x,y,z \in R$ B(x,y)Rd(z) + B(x,y)Rd(x) + d(x)RB(z,y) + d(x)RB(x,y) = 0B(x,y)Rd(x) + d(x)RB(x,y) = 0By lemma (1) B(x,y)Rd(x) = 0(2) By lemma (2) B(x,y)Rd(z) = 0 \therefore d and B are orthogonal. Conversely, if d and B are orthogonal then d(x)RB(y,z) = 0 also $B(x, y)Rd(z) = 0, \forall x, y, z \in R.$ Since $1 \in R$, d(x)B(y,z) = 0 also B(x,y)d(z) = 0(3) $\therefore d(x)B(y,z) + B(x,y)d(z) = 0, \forall x,y,z \in R.$

Theorem 2: Let R be a 2-torsion free semiprime ring. A left reverse bi derivation B and a left reverse derivation d are orthogonal if and only if $B(x,y)d(x) = 0, \forall x,y \in R$.

Proof: Let
$$B(x, y)d(x) = 0$$
 (4)
Then to prove that d and B are orthogonal
Replace y by zy in (4)
 $B(x, zy)d(x) = 0$
 $(zB(x, y) + yB(x, z))d(x) = 0$
 $zB(x, y)d(x) + yB(x, z)d(x) = 0$ (5)
Substituting (4) in (5)
 $yB(x, z)d(x) = 0$
Since $y \neq 0 \in R$, then $B(x, z)d(x) = 0$ (6)

Substituting x by x + y in B(x, z) of equation (6), we get B(x + y, z)d(x) = 0(B(x,z) + B(y,z))d(x) = 0B(x,z)d(x) + B(y,z)d(x) = 0(7) From (6) B(y,z)d(x) = 0(8) Replace x by xz in (8) B(y,z)d(xz) = 0 $B(y,z)(xd(z)+zd(x))=0, \forall x,y,z\in R$ B(y,z)Rd(z) + B(y,z)Rd(x) = 0By orthogonality condition B(y,z)Rd(z) = 0 (by symmetry) B(z, y)Rd(z) = 0(9) Replace z by z + x in (9) B(z+x,y)Rd(z+x)=0(B(z,y) + B(x,y))R(d(z) + d(x)) = 0B(z,y)Rd(z) + B(z,y)Rd(x) + B(x,y)Rd(z) + B(x,y)Rd(x) = 0(10)Substituting (2) and (9) in (10), we get B(z,y)Rd(x) + B(x,y)Rd(z) = 0B(z, y)Rd(x) = 0 (By orthogonality condition B(x, y)Rd(z) = 0) B(y,z)Rd(x) = 0 \therefore d and B are orthogonal. Conversely, if d and B are orthogonal then $B(x, y)Rd(z) = 0, \forall x, y, z \in R$ (11) Replace z by x in (11) we get B(x, y)Rd(x) = 0 (By symmetry) Since $1 \in R$, B(x, y)d(x) = 0.

Theorem 3: Let R be a 2-torsion free semiprime ring. A left reverse biderivation B and a left reverse derivation d are orthogonal if and only if dB = 0.

Proof: we assume that d and B are reverse derivation and reverse biderivation then dB = 0

then
$$dB = 0$$

By Lemma (3)
 $B(y,z)d(x) + B(x,z)d(y) = 0$ (12)
Substitute (8) in (12), we get
 $B(x,z)d(y) = 0$
Substitute $z = y$ and $y = x$ we get
 $B(x,y)d(x) = 0$
By theorem (2)
 $\therefore d$ and B are orthogonal.
Conversely, if d and B are orthogonal then $(x)rB(y,z) = 0$, $\forall x,y,z,r \in R$
 $d(d(x)rB(y,z)) = 0$
 $d(x)d(rB(y,z)) + rB(y,z)d(d(x)) = 0$

d(x)(rdB(y,z) + B(y,z)d(r)) + rB(y,z)d(x)d(x) = 0

The sum of second and third term becomes zero as d and B are orthogonal. $d(x)rdB(y,z) = 0, \forall x,y,z \in R$.

Put x = B(y, z) in above equation, we get

dB(y,z)rdB(y,z) = 0

Since R is a semi prime (y, z) = 0, $\forall x, y, z \in R$

Hence dB = 0.

Theorem 4: Let R be a 2-torsion free semiprime ring. A left reverse derivation d and a left reverse biderivation B are orthogonal if and only if dB is a left biderivation.

Proof: Let d and B are left reverse derivation and left reverse biderivation then dB is a left biderivation i.e dB(xy,z) = ydB(x,z) + xdB(y,z)

By lemma (3)

$$B(y,z)d(x) + B(x,z)d(y) = 0$$
 (13)

From (8)

B(x,z)d(y) = 0

Substituting z by y and y by x in above equation we get

B(x,y)d(x) = 0

From theorem (2)

 \therefore *d* and *B* are orthogonal.

Conversely, if d and B are orthogonal to prove that dB is a left biderivation

By lemma (3), we get

$$dB(xy,z) = B(y,z)d(x) + xdB(y,z) + ydB(x,z) + B(x,z)d(y)$$

From (13), we get

$$dB(xy,z) = x dB(y,z) + y dB(x,z)$$

 $\therefore dB$ is a left biderivation

Theorem 5: Let R be a 2-torsion free semiprime ring. Then a left reverse derivation d and a left reverse biderivation B are orthogonal if and only if the following conditions are equivalent:

$$(i)B(x,y)d(z) + d(x)B(z,y) = 0$$
 $(ii)B(x,y)d(x) = 0$ $(iii)dB = 0$ (iv) dB is a biderivation.

Proof: It follows easily from theorems 1,2,3,4.

References

- [1] Abdul Rehman and H. Majeed, On orthogonal reverse derivations of semiprime rings, *Iraqi Journal of Science*, **50** (1) (2009), 84-88.
- [2] Bresar M. and Vukman J., Orthogonal Derivations and an Extension of a Theorem of Posner, *Radovi Mathematicki*, **5** (1989), 237-246.

- [3] Daif, M.N, Tammam, M.S, El-Sayiad, M.S.T. and Haetinger C., Orthogonal derivations and Biderivations, *JMI International Journal of Mathematical Sciences*, 1, no.1 (2010), 23-34.
- [4] C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal symmetric biderivations in semiprime rings, 4, no.1 (2016), 22-29.
- [5] C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal Symmetric Reverse Bi-Derivations on Semiprime Rings, *Open Journal of Applied & Theoretical Mathematics (OJATM)*, **2**, no.4 (2016), 917-923.
- [6] C. Jaya Subba Reddy, G. Venkata Bhaskara Rao and B. Ramoorthy Reddy, Symmetric reverse biderivations in prime and semiprime Rings, *Global Journal of Pure and Applied Mathematics*, **12** (3) (2016), 386-391.
- [7] C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal symmetric bi- (σ, τ) -Derivations in semiprime rings, *International Journal of Algebra*, **10**, no. 9 (2016), 423-428. https://doi.org/10.12988/ija.2016.6751
- [8] C. Jaya Subba Reddy and V. Krishna Moorthy, Orthogonal symmetric reverse bi- (σ, τ) Derivations in semi prime rings, **45**, no. 1 (2024), 156-168.
- [9] Kleinfeld, E: Standard and Accessible rings, *Canad. J. Maths.*, (1956), 335 340. https://doi.org/10.4153/cjm-1956-038-0
- [10] P.S. Vijayalakshmi, Suvarna. K., Orthogonality of derivations and biderivations in semiprime accessible rings, *International Research Journal of Pure Algebra*, **6** (12) (2016), 464-468.

Received: September 15, 2025; Published: October 14, 2025