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Abstract

We study the locally complex partially alternative algebras. We also

consider an algebraic real algebra A with no nonzero divisor of zero. If

A is a right or left Moufang algebra, we give some conditions for A to be

isomorphic to R, C, H, or O. Finally, we show also that if A is unitary

and dim(A) > 1, then A contains C.
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1 Introduction

Throughout this paper we will deal with nonzero real algebras. The algebras

are not assumed to be associative, finite-dimensional, or unital.

The study of real algebras with no nonzero divisor of zero (including di-

vision algebras and absolute-valued algebras) began with the discovery of H
(Hamilton’s quaternions) in 1843 and O (Cayley’s octonions) in 1843 and, in-

dependently, 1845. Frobenius-Zorn showed that every alternative, quadratic

real algebra without divisors of zero is isomorphic to either R, C, H, or O
[7, 8, 14]. If A is a weakly alternative algebraic real algebra with no nonzero
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joint divisor of zero, then A is isomorphic to R, C, H, or O [6, Corollary 3].

The algebras R, C, H and O are the only algebraic algebras with no nonzero

divisor of zero satisfying the middle Moufang identity [6, Theorem 3]. These

four algebras are also the only locally complex alternative algebras [5, Theo-

rem 4.3] and [1, Theorem 4.7]. However, there are several algebras with no

nonzero divisor of zero that satisfy the right or left Moufang identity and not

isomorphic to R, C, H or O [4, Theorems 2.1 and 2.2]. This implies that the

additional assumptions of Theorems 3.5 and 3.8 cannot be removed.

2 Notations and Preliminary

Let A be an algebra with product (x, y) 7→ xy. We recall that (., ., .), [., .],

A(x) denote respectively the associator, the commutator, and the subalgebra

of A generated by x ∈ A. An element x of A is said to be a divisor of zero

in A if there exists y ∈ A \ {0} such that xy = 0 or yx = 0. The algebra A

is called division algebra, if Lx : A → A a 7→ xa and Rx : A → A a 7→ ax

are bijective for all x ∈ A\{0}. A is called power-associative (resp. algebraic)

if A(x) is associative (resp. if A(x) is finite-dimensional) for every x ∈ A. An

element e in A is called flexible if (e, x, e) = 0 for all x ∈ A.

A is called quadratic if A contains a unit element e and e, x, x2 are linearly

dependent for every x ∈ A. If A is quadratic, the set Im(A) = {x ∈ A : x2 ∈
Re and x /∈ Re \ {0}} of purely imaginary elements of A constitutes a linear

subspace of A which is suppementary to Re [7].

A is called left alternative (resp. right alternative) if (x, x, y) = 0 (resp.

(y, x, x) = 0) for all x, y ∈ A. We recall that A is alternative if A is left and

right alternative.

A is called power-commutative (resp. flexible) if A(x) is commutative for

all x ∈ A (resp. (x, y, x) = 0 for all x, y ∈ A). Every flexible algebra is power-

commutative. The algebra A is called third-power associative if (x, x, x) = 0

for every x ∈ A. A linearization of (x, x, x) = 0 gives that

(x, x, y) + (x, y, x) + (y, x, x) = 0. (2.1)

A is said to be locally complex algebra if A(a) is isomorphic to either R
or C for every a ∈ A \ {0}. We also remember that A satisfies the right

Moufang identity (resp. the left Moufang identity) if y[(xz)x] = [(yx)z]x

(resp. if [x(yx)]z = x[y(xz)]) for all x, y, z ∈ A. Any alternative algebra

satisfies Moufang’s identities.

A nonzero element e of A is called a generalized left-unit (resp. generalized

right-unit) if e(xy) = x(ey)
(
resp. (xy)e = (xe)y

)
for all x, y ∈ A, and e
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is called a generalized unit if e is both generalized left-unit and generalized

right-unit [3]. It is easy to verify that a left-unit is a generalized left-unit and

a right-unit is a generalized right-unit. The converses are false, see [3].

The opposite algebra A(0) of A is defined as the algebra consisting of the

vector space of A and the product (x, y) 7→ yx. In [10, Definition 2.2], the

authors introduce the notion of partially alternative algebras which is a gen-

eralization of alternative algebras.

Definition 2.1. Let A be a real algebra with unit element 1. An element q ∈ A

is called an imaginary unit if q2 = −1. Denote by IA the set of all imaginary

units in A.

Definition 2.2. Let A be a real algebra with unit element 1 and IA ̸= ∅.

(1) A is called partially left alternative if for all x ∈ IA and y ∈ A, (x, x, y) =

0.

(2) A is called partially flexible if for all x ∈ IA and y ∈ A, (x, y, x) = 0.

(3) A is called partially right alternative if for all x ∈ IA and y ∈ A,

(y, x, x) = 0.

The algebra A is called partially alternative if it is partially left alternative,

flexible, and right alternative.

We have the following preliminary result.

Lemma 2.3. Let A be a right moufang real unital algebra with no nonzero

divisor of zero. Then A is alternative.

Proof. Taking z = 1 in the right Moufang identity y[(xz)x] = [(yx)z]x, we

have yx2 = (yx)x, that is, A is a right alternative algebra. Therefore, by [6,

Corollary 1], A is alternative.

3 Main results

Theorem 3.1. Let A be a locally complex partially left and right alternative

algebra. Then A is isomorphic to C, H, or O.

Proof. (i) Suppose that A is partially left alternative. So (u, u, z) = 0 for every

u ∈ IA and z ∈ A
(
Definition 2.2(1)

)
. By [5, Theorem 3.3], A is quadratic, so

A = R1⊕ Im(A). By definition, we have IA ̸= ∅, IA ⊂ Im(A) and for every
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w ∈ Im(A) there exists β ∈ R and v ∈ IA such that w = βv. Let x, y ∈ A.

We have x = α1+ λu, with u ∈ IA and (α, λ) ∈ R2. We obtain

(x, x, y) = (α1+ λu, α1+ λu, y)

= (α1, α1+ λu, y) + (λu, α1+ λu, y)

= (λu, α1+ λu, y)

= (λu, α1, y) + (λu, λu, y)

= (λu, λu, y)

= λ2(u, u, y)

= 0,

so A is a left alternative algebra.

(ii) Suppose that A is partially right alternative. It follows from (i) by

passing to the opposite algebra that A is a right alternative algebra.

This implies that A is alternative. Therefore, by [5, Theorem 4.3], A is

isomorphic to C, H or O.

Theorem 3.2. Let A be a locally complex algebra. The following assertions

are equivalent:

(i) A is partially left alternative and partially flexible,

(ii) A is partially right alternative and partially flexible,

(iii) A is isomorphic to C, H, or O.

Proof. (iii) ⇒ (i) and (iii) ⇒ (ii) are obvious.

(i) ⇒ (iii). Suppose that A is partially left alternative and partially flexi-

ble. The first part of the proof of Theorem 3.1 proves that A is a left alternative

algebra. This implies that A is third-power associative, and the equaliy (2.1)

gives that (x, y, x) + (y, x, x) = 0 for every x, y ∈ A.

Since A is locally complex, by [5, Theorem 3.3], A is quadratic, so A =

R1 ⊕ Im(A), and hence x = α1 + λu with (α, λ) ∈ R2 and u ∈ IA. Keeping
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in mind that (u, y, u) = 0, we obtain

0 = (x, y, x) + (y, x, x)

= (α1+ λu, y, α1+ λu) + (y, x, x)

= (α1, y, α1+ λu) + (λu, y, α1+ λu) + (y, x, x)

= (λu, y, α1+ λu) + (y, x, x)

= (λu, y, α1) + (λu, y, λu) + (y, x, x)

= (λu, y, λu) + (y, x, x)

= λ2(u, y, u) + (y, x, x)

= (y, x, x),

so A is a right alternative algebra. We realize that A is alternative. Therefore,

by [5, Theorem 4.3], A is isomorphic to C, H or O.

(ii) ⇒ (iii). Suppose that A is partially right alternative and partially

flexible. The result follows from (i) ⇒ (iii) by passing to the opposite algebra.

Corollary 3.3. Let A be a locally complex partially alternative algebra. Then

A is isomorphic to C, H, or O.

Theorem 3.4. Let A be a power-associative algebraic partially alternative real

algebra with no nonzero divisor of zero. Then A is isomorphic to C, H, or O.

Proof. Let x ∈ A \ {0}, the subalgebra A(x) is associative. Therefore, by

[2, Theorem 2.5.29], A(x) is isomorphic to R, C or H. Since deg(H) = 2, so

A(x) is isomorphic to R or C, and hence A is locally complex. Therefore, by

Corollary 3.3, A is isomorphic to C, H or O.

Theorem 3.5. Let A be a finite-dimensional division algebra containing a

generalized unit. If A satisfies the right or left Moufang identity, then A is

isomorphic to R, C, H, or O.

Proof. (i) Suppose that A is a right Moufang algebra and let e a generalized

unit of A. Since all the real algebras with finite dimension are normable,

the proof of Theorem 1.1 in [4] shows that A contains a left-unit element

e0. Putting y = x = e in y[(xz)x] = [(yx)z]x, we get e[(ez)e] = (e2z)e.

We have also e[(ez)e] = e(e2z) because e is a generalized right-unit, and so

(e2z)e = e(e2z). As Le2 : A → A b 7→ e2b is bijective, we have ye = ey for

all y in A, and hence ee0 = e0e = e. For all x in A, we have e(xe0) = x(ee0)

because e is a generalized left-unit, hence e(xe0) = xe = ex, and so xe0 = x

because A has no nonzero divisors of zero. So e0x = xe0 = x for every x ∈ A,
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and hence A is alternative because of Lemma 2.3. Therefore, by [2, Theorem

2.5.29], A is isomorphic to R, C, H, or O.

(ii) Suppose that A is a left Moufang algebra. This case follows from (i)

by passing to the opposite algebra.

Proposition 3.6. Let A be an algebraic real algebra with no nonzero divisor

of zero containing a nonzero idempotent e. Then the following assertions are

equivalent:

(i) A satisfies the right Moufang identity and e is a generalized right-unit,

(ii) A satisfies the left Moufang identity and e is a generalized left-unit,

(iii) A is isomorphic to R, C, H, or O.

Proof. (iii) ⇒ (i) and (iii) ⇒ (ii) are obvious.

(i) ⇒ (iii). Suppose thatA is a right Moufang algebra and e is a generalized

right-unit. Taking x = y = e in the right Moufang identity y[(xz)x] = [(yx)z]x,

we obtain e[(ez)e] = (e2z)e = (ez)e. Keeping in mind that e is a generalized

right unit, we have also e[(ez)e] = e(e2z) = e(ez) and (ez)e = e2z = ez, hence

ez = e(ez). This implies that ez = z because A has no nonzero divisors of zero.

The equality ez = z gives that (ez)e = ze, so ez = ze, and hence ez = ze = z

for every z in A. This implies that A is alternative (Lemma 2.3). Therefore,

by [2, Theorem 2.5.29], A is isomorphic to R, C, H, or O.

(ii) ⇒ (iii). Suppose that A is a left Moufang algebra and e is a generalized

left-unit. This case follows (i) ⇒ (iii) by passing to the opposite algebra.

Proposition 3.7. Let A be a real algebra with no nonzero divisor of zero

containing a nonzero flexible idempotent e.

(i) If A is a right Moufang algebra, then A is left-unit.

(ii) If A is a left Moufang algebra, then A is right-unit.

(iii) If A is a middle Moufang algebra, then A is a unital alternative algebra.

Proof. (i) Suppose that A is a right Moufang algebra. Putting x = y = e in

the identity y[(xz)x] = [(yx)z]x, we get e[(ez)e] = (e2z)e = (ez)e for every z

in A. Keeping in mind that A has no nonzero divisors of zero and e is flexible,

we have e[(ez)e] = (ez)e, so e[(ez)e] = e(ze), and hence ez = z.

(ii) Suppose that A is a left Moufang algebra. This case follows from (i)

by passing to the opposite algebra.

(iii) Suppose that A is a middle Moufang algebra. Taking x = y = e in

the middle Moufang identity (xy)(zx) = [x(yz)]x, we get e(ze) = [e(ez)]e,
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hence (ez)e = [e(ez)]e because e is flexible. This implies that ez = e(ez),

and so z = ez because A has no nonzero divisors of zero. Therefore, by [6,

Proposition 2(ii)], A is unital. Taking y = e in the middle Moufang identity

(xy)(zx) = [x(yz)]x, we have also (x, z, x) = 0, that is, A is a flexible algebra.

Keeping in mind that A is a middle Moufang algebra and A is a unital flexible

algebra, we obtain the successive identities(
(x+ e)y

)(
x(x+ e)

)
= (x+ e)(yx)(x+ e)

(xy + y)(x2 + x) = (xyx+ yx)(x+ e)

(xy)x2 + xyx+ yx2 + yx = (xyx)x+ xyx+ (yx)x+ yx

yx2 = (yx)x,

so A is a right alternative algebra, and hence A is alternative because of Lemma

2.3.

Theorem 3.8. Let A be a nonzero power-commutative algebraic real algebra

with no nonzero divisor of zero. If A satisfies the right or left Moufang identity,

then A is isomorphic to R, C, H, or O.

Proof. (i) Suppose that A is a right Moufang algebra. Let x ∈ A \ {0}. Then
the subalgebra A(x) is a finite-dimensional division commutative real algebra,

and hence dim(A(x)) ≤ 2 [9]. Since every finite-dimensional real algebra can

be provided with an algebra norm [2, Proposition 1.1.7], it follows from [4,

Theorem 2.1] that A(x) is isomorphic to R, C or the algebra B of basis {e, i}
and multiplication table e2 = e, ei = i = −ie. Since B is not commutative, so

A(x) is isomorphic to R or C, and hence A(x) is associative. Now, it follows

from the arbitrariness of x in A \ {0} that A is power-associative. Therefore,

by [2, Proposition 2.5.10(ii)], A is quadratic, and so A is alternative because

of Lemma 2.3. Then, by [2, Theorem 2.5.29], A is isomorphic to R, C, H, or

O.

(ii) Suppose that A is a left Moufang algebra. This case follows from Case

1 by passing to the opposite algebra.

Corollary 3.9. Let A be a nonzero flexible algebraic real algebra with no

nonzero divisor of zero. If A satisfies the right or left Moufang identity, then

A is isomorphic to R, C, H, or O.

Theorem 3.10. Let A be a nonzero algebraic real unital algebra with no

nonzero divisor of zero and dim(A) > 1. Then A contains C.

Proof. Let e the unit of A and x a nonzero element of A not colinear to e.

Then the subalgebra A(x) is a finite-dimensional division real algebra. This
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implies that A(x) contains a nonzero idempotent [12]. Since e is the unique

nonzero idempotent of A, hence e ∈ A(x), and so dim(A(x)) ≥ 2 because x

and e are not colinear. The Yang-Petro’s theorem proves that A(x) contains

C, and hence A contains C.
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