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Abstract

Primary abc-triples, formed by the set of roots for the generalized
Pell’s equations x2 − D · y2 = ±N (with N > 2), induce formation of
secondary abc-triples in the set of roots for equations x2 −D · y2 = N2.
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1 Introduction

The proposed article is planned as continuation of [1], where necessary back-
ground knowledge concerning radicals of numbers, abc-conjecture, continuants
and continued fractions was summarized. Mentioned [1] proves abc-triple in-
duction in Pell’s equations x2−D ·y2 = N with N = ±1 and ±2, but [2] shows
similar rules for N = ±4.

The main result of the given article is the proof of formation of abc-triples
in the set of roots for the generalized Pell’s equations x2−D ·y2 = N2 with odd
N > 2, which is induced by corresponding abc-triples from roots of the equa-
tions x2−D ·y2 = ±N. This induction partially preserves also in the situations
with even N values, where reduction to coprime terms become necessary for
obtaining of correct abc-equations.

Throughout this article we preserve notations, introduced in [1] and [2]: π
for palindromic components in continuants and continued fractions; shorten-
ing of longer repeating continuant expressions accordingly to their number of
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π units, so K(a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π) become K(a0, 5π); manipula-
tion with symbols K(ρ, ω)/K(ω) for fundamental roots of generalized Pell’s
equations.

2 Conjugation

2.1 Fundamental roots

If we have an ordinary negative Pell’s equation x2 −D · y2 = −1 with funda-
mental roots K(a0, π)/K(π) and two generalized Pell’s equations

• x2 −D · y2 = −N with fundamental roots ±K(ρ, ω)/K(ω), and

• x2 −D · y2 = +N with fundamental roots ±K(ρ′, ω′)/K(ω′),

then for all natural N > 2 the following relations exist:{
K(ρ′, ω′) = −K(ρ, ω) ·K(a0, π) +D ·K(ω) ·K(π)

K(ω′) = −K(ρ, ω) ·K(π) +K(ω) ·K(a0, π),
(1){

K(ρ, ω) = K(ρ′, ω′) ·K(a0, π)−D ·K(ω′) ·K(π)
K(ω) = K(ρ′, ω′) ·K(π)−K(ω′) ·K(a0, π).

(2)

From (1):

K2(ρ′, ω′)−D ·K2(ω′)

= K2(ρ, ω) ·K2(a0, π)− 2D ·K(ρ, ω) ·K(ω) ·K(a0, π) ·K(π)

+D2 ·K2(ω) ·K2(π)−D · [K2(ρ, ω) ·K2(π)

− 2K(ρ, ω) ·K(ω) ·K(a0, π) ·K(π) +K2(ω) ·K2(a0, π)]

= K2(ρ, ω) · [K2(a0, π)−D ·K2(π)]−D ·K2(ω) · [K2(a0, π)−D ·K2(π)]

= [K2(a0, π)−D ·K2(π)] · [K2(ρ, ω)−D ·K2(ω)] = (−1) · (−N) = +N.

Analogously from (2) we get K2(ρ, ω)−D ·K2(ω) = ... = −N.
Thus, if there exists solution for the ordinary negative Pell’s equation with

given particular D value, then fundamental solutions of the corresponding
generalized Pell’s equations x2 − D · y2 = −N and x2 − D · y2 = +N are
conjugated. Henceforth we will call such system of three Pell’s equations as
corrresponding to Property A. Situation with N = 2 is different, see [1].

2.2 Higher analogues

Under Property A conditions for longer palindromic sequences the following
expressions are valid (n = 1, 2, 3, ...).{

K(a0, nπ, a0 + ρ, ω) = K(ρ, ω) ·K(a0, nπ) +D ·K(ω) ·K(nπ)
K(nπ, a0 + ρ, ω) = K(ρ, ω) ·K(nπ) +K(ω) ·K(a0, nπ).

(3)
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{
K(a0, nπ, a0 + ρ′, ω′) = K(ρ′, ω′) ·K(a0, nπ) +D ·K(ω′) ·K(nπ)

K(nπ, a0 + ρ′, ω′) = K(ρ′, ω′) ·K(nπ) +K(ω′) ·K(a0, nπ).
(4)


K(a0, nπ, a0 + ρ, ω) = K(ρ′, ω′) ·K(a0, (n+ 1)π)

−D ·K(ω′) ·K((n+ 1)π)
K(nπ, a0 + ρ, ω) = K(ρ′, ω′) ·K((n+ 1)π)

−K(ω′) ·K(a0, (n+ 1)π).

(5)


K(a0, nπ, a0 + ρ′, ω′) = −K(ρ, ω) ·K(a0, (n+ 1)π)

+D ·K(ω) ·K((n+ 1)π)
K(nπ, a0 + ρ′, ω′) = −K(ρ, ω) ·K((n+ 1)π)

+K(ω) ·K(a0, (n+ 1)π).

(6)

Proofs of (3) and (4) are by simple splitting, but for (5) and (6) – analo-
gously to proof of (1).

2.3 Ambiguity and conjugation

Fundamental solutions K(ρ, ω) +K(ω) ·
√
D and K(ρ′, ω′) +K(ω′) ·

√
D are

defined as the least non-negative values of the given associativity class, satis-
fying the corresponding generalized Pell’s equations [4]. For ambiguous classes
zero fundamental solutions can occur. We deduce for the Property A system:

• for all positive N = k2 we have ambiguous fundamental solutions in the
form (k, 0) or K(ρ′, ω′) = k, K(ω′) = 0, where k = 2, 3, 4, .... As K(ω′) =
0, conjugation relations (2) give ambiguous fundamental solutions{

K(ρ, ω) = K(ρ′, ω′) ·K(a0, π)
K(ω) = K(ρ′, ω′) ·K(π).

(7)

• for all negative N = k2 · D we have ambiguous fundamental solutions
in the form (0, k) or K(ρ, ω) = 0, K(ω) = k, where k = 1, 2, 3, ....
As K(ρ, ω) = 0, conjugation relations (1) give ambiguous fundamental
solutions {

K(ρ′, ω′) = D ·K(π) ·K(ω)
K(ω′) = K(a0, π) ·K(ω).

(8)

Example 2.1. Table 1 shows ambiguous fundamental solutions for Pell’s
equations x2 − 13y2 = ±N with different N values. For D = 13 we have
K(a0, π) = 18, K(π) = 5, so the reader can test the relations (7) and (8). A lot
of non-ambiguous fundamental solutions for the same equations and different
N values are not shown in Table 1.
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Table 1.
N K(ρ, ω)/K(ω) K(ρ′, ω′)/K(ω′)
4 36/10 2/0
9 54/15 3/0
13 0/1 65/18
16 72/20 4/0
25 90/25 5/0
36 108/30 6/0
49 126/35 7/0
52 0/2 130/36
... ... ...

3 Squaring: from N to N 2

3.1 Overview and 10 versions

We have ±K(ρ, ω)/K(ω) and ±K(ρ′, ω′)/K(ω′) as fundamental solutions for
generalized Pell’s equations x2 − D · y2 = −N and x2 − D · y2 = +N, corre-
sponding to Property A system. Then fundamental solutions ±K(σ, τ)/K(τ)
and ±K(σ′, τ ′)/K(τ ′) of generalized Pell’s equations x2 − D · y2 = ±N2 can
be obtained by multiplication. In total there are 10 possible versions.

1. [+K(ρ′, ω′) +
√
D ·K(ω′)] · [+K(ρ′, ω′) +

√
D ·K(ω′)]

= K2(ρ′, ω′) +D ·K2(ω′) +
√
D · 2K(ρ′, ω′) ·K(ω′).

2. [−K(ρ′, ω′) +
√
D ·K(ω′)] · [+K(ρ′, ω′) +

√
D ·K(ω′)]

= −K2(ρ′, ω′) +D ·K2(ω′) = −N.

3. [−K(ρ′, ω′) +
√
D ·K(ω′)] · [−K(ρ′, ω′) +

√
D ·K(ω′)]

= K2(ρ′, ω′) +D ·K2(ω′)−
√
D · 2K(ρ′, ω′) ·K(ω′).

4. [+K(ρ′, ω′) +
√
D ·K(ω′)] · [+K(ρ, ω) +

√
D ·K(ω)]

= K(ρ′, ω′)·K(ρ, ω)+D·K(ω′)·K(ω)+
√
D·[K(ρ, ω)·K(ω′)+K(ρ′, ω′)·K(ω)].

5. [+K(ρ′, ω′) +
√
D ·K(ω′)] · [−K(ρ, ω) +

√
D ·K(ω)]

= −K(ρ′, ω′)·K(ρ, ω)+D·K(ω′)·K(ω)+
√
D·[K(ρ′, ω′)·K(ω)−K(ρ, ω)·K(ω′)].
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6. [−K(ρ′, ω′) +
√
D ·K(ω′)] · [+K(ρ, ω) +

√
D ·K(ω)]

= −K(ρ′, ω′)·K(ρ, ω)+D·K(ω′)·K(ω)+
√
D·[K(ρ, ω)·K(ω′)−K(ρ′, ω′)·K(ω)].

7. [−K(ρ′, ω′) +
√
D ·K(ω′)] · [−K(ρ, ω) +

√
D ·K(ω)]

= K(ρ′, ω′)·K(ρ, ω)+D·K(ω′)·K(ω)−
√
D·[K(ρ′, ω′)·K(ω)+K(ρ, ω)·K(ω′)].

8. [+K(ρ, ω) +
√
D ·K(ω)] · [+K(ρ, ω) +

√
D ·K(ω)]

= K2(ρ, ω) +D ·K2(ω) +
√
D · 2K(ρ, ω) ·K(ω).

9. [−K(ρ, ω) +
√
D ·K(ω)] · [+K(ρ, ω) +

√
D ·K(ω)]

= −K2(ρ, ω) +D ·K2(ω) = N.

10. [−K(ρ, ω) +
√
D ·K(ω)] · [−K(ρ, ω) +

√
D ·K(ω)]

= K2(ρ, ω) +D ·K2(ω)−
√
D · 2K(ρ, ω) ·K(ω).

Versions 2 and 9 do not give summands, including
√
D, they are ambiguous

roots of type (k, 0). Both factors in the left side of equation for version 9 are
associated to −N, so their multiple is associated to ±K(σ′, τ ′)/K(τ ′) and is
ambiguous: K(σ′, τ ′) = ±N, K(τ ′) = 0. Similarly for version 2.

Versions 4 and 7 have summands, including
√
D. Factors in the left side of

equations for these versions are associated to −N and +N, so their multiple
is associated to ±K(σ, τ)/K(τ). We have for both versions:

K(τ) = K(ρ, ω) ·K(ω′) +K(ρ′, ω′) ·K(ω)

= −K2(ρ, ω) ·K(π) +K(a0, π) ·K(ρ, ω) ·K(ω)

−K(a0, π) ·K(ρ, ω) ·K(ω) +D ·K2(ω) ·K(π)

= −K(π) · [K2(ρ, ω)−D ·K2(ω)] = N ·K(π).

K(σ, τ) = K(ρ, ω) ·K(ρ′, ω′) +D ·K(ω′) ·K(ω)

= −K2(ρ, ω) ·K(a0, π) +D ·K(π) ·K(ρ, ω) ·K(ω)

−D ·K(π) ·K(ρ, ω) ·K(ω) +D ·K2(ω) ·K(a0, π)

= −K(a0, π) · [K2(ρ, ω)−D ·K2(ω)] = N ·K(a0, π).

Clearly they are ambiguous conjugates, corresponding to relations (7). Sig-
nificantly, so obtained K(σ, τ) and K(τ) are not coprime.

Factors in the left side of equations for versions 5 and 6 are associated to
−N and +N, so their multiple is associated to ±K(σ, τ)/K(τ). But then for
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roots ±K(σ′, τ ′)/K(τ ′) we have uncertainty – versions 1 and 3, or versions 8
and 10. Suppose that roots, obtained from version 5, are positive:{

K(σ, τ) = −K(ρ′, ω′) ·K(ρ, ω) +D ·K(ω′) ·K(ω) > 0
K(τ) = K(ρ′, ω′) ·K(ω)−K(ρ, ω) ·K(ω′) > 0.

(9)

Then conjugation relations (1) gives us the following:

K(τ ′) = −K(σ, τ) ·K(π) +K(τ) ·K(a0, π)

= K(ρ′, ω′) ·K(ρ, ω) ·K(π)−D ·K(ω′) ·K(ω) ·K(π)

+K(ρ′, ω′) ·K(ω) ·K(a0, π)−K(ρ, ω) ·K(ω′) ·K(a0, π)

= K(ρ, ω) · [−K(ω′) ·K(a0, π) +K(ρ′, ω′) ·K(π)]︸ ︷︷ ︸
K(ω)

+K(ω) · [K(ρ′, ω′) ·K(a0, π)−D ·K(ω′) ·K(π)]︸ ︷︷ ︸
K(ρ,ω)

= 2K(ρ, ω) ·K(ω).

K(σ′, τ ′) = −K(σ, τ) ·K(a0, π) +D ·K(τ) ·K(π)

= K(ρ′, ω′) ·K(ρ, ω) ·K(a0, π)−D ·K(ω′) ·K(ω) ·K(a0, π)

+D ·K(ρ′, ω′) ·K(ω) ·K(π)−D ·K(ρ, ω) ·K(ω′) ·K(π)

= K(ρ, ω) · [K(ρ′, ω′) ·K(a0, π)−D ·K(ω′) ·K(π)]︸ ︷︷ ︸
K(ρ,ω)

+D ·K(ω) · [K(ρ′, ω′) ·K(π)−K(ω′) ·K(a0, π)]︸ ︷︷ ︸
K(ω)

= K2(ρ, ω) +D ·K2(ω).

So versions 8 and 10 are valid in this case.
If K(σ, τ) value from version 5 in (9) is negative, we take it’s opposite:{

K(σ, τ) = K(ρ′, ω′) ·K(ρ, ω)−D ·K(ω′) ·K(ω) > 0
K(τ) = K(ρ′, ω′) ·K(ω)−K(ρ, ω) ·K(ω′).

Then, by analogous calculations, we getK(τ ′) = 2K(ρ′, ω′)·K(ω′) andK(σ′, τ ′) =
K2(ρ′, ω′) +D ·K2(ω′). Now versions 1 and 3 are valid.

Obtained result can be formulated as separate

3.2 Criterion

Under Property A conditions the following relations exist:

• If D ·K(ω′) ·K(ω) > K(ρ′, ω′) ·K(ρ, ω), then{
K(σ′, τ ′) = K2(ρ, ω) +D ·K2(ω)

K(τ ′) = 2K(ρ, ω) ·K(ω).
(10)
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• If D ·K(ω′) ·K(ω) < K(ρ′, ω′) ·K(ρ, ω), then{
K(σ′, τ ′) = K2(ρ′, ω′) +D ·K2(ω′)

K(τ ′) = 2K(ρ′, ω′) ·K(ω′).
(11)

Thus fundamental non-ambiguous solutions ±K(σ′, τ ′)/K(τ ′) of generalized
Pell’s equations x2−D ·y2 = +N2 can be obtained. Corresponding ambiguous
solutions K(σ′, τ ′) = k, K(τ ′) = 0 of these equations were already mentioned.

Example 3.1. For D = 13 we have K(a0, π) = 18, K(π) = 5. If N = 3,
we have fundamental roots ±K(ρ, ω) = 7, K(ω) = 2 and ±K(ρ′, ω′) = 4,
K(ω′) = 1. Criterion 13·2·1 < 7·4, therefore fundamental roots K(σ′, τ ′)/K(τ ′)
of generalized Pell’s equation x2−D ·y2 = 9 are formed from K(ρ′, ω′)/K(ω′).
We have K(σ′, τ ′) = 42 + 13 · 12 = 29 and K(τ ′) = 2 · 4 · 1 = 8. Conjugation
relations or versions 5/6 give roots K(σ, τ) = 2, K(τ) = 1. Calculations of
ambiguous roots are trivial.

Thus we have for generalized Pell’s equation with D = 13 and N = −9 fun-
damental non-ambiguous roots ±2, 1 and ambiguous 54, 15, but for generalized
Pell’s equation with D = 13 and N = 9 fundamental non-ambiguous roots are
±29, 8 and ambiguous 3, 0.

Remark. With composite N values more than one pair of ±K(ρ, ω)/K(ω)
and ±K(ρ′, ω′)/K(ω′) fundamental roots can occur. Calculations, based on
versions 1–10 and criterion, must be done with conjugation pairs, connected
by relations (1) and (2).

Example 3.2. Again D = 13 with K(a0, π) = 18, K(π) = 5. If N = 51, we
have two pairs of conjugates. Testing of their conjugation and calculations of
new roots are left to concerned reader.

1. ±K(ρ, ω) = 1, K(ω) = 2 and ±K(ρ′, ω′) = 112, K(ω′) = 31,
2. ±K(ρ, ω) = 79, K(ω) = 22 and ±K(ρ′, ω′) = 8, K(ω′) = 1.
The first pair has criterion >, so fundamental roots ±K(σ′, τ ′)/K(τ ′) of the

generalized Pell’s equation x2−D ·y2 = 512 will be formed from K(ρ, ω)/K(ω)
values, we get K(σ′, τ ′) = 53, K(τ ′) = 4. Conjugation relations or versions
5/6 give fundamental roots of the generalized Pell’s equation x2−D·y2 = −512

as K(σ, τ) = 694, K(τ) = 193. Calculations of ambiguous roots are trivial.
The second pair has opposite criterion, therefore roots ±K(σ′, τ ′)/K(τ ′)

for this pair will be formed from K(ρ′, ω′)/K(ω′) values. Now K(σ′, τ ′) = 77,
K(τ ′) = 16. Conjugation relations or versions 5/6 give roots K(σ, τ) = 346,
K(τ) = 97. Calculations of ambiguous roots again are trivial.

As initial values K(ρ, ω)/K(ω) and K(ρ′, ω′)/K(ω′) were coprime, we also
get coprime roots ±K(σ′, τ ′)/K(τ ′) and K(σ, τ)/K(τ); this comes from the
relations (1) and (2), as well as from (10) and (11). There are additional non-
coprime fundamental roots for this Pell’s equation with D = 13 and N = ±512,
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whose formation involves mixing of both pairs, but their investigation is not the
goal of this article. Here we restrict our interests with formation of coprime
roots, because our final aim is hereditary properties of abc-triples.

3.3 Criterion – higher roots

Relations, analogous to versions 1–10, can be written for roots with longer
palindromic sequences, giving similar uncertainty and need for criterion. We
denote D · K(ω′) · K(ω) = A and K(ρ′, ω′) · K(ρ, ω) = B in our criterion
expression. Then by increment π we have:

A = D ·K(π, a0 + ρ′, ω′) ·K(π, a0 + ρ, ω) = ...

= D ·K2(a0, π) ·K(ω′) ·K(ω)

+D ·K(a0, π) ·K(π) · [K(ρ′, ω′) ·K(ω) +K(ω′) ·K(ρ, ω)]

+D ·K2(π) ·K(ρ′, ω′) ·K(ρ, ω).

B = K(a0, π, a0 + ρ′, ω′) ·K(a0, π, a0 + ρ, ω) = ...

= D2 ·K2(π) ·K(ω′) ·K(ω)

+D ·K(a0, π) ·K(π) · [K(ρ′, ω′) ·K(ω) +K(ω′) ·K(ρ, ω)]

+K2(a0, π) ·K(ρ′, ω′) ·K(ρ, ω).

Now the difference of the first summands in new A and B expressions
becomes

D · [K2(a0, π)−D ·K2(π)]︸ ︷︷ ︸
=−1

·K(ω′) ·K(ω) = −D ·K(ω′) ·K(ω). (12)

The difference of the second summands is zero, but the difference of the
third summands is

[D ·K2(π)−K2(a0, π)] ·K(ρ′, ω′) ·K(ρ, ω) = K(ρ′, ω′) ·K(ρ, ω). (13)

That means A−B = K(ρ′, ω′) ·K(ρ, ω)−D ·K(ω′) ·K(ω) – our criterion
changed it’s direction. Each increment by π will change the signs in the dif-
ferences of the first and the third summands, given by expressions in square
brackets for (12) and (13). As the result – criterion preserves it’s direction
for even number of π increments, but changes direction for odd number of π
increments.

3.4 Divisibility relations of higher roots

Here we will produce a set of divisibility relations between higher roots for
generalized Pell’s equations x2 −D · y2 = ±N and x2 −D · y2 = ±N2.
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1. Suppose that criterion is >, so relations (10) are valid. Then from (3):

2K(a0, π, a0 + ρ, ω) ·K(π, a0 + ρ, ω) =

= 2[K(ρ, ω) ·K(a0, π) +D ·K(ω) ·K(π)] · [K(ρ, ω) ·K(π) +K(ω) ·K(a0, π)]

= 2[K2(ρ, ω) ·K(a0, π) ·K(π) +D ·K2(ω) ·K(a0, π) ·K(π)

+D ·K2(π) ·K(ρ, ω) ·K(ω) +K2(a0, π) ·K(ρ, ω) ·K(ω)]

= 2K(a0, π) ·K(π) · [K2(ρ, ω) +D ·K2(ω)]

+ 2K(ρ, ω) ·K(ω) · [K2(a0, π) +D ·K2(π)]

= K(2π) ·K(σ′, τ ′) +K(τ ′) ·K(a0, 2π) = K(2π, a0 + σ′, τ ′).

K2(a0, π, a0 + ρ, ω) +D ·K2(π, a0 + ρ, ω) =

= [D ·K(π) ·K(ω) +K(a0, π) ·K(ρ, ω)]2

+D · [K(a0, π) ·K(ω) +K(π) ·K(ρ, ω)]2

= D2 ·K2(π) ·K2(ω) + 2D ·K(π) ·K(a0, π) ·K(ω) ·K(ρ, ω)

+K2(a0, π) ·K2(ρ, ω) +D ·K2(a0, π) ·K2(ω)

+ 2D ·K(π) ·K(a0, π) ·K(ω) ·K(ρ, ω) +D ·K2(π) ·K2(ρ, ω)

= 4D ·K(π) ·K(a0, π) ·K(ω) ·K(ρ, ω)+

[K2(a0, π) +D ·K2(π)] · [K2(ρ, ω) +D ·K2(ω)]

= 2D ·K(2π) ·K(ρ, ω) ·K(ω) +K(a0, 2π)[K
2(ρ, ω) +D ·K2(ω)]

= D ·K(2π) ·K(τ ′) +K(a0, 2π) ·K(σ′, τ ′)

= K(a0, 2π, a0) ·K(τ ′) +K(a0, 2π) ·K(σ′, τ ′) = K(a0, 2π, a0 + σ′, τ ′).

Analogous transformations with longer palindromic sequences result in gen-
eral formula:

K(a0, 2nπ, a0 + σ′, τ ′) = K2(a0, nπ, a0 + ρ, ω)
+D ·K2(nπ, a0 + ρ, ω),

K(2nπ, a0 + σ′, τ ′) = 2K(a0, nπ, a0 + ρ, ω) ·K(nπ, a0 + ρ, ω).
(14)

Here n = 1, 2, 3, .... Of course, Property A conditions and criterion > are
obligatory.

Now similar set of relations.

K(π, a0 + σ, τ) = K(σ, τ) ·K(π) +K(τ) ·K(a0, π)

= [K(σ′, τ ′) ·K(a0, π)−D ·K(τ ′) ·K(π)] ·K(π)

+ [K(σ′, τ ′) ·K(π)−K(τ ′) ·K(π)] ·K(a0, π)

= 2K(σ′, τ ′) ·K(π) ·K(a0, π)−K(τ ′) ·D ·K2(π)−K(τ ′) ·K2(a0, π)

= K(σ′, τ ′) · 2K(a0, π) ·K(π)−K(τ ′) · [K2(a0, π) +D ·K2(π)]

= [K2(ρ, ω) +D ·K2(ω)] · 2K(a0, π) ·K(π)

− 2K(ρ, ω) ·K(ω) · [K2(a0, π) +D ·K2(π)]
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= 2K2(ρ, ω) ·K(a0, π) ·K(π) +D ·K2(ω) · 2K(a0, π) ·K(π)

− 2K2(a0, π) ·K(ρ, ω) ·K(ω)− 2D ·K2(π) ·K(ρ, ω) ·K(ω)

= 2[K(ρ, ω) ·K(π) · [K(ρ, ω) ·K(a0, π)−D ·K(ω) ·K(π)]

+K(ω) ·K(a0, π) · [D ·K(ω) ·K(π)−K(a0, π) ·K(ρ, ω)]]

= 2K(ρ′, ω′) · [K(ω) ·K(a0, π)−K(ρ, ω) ·K(π)] = 2K(ρ′, ω′) ·K(ω′).

K(a0, π, a0 + σ, τ) = K(a0, π, a0) ·K(τ) +K(a0, π) ·K(σ, τ)

= D ·K(π) · [K(σ′, τ ′) ·K(π)−K(τ ′) ·K(a0, π)]

+K(a0, π) · [K(σ′, τ ′) ·K(a0, π)−D ·K(τ ′) ·K(π)]

= D ·K2(π) ·K(σ′, τ ′)−D ·K(a0, π)K(π) ·K(τ ′)

+K2(a0, π) ·K(σ′, τ ′)−D ·K(a0, π) ·K(π) ·K(τ ′)

= K(σ′, τ ′) · [K2(a0, π) +D ·K2(π)]− 2D ·K(a0, π) ·K(π) ·K(τ ′)

= [K2(ρ, ω) +D ·K2(ω)] · [K2(a0, π) +D ·K2(π)]

− 2D ·K(a0, π) ·K(π) · 2K(ρ, ω) ·K(ω)

= K2(ρ, ω) ·K2(a0, π) +D ·K2(ω) ·K2(a0, π) +D ·K2(ρ, ω) ·K2(π)

+D2 ·K2(ω) ·K2(π)− 2D ·K(a0, π) ·K(π) · 2K(ρ, ω) ·K(ω)

= K2(ρ, ω) ·K2(a0, π)− 2D ·K(a0, π) ·K(π) ·K(ρ, ω) ·K(ω)

+D2 ·K2(ω) ·K2(π) +D · [K2(ρ, ω) ·K2(π)

− 2K(a0, π) ·K(π) ·K(ρ, ω) ·K(ω) +K2(ω) ·K2(a0, π)]

= K2(ρ′, ω′) +D ·K2(ω′).

That means: {
K(a0, π, a0 + σ, τ) = K2(ρ′, ω′) +D ·K2(ω′),

K(π, a0 + σ, τ) = 2K(ρ′, ω′) ·K(ω′).
(15)

From (5):

K(3π, a0 + σ, τ) = K(σ′, τ ′) ·K(4π)−K(τ ′) ·K(a0, 4π)

= [K2(ρ, ω) +D ·K2(ω)] · 2K(2π) ·K(a0, 2π)

− 2K(ρ, ω) ·K(ω) · [K2(a0, 2π) +D ·K2(2π)]

= K2(ρ, ω) · 2K(2π) ·K(a0, 2π) +D ·K2(ω) · 2K(2π) ·K(a0, 2π)

− 2K(ρ, ω) ·K(ω) ·K2(a0, 2π)− 2D ·K(ρ, ω) ·K(ω) ·K2(2π).

(16)

From (6):

2K(a0, π, a0 + ρ′, ω′) ·K(π, a0 + ρ′, ω′)

= 2[−K(ρ, ω) ·K(a0, 2π) +D ·K(ω) ·K(2π)]

· [−K(ρ, ω) ·K(2π) +K(ω) ·K(a0, 2π)]

= 2[K2(ρ, ω) ·K(a0, 2π) ·K(2π)−K2(a0, 2π) ·K(ρ, ω) ·K(ω)

+D ·K2(ω) ·K(2π) ·K(a0, 2π)−D ·K2(2π) ·K(ω) ·K(ρ, ω)].

(17)
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Obtained (16) and (17) gives the same, this confirms relation:

K(3π, a0 + σ, τ) = 2K(a0, π, a0 + ρ′, ω′) ·K(π, a0 + ρ′, ω′).

Verification of the relation

K(a0, 3π, a0 + σ, τ) = K2(a0, π, a0 + ρ′, ω′) +D ·K2(π, a0 + ρ′, ω′)

can be made similarly, it is left for concerned reader.
Again analogous transformations with longer palindromic sequences and

generally:
K(a0, (2n+ 1)π, a0 + σ, τ) = K2(a0, nπ, a0 + ρ′, ω′)

+D ·K2(nπ, a0 + ρ′, ω′),
K((2n+ 1)π, a0 + σ, τ) = 2K(a0, nπ, a0 + ρ′, ω′)

·K(nπ, a0 + ρ′, ω′).

(18)

Here n = 1, 2, 3, ..., Property A conditions and criterion > are obligatory.
2. Now suppose that criterion is < and relations (11) are valid. Then:

K(a0, 2nπ, a0 + σ′, τ ′) = K2(a0, nπ, a0 + ρ′, ω′)
+D ·K2(nπ, a0 + ρ′, ω′),

K(2nπ, a0 + σ′, τ ′) = 2K(a0, nπ, a0 + ρ′, ω′)
·K(nπ, a0 + ρ′, ω′).

(19)

Here n = 1, 2, 3, ..., Property A conditions and criterion < are obligatory.{
K(a0, π, a0 + σ, τ) = K2(ρ, ω) +D ·K2(ω),

K(π, a0 + σ, τ) = 2K(ρ, ω) ·K(ω).
(20)


K(a0, (2n+ 1)π, a0 + σ, τ) = K2(a0, nπ, a0 + ρ, ω)

+D ·K2(nπ, a0 + ρ, ω),
K((2n+ 1)π, a0 + σ, τ) = 2K(a0, nπ, a0 + ρ, ω)

·K(nπ, a0 + ρ, ω).

(21)

Here n = 1, 2, 3, ..., Property A conditions and criterion < are obligatory.
Proofs of the relations (19)–(21) are fully analogous to that for (14)–(18).
So criterion > means relations (10), (14), (15) and (18), while criterion <

gives relations (11), (19), (20) and (21).

4 Squaring and abc-triples

Experimental calculations revealed that abc-triples, formed by components
of generalized Pell’s equations x2 − D · y2 = ±N, according to some rules
induced formation of abc-triples by components of generalized Pell’s equations
x2 −D · y2 = N2, where N is odd.
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4.1 General considerations

We have an abc-equation x2 −D · y2 = ±N, where N is odd or even natural
number, equation components are coprime and, according to [3], D ≡ 1, 2
(mod 4).

For even N values abc-coprimality means D ≡ 1 (mod 4), with further
x2−D · y2 ≡ 0 (mod 4), so only 4|N are possible. But then both fundamental
roots K(σ′, τ ′) and K(τ ′) for the equation K2(σ′, τ ′)−D ·K2(τ ′) = N2 will be
even numbers (see relations (10) and (11)) and we do not get an abc-equation.
About this situation see subsection 4.3, but at first our initial abc-equation has
odd N value.

4.2 Odd N values

Theorem 4.1. Under Property A conditions and with criterion > the fol-
lowing relations exist (for odd N values).
1. If fundamental roots K(ρ, ω)/K(ω) of the generalized Pell’s equation x2−D·
y2 = −N produce an abc-triple, then abc-triple is also produced by fundamental
roots K(σ′, τ ′)/K(τ ′) of the generalized Pell’s equation x2 −D · y2 = N2.
2. If fundamental roots K(ρ′, ω′)/K(ω′) of the generalized Pell’s equation x2−
D · y2 = N produce an abc-triple, then abc-triple is also produced by roots of
the generalized Pell’s equation x2 −D · y2 = N2, having one palindromic unit
π (roots K(a0, π, a0 + σ, τ) and K(π, a0 + σ, τ)).
3. If roots K(a0, nπ, a0 + ρ, ω) and K(nπ, a0 + ρ, ω) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2, having 2n palindromic units π.
4. If roots K(a0, nπ, a0+ρ′, ω′) and K(nπ, a0+ρ′, ω′) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2, having 2n+ 1 palindromic units π.

Proof. 1. So our initial equation K2(ρ, ω) − D · K2(ω) = −N already is an
abc-triple, which means

R[N ] ·R[K(ρ, ω)] ·R[D ·K(ω)] < D ·K2(ω). (22)

We must prove that equation K2(σ′, τ ′)−D ·K2(τ ′) = N2 also is an abc-
triple, so

R[K(σ′, τ ′) ·N ·D ·K(τ ′)] < K2(σ′, τ ′). (23)

At first – do we have formation of abc-equation? As K(ρ, ω) ⊥ D ·K(ω) and
N is odd, relations (10) give K(σ′, τ ′) ⊥ K(τ ′). Together with D ⊥ N that
means formation of abc-equation. Then instead of (23) we must prove

R[K(σ′, τ ′)] ·R[N ·D ·K(τ ′)] < K2(σ′, τ ′). (24)
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From (10) and (22):

R[N ·D ·K(τ ′)] = R[N ·D · 2K(ρ, ω) ·K(ω)]

= R[N ·D ·K(ρ, ω) ·K(ω)] < D ·K2(ω) < K(σ′, τ ′).

Factor 2 can be omitted, because N is odd, so one of remaining summands in
initial equation must be even. Obtained inequality we multiply with

R[K2(σ′, τ ′)] = R[K(σ′, τ ′)] ≤ K(σ′, τ ′)

and get necessary (24).
2. Now initial equation K2(ρ′, ω′)−D ·K2(ω′) = N is an abc-triple, therefore

R[N ] ·R[K(ρ′, ω′)] ·R[D ·K(ω′)] < K2(ρ′, ω′). (25)

We must show that equation K2(a0, π, a0 + σ, τ) −D ·K2(π, a0 + σ, τ) = N2

also is an abc-triple, which means

R[K(a0, π, a0 + σ, τ) ·N ·D ·K(π, a0 + σ, τ)] < K2(a0, π, a0 + σ, τ). (26)

Analogously relations (15) mean formation of abc-equation, so we must prove:

R[K(a0, π, a0 + σ, τ)] ·R[N ·D ·K(π, a0 + σ, τ)] < K2(a0, π, a0 + σ, τ). (27)

From (15) and (25) and omitting factor 2:

R[N ·D ·K(π, a0 + σ, τ)] = R[N ·D · 2K(ρ′, ω′) ·K(ω′)]

= R[N ·D ·K(ρ′, ω′) ·K(ω′)] < K2(ρ′, ω′) < K2(ρ′, ω′) +D ·K2(ω′)

= K(a0, π, a0 + σ, τ).

Multiplying obtained inequality with R[K(a0, π, a0+σ, τ)] ≤ K(a0, π, a0+σ, τ)
gives necessary (27).
3. If equation K2(a0, nπ, a0+ρ, ω)−D ·K2(nπ, a0+ρ, ω) = N is an abc-triple,
then

R[N ·K(a0, nπ, a0 + ρ, ω) ·D ·K(nπ, a0 + ρ, ω)] < K2(a0, nπ, a0 + ρ, ω)

– this is our initial condition. We must prove that equation K2(a0, 2nπ, a0 +
σ′, τ ′)−D ·K2(2nπ, a0 + σ′, τ ′) = N2 also is an abc-triple, so

R[K(a0, 2nπ, a0 + σ′, τ ′)] ·R[N ·D ·K(2nπ, a0 + σ′, τ ′)]

< K2(a0, 2nπ, a0 + σ′, τ ′)
(28)

Relations (14) confirm coprimality of the terms for the new equation and:

R[N ·D ·K(2nπ, a0 + σ′, τ ′)]

= R[N ·D · 2K(a0, nπ, a0 + ρ, ω) ·K(nπ, a0 + ρ, ω)]

= R[N ·D ·K(a0, nπ, a0 + ρ, ω) ·K(nπ, a0 + ρ, ω)]

< K2(a0, nπ, a0 + ρ, ω) < K2(a0, nπ, a0 + ρ, ω)

+D ·K2(nπ, a0 + ρ, ω) = K(a0, 2nπ, a0 + σ′, τ ′).

(29)
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As previously, we omit factor 2. NowR[K(a0, 2nπ, a0+σ′, τ ′)] ≤ K(a0, 2nπ, a0+
σ′, τ ′) and it’s multiplication with (29) gives necessary (28).

If K2(a0, nπ, a0 + ρ, ω) − D ·K2(nπ, a0 + ρ, ω) = −N is an abc-triple, we
can use

R[N ·D ·K(a0, nπ, a0 + ρ, ω) ·K(nπ, a0 + ρ, ω)]

< D ·K2(nπ, a0 + ρ, ω) < K2(a0, nπ, a0 + ρ, ω) +D ·K2(nπ, a0 + ρ, ω)

= K(a0, 2nπ, a0 + σ′, τ ′),

with analogous multiplication, leading to necessary (28).
4. For initial equations K2(a0, nπ, a0+ρ′, ω′)−D ·K2(nπ, a0+ρ′, ω′) = ±N as
abc-triples we can act analogously with previous item, only use relations (18)
instead of (14). This completes the proof of Theorem 4.1.

The following experimental Tables 2 (initial equation x2 − 2y2 = ±75) and
3 (equation x2 − 2y2 = ±710) illustrate induction of abc-triples, described in
Theorem 4.1. In Table 3 sequences are limited by my laptop’s performance,
therefore in Table 2 they are truncated at 45 π units. T means ”True” – we
get an abc-triple; F means ”False”.

Table 2. Equation x2 − 2y2 = ±75 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +75 T F F F F F T
ρ, ω +75 T F F F F F F
ρ, ω −75 T F T F F F F
ρ′, ω′ −75 T F F F T F T

13 14 15 16 17 18 19 20 21 22 23 24 25
ρ′, ω′ +75 F F F F T F
ρ, ω +75 F F F F F F F
ρ, ω −75 F F F T T F
ρ′, ω′ −75 F F F F F F F

26 27 28 29 30 31 32 33 34 35 36 37 38
ρ′, ω′ +75 F F F F F F F
ρ, ω +75 F F F F F F
ρ, ω −75 F F F F F T F
ρ′, ω′ −75 T T F F F T

39 40 41 42 43 44 45
ρ′, ω′ +75 F F F
ρ, ω +75 F F F F
ρ, ω −75 F T F
ρ′, ω′ −75 F F T F
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Table 3. Equation x2 − 2y2 = ±710 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +710 T F T T T F F
ρ, ω +710 T T F F T F F
ρ, ω −710 F F F F F F F
ρ′, ω′ −710 F T F F F F F

13 14 15 16 17 18 19 20 21 22 23 24 25
ρ′, ω′ +710 T T F F F T
ρ, ω +710 F T F T F T T
ρ, ω −710 F F F F F F
ρ′, ω′ −710 F F F F F F F

26 27 28 29 30 31 32 33 34 35 36 37 38
ρ′, ω′ +710 F T F F T F F
ρ, ω +710 F F T F F T
ρ, ω −710 F F F F F F F
ρ′, ω′ −710 F T F F F F

39 40 41 42 43 44 45 46 47 48 49 50 51
ρ′, ω′ +710 T F T F F F
ρ, ω +710 T F T T F F F
ρ, ω −710 F F F F F F
ρ′, ω′ −710 F F F F F F F

52 53 54 55 56 57 58 59 60 61 62 63 64
ρ′, ω′ +710 T F T F F F T
ρ, ω +710 F T F T F F
ρ, ω −710 F F F F F F F
ρ′, ω′ −710 F F F F F F

65 66 67 68 69 70 71 72 73 74 75 76 77
ρ′, ω′ +710 F F T T T T
ρ, ω +710 F T F T T T F
ρ, ω −710 T F F F F F
ρ′, ω′ −710

78 79 80 81 82 83 84 85 86 87 88 89 90
ρ′, ω′ +710 F F F T F T F
ρ, ω +710 T F F F T F
ρ, ω −710 F F F
ρ′, ω′ −710

All abc-triples from Table 2, considered as primary in view of Theorem 4.1,
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induce corresponding secondary abc-triples, whose finding in Table 3 we leave
to concerned reader.

Theorem 4.2. Under Property A conditions and with criterion < the fol-
lowing relations exist (for odd N values).

1. If fundamental roots K(ρ′, ω′)/K(ω′) of the generalized Pell’s equation x2−
D·y2 = N produce an abc-triple, then abc-triple is also produced by fundamental
roots K(σ′, τ ′)/K(τ ′) of the generalized Pell’s equation x2 −D · y2 = N2.

2. If fundamental roots K(ρ, ω)/K(ω) of the generalized Pell’s equation x2 −
D · y2 = −N produce an abc-triple, then abc-triple is also produced by roots of
the generalized Pell’s equation x2 −D · y2 = N2, having one palindromic unit
π (roots K(a0, π, a0 + σ, τ) and K(π, a0 + σ, τ)).

3. If roots K(a0, nπ, a0 + ρ, ω) and K(nπ, a0 + ρ, ω) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2, having 2n+ 1 palindromic units π.

4. If roots K(a0, nπ, a0+ρ′, ω′) and K(nπ, a0+ρ′, ω′) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2, having 2n palindromic units π.

Proof. The proof for Theorem 4.2 is fully analogous to that for Theorem 4.1,
using relations (11), (19), (20) and (21).

The following experimental Tables 4 (initial equation x2 − 65y2 = ±74;
truncated at 20π units) and 5 (equation x2− 65y2 = ±78;) illustrate induction
of abc-triples, described in Theorem 4.2. In Table 5 sequences are limited by
my laptop’s performance. T means ”True” – we get an abc-triple; F means
”False”.

Table 4. Equation x2 − 65y2 = ±74 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +74 T T F T F F F
ρ, ω +74 T F T F F T F
ρ, ω −74 T F F F T F F
ρ′, ω′ −74 T F F F F T T

13 14 15 16 17 18 19 20
ρ′, ω′ +74 F F F F
ρ, ω +74 F F F T
ρ, ω −74 F T T F
ρ′, ω′ −74 F T F F
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Table 5. Equation x2 − 65y2 = ±78 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +78 T T T T F F T
ρ, ω +78 T T F F T F F
ρ, ω −78 F F F F F F T
ρ′, ω′ −78 F F F T F F F

13 14 15 16 17 18 19 20 21 22 23 24 25
ρ′, ω′ +78 T F T F T F
ρ, ω +78 F F T T F F F
ρ, ω −78 F F F F F F
ρ′, ω′ −78 F F F F F

26 27 28 29 30 31 32 33 34 35 36 37 38
ρ′, ω′ +78 F F T F
ρ, ω +78 F F F T T
ρ, ω −78 F
ρ′, ω′ −78

Finding of corresponding primary-secondary relations between abc-triples
in Tables 4 and 5 is left to concerned reader.

In Tables 3 and 5 we can notice relative concentration of abc-triples in roots
of the generalized Pell’s equations x2 −D · y2 = N2k, with k = 1, 2, 3... .

In view of Theorems 4.1 and 4.2 we always can find for every primary abc-
triple in the set of roots for equation x2 − D · y2 = ±N it’s corresponding
secondary abc-triple in the set of roots for equation x2−D ·y2 = N2; here N is
odd and Property A conditions are satisfied. Similarly we can treat equation
x2−D ·y2 = N2 as primary and find corresponding secondary abc-triples in the
set of roots for equation x2 −D · y2 = N4; etc. As the result – squaring gives
rise to infinite sequences of primary-secondary interrelated abc-triples, which
can be derived for every abc-triple from the set of roots of initial equation
x2 −D · y2 = ±N.

4.3 Even N values

Now N is even (see subsection 4.1), so both fundamental roots K(σ′, τ ′) and
K(τ ′) will be even numbers (from relations (10) or (11)) and we do not get
an abc-equation. Suppose that criterion is >, so K2(ρ, ω) + D · K2(ω) ≡ 2
(mod 4) and 2K(ρ, ω) ·K(ω) ≡ 2 (mod 4). Then new relations{

K(σ′, τ ′) =
1

2
[K2(ρ, ω) +D ·K2(ω)]

K(τ ′) = K(ρ, ω) ·K(ω).
(30)
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with halved previous roots will give correct abc-equation

K2(σ′, τ ′)−D ·K2(τ ′) =
N2

4
. (31)

How about induction of abc-triples in this case?
Substitution from relations (10) to (30) is critical. Instead of (14) we have
K(a0, 2nπ, a0 + σ′, τ ′) =

1

2
[K2(a0, nπ, a0 + ρ, ω)

+D ·K2(nπ, a0 + ρ, ω)],
K(2nπ, a0 + σ′, τ ′) = K(a0, nπ, a0 + ρ, ω) ·K(nπ, a0 + ρ, ω).

(32)

Here n = 1, 2, 3, ..., Property A conditions and criterion > are obligatory.
Relations (15) become{

K(a0, π, a0 + σ, τ) =
1

2
[K2(ρ′, ω′) +D ·K2(ω′)],

K(π, a0 + σ, τ) = K(ρ′, ω′) ·K(ω′),
(33)

but instead of (18) we have
K(a0, (2n+ 1)π, a0 + σ, τ) =

1

2
[K2(a0, nπ, a0 + ρ′, ω′)

+D ·K2(nπ, a0 + ρ′, ω′)],
K((2n+ 1)π, a0 + σ, τ) = K(a0, nπ, a0 + ρ′, ω′)

·K(nπ, a0 + ρ′, ω′).

(34)

Here n = 1, 2, 3, ..., Property A conditions and criterion > are obligatory. All
these modifications can be easily tracked in subsection 3.4 calculations.

Now the impact of mentioned modifications to all four Theorem 4.1 state-
ment analogues.
1. If initial equation K2(ρ, ω)−D ·K2(ω) = −N is an abc-triple, then

R[K(ρ, ω)] ·R[N ] ·R[D ·K(ω)] < D ·K2(ω). (35)

As 4|N and 16|N2, R[N ] is not significant, because the new equation is (31).
For equation (31) to be an abc-triple, we need

R[K(σ′, τ ′)] ·R[N ] ·R[D ·K(τ ′)] < K2(σ′, τ ′).

As R[K(σ′, τ ′)] ≤ K(σ′, τ ′), we need

R[N ] ·R[D ·K(τ ′)] < K(σ′, τ ′) =
K2(ρ, ω) +D ·K2(ω)

2
.

As K2(ρ, ω) < D ·K2(ω), we need stronger inequality than (35), which some-
times is not reached. So the first statement analogue is not justified.
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Some examples, where mentioned in this statement analogue abc-triple in-
duction is not confirmed, include D/N combinations 17/2048, 13/2116 and
17/4864, but for D/N combinations 265/64, 65/10976 and 193/8 new abc-
triples of type (31) are induced.
2. Now K2(ρ′, ω′)−D ·K2(ω′) = N is an abc-triple, so

R[K(ρ′, ω′)] ·R[N ] ·R[D ·K(ω′)] < K2(ρ′, ω′).

Again R[N ] is not significant, but the new equation is

K2(a0, π, a0 + σ, τ)−D ·K2(π, a0 + σ, τ) =
N2

4
. (36)

From (33) we can see that it is an abc-equation, but for (36) to be an
abc-triple, the inequality

R[K(a0, π, a0 + σ, τ)] ·R[N ] ·R[D ·K(π, a0 + σ, τ)] < K2(a0, π, a0 + σ, τ)

must be confirmed. Once more from (33):

R[N ] ·R[D ·K(π, a0 + σ, τ)] = R[N ] ·R[D ·K(ρ′, ω′) ·K(ω′)] < K2(ρ′, ω′).

As K2(ρ′, ω′) >
K2(ρ′, ω′) +D ·K2(ω′)

2
= K(a0, π, a0 + σ, τ), we have

R[N ] ·R[D ·K(π, a0 + σ, τ)] < K(a0, π, a0 + σ, τ).

Together with R[K(a0, π, a0 + σ, τ)] ≤ K(a0, π, a0 + σ, τ) this confirms (36) as
abc-triple and justifies the second statement analogue.
3. If equation K2(a0, nπ, a0+ρ, ω)−D ·K2(nπ, a0+ρ, ω) = N is an abc-triple,
then we have for initial condition

R[K(a0, nπ, a0 + ρ, ω)] ·R[N ] ·R[D ·K(nπ, a0 + ρ, ω)] < K2(a0, nπ, a0 + ρ, ω).

We must confirm that for an equation

K2(a0, 2nπ, a0 + σ′, τ ′)−D ·K2(2nπ, a0 + σ′, τ ′) =
N2

4
(37)

we have

R[K(a0, 2nπ, a0+σ′, τ ′)]·R[N ]·R[D·K(2nπ, a0+σ′, τ ′)] < K2(a0, 2nπ, a0+σ′, τ ′).

Again relations (32) confirm formation of an abc-equation and

R[N ] ·R[D ·K(2nπ, a0 + σ′, τ ′)]

= R[N ] ·R[D ·K(a0, nπ, a0 + ρ, ω) ·K(nπ, a0 + ρ, ω)]

< K2(a0, nπ, a0 + ρ, ω) > K(a0, 2nπ, a0 + σ′, τ ′).
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Together with R[K(a0, 2nπ, a0 + σ′, τ ′)] ≤ K(a0, 2nπ, a0 + σ′, τ ′) this confirms
(37) as abc-triple and justifies the third statement analogue.

For initial abc-triple beingK2(a0, nπ, a0+ρ, ω)−D·K2(nπ, a0+ρ, ω) = −N
we analogously can get D · K2(nπ, a0 + ρ, ω) > K(a0, 2nπ, a0 + σ′, τ ′) with
further justification of the statement analogue.
4. For initial equations K2(a0, nπ, a0+ρ′, ω′)−D ·K2(nπ, a0+ρ′, ω′) = ±N as
abc-triples we can act analogously with previous item, only use relations (34)
instead of (32). This completes confirmation of

Theorem 4.3. Under Property A conditions and with criterion > the fol-
lowing relations exist (for even N values).
1. If fundamental roots K(ρ′, ω′)/K(ω′) of the generalized Pell’s equation x2−
D · y2 = N produce an abc-triple, then abc-triple is also produced by roots of
the generalized Pell’s equation x2−D ·y2 = N2/4, having one palindromic unit
π (roots K(a0, π, a0 + σ, τ) and K(π, a0 + σ, τ)).
2. If roots K(a0, nπ, a0 + ρ, ω) and K(nπ, a0 + ρ, ω) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2/4, having 2n palindromic units π.
3. If roots K(a0, nπ, a0+ρ′, ω′) and K(nπ, a0+ρ′, ω′) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2/4, having 2n+ 1 palindromic units π.

The following experimental Tables 6 (initial equation x2 − 17y2 = ±211)
and 7 (equation x2−17y2 = ±220) illustrate induction of abc-triples, described
in Theorem 4.3. In Table 7 sequences are limited by my laptop’s performance,
therefore in Table 6 they are truncated at 30 π units. T means ”True” – we
get an abc-triple; F means ”False”.

Table 6. Equation x2 − 17y2 = ±211 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +211 F F F F T F F
ρ, ω +211 F F F F F F F
ρ, ω −211 T F T F T F F
ρ′, ω′ −211 T F T F F F F

13 14 15 16 17 18 19 20 21 22 23 24 25
ρ′, ω′ +211 F F F F F F
ρ, ω +211 F F F F F F T
ρ, ω −211 T F F F F F
ρ′, ω′ −211 F T T F T F T

(continued)
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Table 6 (continuation).

Number of π units
Extension N 26 27 28 29 30

ρ′, ω′ +211 F F F
ρ, ω +211 F F
ρ, ω −211 T F F
ρ′, ω′ −211 F F

Table 7. Equation x2 − 17y2 = ±220 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +220 F F F F T T F
ρ, ω +220 F T F T T F F
ρ, ω −220 T F F F F F F
ρ′, ω′ −220 T T F F F F F

13 14 15 16 17 18 19 20 21 22 23 24 25
ρ′, ω′ +220 F T F F T F
ρ, ω +220 T F T T F F T
ρ, ω −220 F F F F F F
ρ′, ω′ −220 F F F T F F F

26 27 28 29 30 31 32 33 34 35 36 37 38
ρ′, ω′ +220 F T T F F F F
ρ, ω +220 F F T F T F
ρ, ω −220 F F F F T
ρ′, ω′ −220 F F F T F F

39 40 41 42 43 44 45 46 47 48 49 50 51
ρ′, ω′ +220 F F
ρ, ω +220 F F T F F F T
ρ, ω −220

ρ′, ω′ −220

52 53 54 55 56 57 58 59 60 61 62 63 64
ρ′, ω′ +220

ρ, ω +220 F F T
ρ, ω −220

ρ′, ω′ −220

All abc-triples from Table 6, considered as primary in view of Theorem 4.3,
induce corresponding secondary abc-triples, whose finding in Table 7 we leave
to concerned reader.

In the situation with N = 4 initial equation (primary abc-triples) coincides
with the new equation (secondary abc-triples), as for D/N = 5/4. Obtained
formulae in Theorem 4.3 agrees with our previous results in [2].
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Now suppose that criterion is < . In full analogy we can get correct abc-
equation, changing relations (11) to{

K(σ′, τ ′) =
1

2
[K2(ρ′, ω′) +D ·K2(ω′)]

K(τ ′) = K(ρ′, ω′) ·K(ω′)
(38)

with halved previous roots, then subsequent changes in relations (19), (20)
and (21). As previously, the analogue to first statement of Theorem 4.2 is not
confirmed: no abc-triple induction for D/N values 17/77824 and 577/82944,
but induction for 17/9728 and 13/8748 takes place. Remaining analogues to
statements 2–4 of Theorem 4.2 are valid and this proves

Theorem 4.4. Under Property A conditions and with criterion < the fol-
lowing relations exist (for even N values).

1. If fundamental roots K(ρ, ω)/K(ω) of the generalized Pell’s equation x2 −
D · y2 = −N produce an abc-triple, then abc-triple is also produced by roots
of the generalized Pell’s equation x2 −D · y2 = N2/4, having one palindromic
unit π (roots K(a0, π, a0 + σ, τ) and K(π, a0 + σ, τ)).

2. If roots K(a0, nπ, a0 + ρ, ω) and K(nπ, a0 + ρ, ω) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2/4, having 2n+ 1 palindromic units π.

3. If roots K(a0, nπ, a0+ρ′, ω′) and K(nπ, a0+ρ′, ω′) of the generalized Pell’s
equation x2 − D · y2 = ±N, having n > 0 palindromic units π, produce an
abc-triple, then abc-triple is also produced by roots of the generalized Pell’s
equation x2 −D · y2 = N2/4, having 2n palindromic units π.

The following experimental Tables 8 (initial equation x2−17y2 = ±29) and
9 (equation x2 − 17y2 = ±216) illustrate induction of abc-triples, described in
Theorem 4.4. In Table 9 sequences are limited by my laptop’s performance,
therefore in Table 8 they are truncated at 30 π units. T means ”True” – we
get an abc-triple; F means ”False”.

Table 8. Equation x2 − 17y2 = ±29 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +29 F F F F F F F
ρ, ω +29 F F F F F T T
ρ, ω −29 F F F F F F F
ρ′, ω′ −29 F T F T F F F

(continued)



Some abc-properties of the generalized Pell’s equations ... 273

Table 8 (continuation).

Number of π units
Extension N 13 14 15 16 17 18 19 20 21 22 23 24 25

ρ′, ω′ +29 T F F F T F
ρ, ω +29 F F F F F T F
ρ, ω −29 F T F F F F
ρ′, ω′ −29 F F F T F F F

26 27 28 29 30
ρ′, ω′ +29 F F F
ρ, ω +29 F F
ρ, ω −29

ρ′, ω′ −29 F F

Table 9. Equation x2 − 17y2 = ±216 and abc-triples.
Number of π units

Extension N 0 1 2 3 4 5 6 7 8 9 10 11 12
ρ′, ω′ +216 F T F F F T F
ρ, ω +216 F F F F F F F
ρ, ω −216 F F F T F F F
ρ′, ω′ −216 F F F F F F F

13 14 15 16 17 18 19 20 21 22 23 24 25
ρ′, ω′ +216 F F F T F T
ρ, ω +216 F T F T F T T
ρ, ω −216 T F F F F F
ρ′, ω′ −216 F F F F F F F

26 27 28 29 30 31 32 33 34 35 36 37 38
ρ′, ω′ +216 F T F F F F T
ρ, ω +216 F F F T F F
ρ, ω −216 F F F
ρ′, ω′ −216 T F

39 40 41 42 43 44 45 46 47 48 49 50 51
ρ′, ω′ +216 F F T F T
ρ, ω +216 F F F F T
ρ, ω −216

ρ′, ω′ −216

All abc-triples from Table 8, considered as primary in view of Theorem 4.4,
induce corresponding secondary abc-triples, whose finding in Table 9 we leave
to concerned reader.
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In view of Theorems 4.3 and 4.4 we analogously can construct infinite
sequences of primary-secondary interrelated abc-triples, derived from every
primary abc-triple in the set of roots for the initial equation x2−D · y2 = ±N.
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