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Abstract

Discovering a key (function) especially resistant to differential at-
tacks, required by cryptographic systems as investigated by Nyberg,
encompasses the race for security with the discovery of Almost Perfect
Non-linear (APN) functions being a priority. Here we build for the first
time an Exceptional APN function (APN over infinite field extensions)

not belonging to the Gold or Kasami-Welch class, J :
∞⋃
l=1

F
p
∏l
k=0

nk
→

∞⋃
l=1

F
p
∏l
k=0

nk
. The other leading conjecture (stated by Budaghyan, Car-

let, and Leander) deals with CCZ-inequivalence, we solve it by en-
compassing the main map—Kasami—along with all known APN power
functions regardless of whether the field degree is even or odd. Inside
the process we provide a fairly general method.
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1 Introduction

Almost Perfect Non-linear (APN) functions are enormously interesting func-
tions having the highest possible non linearity in the sense of violating the
additivity property (part of the definition of a linear function) over as many
subsets of the field F2n as possible. Nyberg [9, 17] proved that APN functions
have the property of being highly resistant against differential cryptanalytic
attacks when they are used as S-Boxes in block ciphers. Among the experts
involved in this topic it is worth mentioning Janwa, Delgado, Dillon, McGuire,
Aubry, Wilson, Frard, Oyono, Canteaut, Jedlika, Hernando, Caullery, Rodier,
Anbar, Kalayc, and Yurdakul [1, 2, 6, 8, 12, 14, 16]. All these years the busi-
ness has focused on identifying that more classes of functions do not qualify to
be Exceptional APN (refer to Definition 1.1), which has become a real chal-
lenge for worldwide laboratories facing the investigation of the security and
privacy. The complementary direction (our approach) consists in finding the
existence of an Exceptional APN function not equivalent to the two known
exceptional APN functions, achieving a double goal of classifying highly non-
linear functions and the research of the non-linearity phenomena in science.
Regarding non exceptional APN functions, Delgado [7] provides an overview of
the methods used for the resolved cases and covers a new Gold degree member.
Let i ∈ [0, 2n − 1] be an integer, then its 2-weight (w2(i) =

∑n−1
s=0 is) is the

number of ones in its binary representation (i =
∑n−1

s=0 is2
s, where is ∈ {0, 1}).

Let f be a univariate polynomial on F2n , then its algebraic degree is calculated
as follows: d0(f) = max{w2(i); i is the exponent of a term in f}. If f has
algebraic degree 1, 2, or 3, it is called affine (linear if f(0) = 0), quadratic, or
cubic, respectively.

Definition 1.1 [2, 3, 17] Let G1 and G2 be finite Abelian groups. A func-
tion f : G1 → G2 is differentially δ-uniform if ∀a ∈ G1−{0} and b ∈ G2, the
equation ∆af(x) = b admits at most δ solutions, where ∆af(x) := f(x+ a)−
f(x). The set {δf (a, b); a ∈ G1 − {0}, b ∈ G2} is called the differential spec-
trum of f , where δf (a, b) =| {x ∈ G1; ∆af(x) = b} |. For (the optimal δ-value)
δ = 2, f : F2n → F2n is called APN (almost perfect nonlinear). Moreover, if it
is APN on infinitely many extensions of F2n, f is called exceptional APN.

Table 1: Current Monomial APN functions over F2n [11, 13, 17]
f(x) = xt Exponent t Constraints Nonlinearity

Gold 2r + 1 gcd(r, n) = 1
2n−1−2(n−1)/2, n odd

2n−1 − 2n/2, n even

Kasami-Welch 22r − 2r + 1 gcd(r, n) = 1
2n−1−2(n−1)/2, n odd
2n−1 − 2n/2, n even

Welch 2ω + 3 n = 2ω + 1 2n−1 − 2(n−1)/2

Niho
2ω + 2ω/2 − 1 n = 2ω+1, ω even
2ω + 2(3ω+1)/2 − 1 n = 2ω + 1, ω odd

Inverse 22ω − 1 n = 2ω + 1
Dobbertin 24s + 23s + 22s + 2s − 1 n = 5s
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1.1 The Exceptional APN Conjecture

Historically, Janwa, McGuire, and Wilson [14, 16] gave the first version of the
exceptional APN conjecture as follows, Conjecture 1 The only exceptional
values for t are the Gold and KasamiWelch numbers. Later, Dillon [10, 14]
from the NSA stated an equivalent version of Conjecture 1. This conjecture
corresponds to when a monomial function f(x) = xt is exceptional APN. Her-
nando and McGuire [14] established that this conjecture is veridical—becoming
an important theorem. Lately in 2010, Aubry, McGuire and Rodier [2] scaled
up the conjecture to cover more general Exceptional APN functions. Con-
jecture 2 (current version) Up to equivalence, the Gold and Kasami-Welch
functions are the only exceptional APN functions. Below we list few relevant
results in regard to the exceptional APN conjecture:

Theorem 1.2 (Frard, Oyono and Rodier [12]) Suppose that f(x) = x2
2k−2k+1+

g(x) ∈ F2n [x]. Then:
a). If deg(g) ≤ 22k−1−2k−1 +1 and there exist a nonzero coefficient aj of g

such that φj(x, y, z) is absolutely irreducible. Then f is not exceptional APN.
b). If deg(g) ≤ 22k−1 − 2k−1 + 2, where k ≥ 3 is odd and relatively prime

to n. If g(x) does not have the form ax2
2k−1−2k−1+2 + a2x3 then φ is absolutely

irreducible, while if g(x) does have this form then either φ is irreducible or φ
splits into two absolutely irreducible factors which are both defined over F2n.

Theorem 1.3 (Delgado, Janwa [7, 8]) For k ≥ 2, let f(x) = x2
k+1+h(x) ∈

F2n [x], where any of the following is true:
a). deg(h) ≡ 3 mod (4) < 2k + 1.
b). deg(h) ≡ 1 mod (4) < 2k + 1. If φ2k+1 and φd are relatively prime, or

deg(h) is not a Gold number.
c). deg(h) = 2s + 1 < 2k + 1. If (k, s) 6= 1 and h contains a term of degree

m such that (φ2k+1, φm) = 1, or (k, s) = 1.
Then f is not exceptional APN.

Caullery [6] investigated the case of not exceptional APN polynomials of
degree 4e with e > 3. Anbar et al. [1] have added new not exceptional
APN functions of Gold and Kasami-Welch type. Since the appearance of
Conjecture 2, every effort has been made to show that most functions belonging
to the class of polynomials cannot be APN on an infinite sequence of field
extensions. In this article, we investigate the complementary direction centered
on demonstrating the existence of an new Exceptional APN function.

1.2 Conjecture about CCZ-Equivalence

Definition 1.4 [3, 18] Let the functions F, F ′, A1, A2, A3 : F2n → F2n,
where A3 is affine, A1 and A2 are affine permutations, and GF = {(x, F (x));x ∈
F2n} denotes the graph of the function F . Then:
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1). F and A1oFoA2 are called affine equivalent (A-Equivalent).
2). F and A1oFoA2+A3 are called extended affine equivalent (EA-Equivalent)
3). F and F ′ are called Carlet-Charpin-Zinoviev equivalent (CCZ-Equivalent)

if there exists an affine permutation L of (Fn2 )2 between their graphs, i.e.
L(GF ) = GF ′.

Theorem 1.5 [5] The algebraic degree is preserved by EA-equivalence, but
the differential spectrum is a CCZ-invariant.

Theorem 1.6 [4, 18] Let Trmn (x) =
∑n/m−1

i=0 x2
im

the trace function from
F2n onto its subfield F2m. Then the function Fn(x) = x3 + Tr1n (x9) is:

a). APN on Fn2 for each dimension n.
b). CCZ-inequivalent to the Gold, inverse and Dobbertin APN functions

on F2n when n ≥ 7.
c). EA-inequivalent to power functions on F2n when n ≥ 7.
d). CCZ-inequivalent to power functions on F27.

EA-equivalence implies CCZ-equivalence, but not vice versa. In [3], Budaghyan
and Carlet present a collection of known classes of quadratic APN polynomi-
als CCZ-inequivalent to power functions, but none of those functions can be
Exceptional APN, because their formulas are directly tied to the degree of the
finite field. The next important conjecture was stated by Budaghyan, Car-
let, and Leander, and is solved in Section 2. Conjecture 3 [4] For n ≥ 7,
Fn(x) = x3 +Tr1n (x9) is CCZ-inequivalent to any power function (F ′(x) = xt).

2 Taking both Conjectures by the horns

The switching neighbors Fn(x) = x3 +Tr1n (x9) are not necessarily Exceptional
APN. The theorem below provides us with initial evidence in this regard based
on the domain dependency.

Theorem 2.1 Let n = 10k, k ≥ 1, and Un+j(x) = x3 + Tr110k+j(x
9), where

j ≥ 0. Then ∆(Un+0) = 2, but ∆(Un+j) ≥ 4 on each field extension (of F210)
F2n, for j : 1, 2. In particular, for an infinite number of field extensions F2n,
Un+j are not APN on F2n, for j : 1, 2.

Proof. We rewrite the functions Un+j as Un+1(x) = Φ1(x) + Tr110k(x
9) and

Un+2(x) = Φ2(x) + Tr110k(x
9), both functions are on F210k , where Φ1(x) =

x3 + x9 and Φ2(x) = Φ1(x) + x18. It can be shown that Φ1(x) and Φ2(x) are
differentially 8-uniform on F210 (∆(Φj) = 8). Let a 6= 0 and b both in F210 , such
that ∆a(Φj(x)) = b has at least the 8 solutions on F210 , X = {si, si + a}4i=1.
Let’s define δε = ∆aTr

1
10k(x

9
ε) ∈ F2, where xε ∈ X, ε : 1, · · · , 8. Due to the

cardinality of F2, at least four of the δε are repeated, say δε1 = · · · = δε4 . Then
∆aUn+j(xε1) = · · · = ∆aUn+j(xε4). Using the same parameters we used at
the beginning, a and b, let’s state the equation for the function Un+j below:
∆aUn+j(x) = b+ δε1 on F210k . We have that this equation has at least the four
solutions xεt , where t : 1, 4. Meaning that, ∆(Un+j) ≥ 4. �
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Let us consider n0 ∈ N and (nk)
∞
k=1 a sequence of odd numbers other than

1. Let M denote the domain F2n0 or any of its field extensions of the form
F
2
∏l
k=0

nk
(for some l), even the union of all its extensions in consideration

Ω =
∞⋃
l=1

F
2
∏l
k=0

nk
. J1 and J2 are functions defined on Ω. Let’s define the

correspondence below, J : M → M , such that for each input x in M an
output is assigned as follows: set ξ =

∑−1+n0

i=0 J2i

2 (x). If ξ ∈ F2, then define

J(x) = J1(x) + ξ, otherwise set ξ =
∑−1+∏1

k=0 nk
i=0 J2i

2 (x). If ξ ∈ F2, then define

J(x) = J1(x) + ξ, otherwise set ξ =
∑−1+∏2

k=0 nk
i=0 J2i

2 (x). If ξ ∈ F2, then define
J(x) = J1(x)+ξ, otherwise continue this process until ξ belongs to F2, then set
J(x) = J1(x)+ξ. Let x ∈M , thus x belongs to some field F2n (≥ F2n0 ). In the
scenario that there exists a subfield, F2m (≤ F2n), such that Γm =

∑m−1
i=0 J2i

2 (x)
belongs to the prime field F2. Then z = Tr1n(J2(x)) accepts a decomposition of

the following form, z = (Γm)2
m

+(Γm)2
2m

+· · ·+(Γm)2
m( nm−1)

+Γm = Γm, where
the number of terms in this sum is odd. So, the value J(x) exist in F2n(≤M)
and is unique. It is, each correspondence (using the same correspondence rule
J) J : M → M is well defined. A function J on M (denoted as J(ni)∞i=0

or J)
can also be seen as a piecewise-defined function. In Section 2.1 we will focus
on the mapping J when J1(x) = x2

σ+1 (with σ ≥ 1) and J2(x) = x9. As an
example, we can refer to those J that satisfy that nk−1 = m0 (6= 1), for some
odd m0, ∀ k ∈ N.

2.1 A Universal Method for CCZ-Inequivalence

As can be reviewed in the literature, proving that two functions are or are not
CCZ-equivalent could be a headache, both algebraically and through computer
software. In the body of Theorem 2.2, we establish a novel way that can be
used to prove CCZ-inequivalence between a wide range of classes of functions.
The Gold, Dobbertin and Inverse cases were covered by Theorem 1.6. In this
section we will cover the Kasami class—well known in this area of research for
being so challenging—and all pending cases listed in Table 1. We will focus
on the following equation as it plays the central role in the research about the
CCZ-equivalence between functions of Conjecture 3.( ∑

i∈Z/nZ

aix
2i +

∑
j∈Z/nZ

bjx
t2j + C

)2σ+1 −
∑

i∈Z/nZ

a′ix
2i −

∑
j∈Z/nZ

b′jx
t2j − C ′ =

−Tr1n
(( ∑

i∈Z/nZ

aix
2i +

∑
j∈Z/nZ

bjx
t2j + C

)9)
(Eq. (I))

where σ ≥ 1. Assuming that F ′ and Fn are CCZ-equivalent leads us to
Eq. (I) (see Theorem 2.2). The coefficient corresponding to any term in
Eq. (I) must be equal to zero. Following is the coefficient (equaled to zero)
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corresponding to the linear term of degree 2k:

C2σak + a2
σ

k−σC + a2
σ

k−σ−1ak−1 + εr,n3

(
b2
σ

k−1+r−σbk−1 + b2
σ

k−1−σbk−1+r

)
+ εr,n2

(
a2
σ

k−1+r−σbk−1+

b2
σ

k−1−σak−1+r
)
− a′k +

∑
γ∈Z/nZ

(
C8ak−γ + a8k−γ−3C + a8k−γ−4ak−γ−1 + εr,n3

(
b8r+k−γ−4bk−γ−1+

b8k−γ−4br+k−γ−1
)

+ εr,n2
(
a8r+k−γ−4bk−γ−1 + b8k−γ−4ar+k−γ−1

))2γ

= 0.

Where εi,j ∈ F2 is the delta of Kronecker. Following is the coefficient
(equaled to zero) of the term of degree t2k:

b2
σ

k−σC + C2σbk + b2
σ

k−σ−1bk−1 + T
′ − b′k = 0

Where T
′

brings together all the coefficients of like terms that come from

Tr1n
((∑n−1

i=0 aix
2i +

∑n−1
j=0 bjx

t2j +C
)9)

. The coefficient of the cubic term with

literal part of the form x2
k+2r+k+22r+k (for large enough values of r(6= n

2
)) is

given by a2
σ

r+k+1−σbk + b2
σ

k−σar+k+1 + T
′′

= 0, this equation connects terms al
with terms bk, and T

′′
gather all the coefficients of like terms coming from

Tr1n
((∑n−1

i=0 aix
2i +

∑n−1
j=0 bjx

t2j + C
)9)

(T
′′′

is defined in the same way as T
′

and T
′′
). Alternatively to x2

k+2r+k+22r+k (depending on the size of r compared
to n, we can focus on one type of term) we can always consider the term
x2

2r+k+···+2r+k+2k , such that (n + 3)/2 ≥ r + 2 = d0(x2
2r+k+···+2r+k+2k). Other

supporting relationships to connect equations can come from
(
a2

σ

k−σal + a2
σ

l−σak
)

x2
k+2l , provided that |l−k|

r
6= i, for i : 0, 3.

Theorem 2.2 The function Fn(x) = x3 + Tr1n (x9) and the Kasami-Welch
family of functions Kr(x) = x4

r−2r+1 are CCZ-inequivalent on F2n, where n >
7 and gcd(r, n) = 1. Moreover, Fn is CCZ-inequivalent to both functions,
Welch W (x) = x2

ω+3 and Niho Nγ(x) = x2
ω+2γ−1, where n = 2ω+1, γ = 3ω+1

2

if ω is odd, and γ = ω
2

if ω is even.

Proof. We assume that there exists an affine permutation L of F22n such
that L(GF ) = GF ′ , L

′(GF ′) = GF , L′(x, y) =
(∑

i∈Z/nZ aix
2i +

∑
j∈Z/nZ bjy

2j +

C,
∑

i∈Z/nZ a
′
ix

2i +
∑

j∈Z/nZ b
′
jy

2j +C ′
)

(of course the coefficients ai, a
′
i, bj, b

′
j, C,

and C ′ are in F2n), and L′ = L−1. This involves considering the equation

F
(∑n−1

i=0 aix
2i+
∑n−1

j=0 bjF
′2j(x)+C

)
=
∑n−1

i=0 a
′
ix

2i+
∑n−1

j=0 b
′
jF
′2j(x)+C ′, ∀x ∈

F2n , along with a restriction over the ai, bj, and F ′ so that L̃1(x) =
∑n−1

i=0 aix
2i+∑n−1

j=0 bjF
′2j(x) +C is a permutation of F2n . That is, we consider Equation (I)

for F = Fn and gcd(r, n) = 1 (to keep the Kasami’s APN property, for F ′ =
Kr). The parameter r satisfies 1 ≤ r ≤ n − 1. By applying the permutation
Ar(x) = x2

2r
we observe that the Kasamis Kn−r and Kr are EA-E (so CCZ-E):

(Kn−roAr) (x) =
(
A r

2
(x)
)2n(2n−r−1)+2r

= Kr(x). Then it is enough to consider
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the Kasami sub-list for r running into 1 ≤ r ≤ n−1
2

. Since K1 matches a Gold
member and Fn is CCZ-inequivalent to Golds, we will consider r > 1, namely,
2 ≤ r ≤ n−1

2
. That is, n+1

2
≥ d0(Kr) ≥ 3, so Kr is at least a cubic function.

Let (k, l), (i, j) ∈
(
Z/nZ

)2
such that

(
{k, l} ∩ {i, j}

)
∪
(
{k, j} ∩ {l, i}

)
=

∅. Let Ct(2k+2l)x
t(2k+2l) denote the term of degree t(2k + 2l) in Equation (I).

Regarding the term Ct(2k+2l)x
t(2k+2l) below we will show the property for t =

tKr : tKr(2
k + 2l) 6= tKr(2

i + 2j), where tKr = 22r−1 + · · · + 2r + 1 is the
Kasami APN exponent. Let’s define Av := {22r+v−1, · · · , 2r+v, 2v}. We can
see Av as the result of a translation of A0 determined by 2v inside the set
{2z; z ∈ Z/nZ} (and tKr2

v the sum of its points). It can be observed that
two different subsets (A 6= B) from {2z; z ∈ Z/nZ} cannot have the same sum
of their points, namely

∑
x∈A x 6=

∑
x∈B x. The following are all the possible

cases that may occur: Case Ak ∩Al = ∅ and Ai ∩Aj = ∅: both sets Al ∪Ak
and Ai ∪ Aj (both of cardinality equal to 2r + 2) consist of different points,
i.e. Al ∪Ak 6= Ai ∪Aj, because Ai ∪Aj 6⊇ Al. Then they have different sums,
tKr(2

k + 2l) =
∑

x∈Al∪Ak x 6=
∑

x∈Ai∪Aj x = tKr(2
i + 2j). Case Ak ∩ Al 6= ∅

and Ai ∩ Aj 6= ∅. The following subcases may occur:

Subcase 2r+l ∈ {22r+k−1, · · · , 2r+k+1} and 2r+j ∈ {22r+i−1, · · · , 2r+i+1}:
obtaining the following result consisting of r + 2 summands: tKr(2

k + 2l) =
22r+l+22r+k−1+· · ·+2r+k+2l+2k (2r+l is absent). Where two noteworthy parts
are: the exactly r− 1 consecutive terms 22r+k−1 + · · ·+ 2r+k and the binomial
22r+l+2l. If 22r+l = 2k and 22r+j = 2i: the result is reduced to r+1 summands:
tKr(2

k+2l) = 22r+k−1+· · ·+2r+k+2l+2k+1 (2r+l is absent). If 22r+l = 2k = 2l−1

and 22r+j = 2i = 2j−1: the result is reduced to r summands: tKr(2
k + 2l) =

22r+k−1 + · · · + 2r+k + 2k+2 (2r+l is absent). Whether tKr(2
k + 2l) of these

instances is made up of r+ 2, r+ 1, or r terms, the set of terms in tKr(2
k + 2l)

6⊇ {22r+i−1, · · · , 2r+i} (2r+j is absent). Then Set of terms in tKr(2
k + 2l) 6=

Set of terms in tKr(2
i + 2j). Then tKr(2

k + 2l) =
∑

x ∈ Set of terms in tKr (2
k+2l)

x 6=∑
x ∈ Set of terms in tKr (2

i+2j)

x = tKr(2
i+2j). The only possible degenerate subcase

would occur when simultaneously 2r+l = 2r+k+1, 2r+j = 2r+i+1, and 2r = n.
Obtaining the following result of r+1 summands: tKr(2

k+2l) = 22r+k−1+· · ·+
2r+k + 2l+1 + 2k (2r+l is absent), such that the set of terms in tKr(2

k + 2l) 6⊇
{22r+i−1, · · · , 2r+i} (2r+j is absent). We can disregard this degenerate subcase
because the Kasami class will require that 2 < 2r < n.

Subcase 2l ∈ {22r+k−1, · · · , 2r+k} and 2j ∈ {22r+i−1, · · · , 2r+i}:
If 2l = 2r+k and 2j = 2r+i. We get: tKr(2

k + 2l) = 22r+l + 2k, whose terms
form a set of cardinality 2. But if 3r = n, the power x(2

k+2l)tKr becomes linear
with (2k + 2l)tKr = 2k+1.

If 2l ∈ {22r+k−1, · · · , 2r+k+1} and 2j ∈ {22r+i−1, · · · , 2r+i+1}: the following
possible subcases take place:
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Subcase 2k /∈ {22r+l−1, · · · , 2r+l} and 2i /∈ {22r+j−1, · · · , 2r+j}:
tKr(2

k + 2l) = 22r+l−1 + · · · + 2r+l + 22r+k + 2l−1 + · · · + 2r+k + 2k, where
r+3 ≤ number of terms in tKr(2

k +2l) ≤ 2r+1 ≤ n. A feature of tKr(2
k +2l)

that distinguishes it is that it contains r consecutive terms: 22r+l−1+ · · ·+2r+l.
The set of terms in tKr(2

k + 2l) 6⊇ {22r+j−1, · · · , 2r+j}, then tKr(2
k + 2l) =∑

x ∈ Set of terms in tKr (2
k+2l)

x 6=
∑

x ∈ Set of terms in tKr (2
i+2j)

x = tKr(2
i + 2j).

Subcase 2k ∈ {22r+l−1, · · · , 2r+l} and 2i ∈ {22r+j−1, · · · , 2r+j}. We get
the following expression: tKr(2

k + 2l) = 22r+l + 2k−1 + · · · + 2r+l + 22r+k +
2l−1 + · · ·+ 2r+k (of at most 2r terms and at least 4 terms, if 2k 6= 2r+l), where
each part 2k−1 + · · ·+ 2r+l and 2l−1 + · · ·+ 2r+k contains at most r− 1 terms.
Set of terms in tKr(2

k + 2l) 6⊇ {22r+j, 2r+j, 22r+i, 2r+i} (provided that r 6= n/2
and 2k 6= 2r+l), then Set of terms in tKr(2

k+2l) 6= Set of terms in tKr(2
i+2j).

Thus tKr(2
k + 2l) 6= tKr(2

i + 2j). In particular, if occurs that 2k = 2r+l and
2i = 2r+j, then we get the degenerate case tKr(2

k + 2l) = 22r+k + 2l. If 3r = n,
then (2k + 2l)tKr = 2l+1. On the other hand, if we perform the comparison
with respect to the cases at the beginning of r + 2, r + 1, and r terms, we
highlight that: the common subset {22r+i−1, · · · , 2r+i} (2r+j is absent) present
in those subcases is not contained by the set of terms in tKr(2

k + 2l) =
{22r+l, 2k−1, · · · , 2r+l, 22r+k, 2l−1, · · · , 2r+k}. Hence tKr(2

k + 2l) 6= tKr(2
i + 2j).

These cases suggest us adding certain conditions to consider only Ct(2k+2l)x
t(2k+2l)

(for t = tKr) such that d0(xt(2
k+2l)) > 2, in this way we avoid adding coefficients

of like terms—quadratic or linear—that might not come from CtKr (2k+2l)x
tKr (2

k+2l).
In general we can talk about Kr that are differentially δ(≥ 4)-uniform or those
that are APN (gcd(r, n) = 1). The APN property of our Kr frees us from the
linear cases (since gcd(r, 3r) 6= 1). In the scenario that (k, l) and (i, j) belong
to different cases or subcases, the set of terms in tKr(2

k + 2l) cannot be the
same as that of tKr(2

i + 2j), due to their cardinalities are different or due to a
particular difference, accordingly tKr(2

k + 2l) 6= tKr(2
i + 2j).

Next, let us prove the inequality tW (2k + 2l) 6= tW (2i + 2j) for the Welch

exponent, tW = 2
n−1
2 + 2 + 1, whenever n = 2ω + 1. Let’s define A′v :=

{2n−1
2

+v, 2v+1, 2v}. Case A′k ∩A′l = ∅ and A′i ∩A′j = ∅: since k, l, i, and j are
all different parameters on Z/nZ, we have that A′l∪A′k and A′i∪A′j (each union
of cardinality 6) satisfy A′l ∪ A′k 6⊇ {2i+1, 2i, 2j+1, 2j}, i.e. A′l ∪ A′k 6= A′i ∪ A′j.
Then tW (2k+2l) 6= tW (2i+2j). Case A′k∩A′l 6= ∅ (and A′i∩A′j 6= ∅): without
loss of generality, the only possibilities that can happen are of the three types
below:

If 2
n−1
2

+l = 2k and 2
n−1
2

+j = 2i, then tW (2k +2l) = 2l+1 +2l+2
n−1
2

+k +2k+2

(contains 4 terms whenever n > 5, and size 1 for n = 5). Based on the shape

of the sets, it can be seen that {2l+1, 2l, 2
n−1
2

+k, 2k+2} = {2n+3
2

+l, 2l+1, 2l, 2l−1}
6= {2n+3

2
+i, 2i+1, 2i, 2i−1} (remains valid if j is used instead of i), for n ≥ 5.

If 2
n−1
2

+l = 2k+1 and 2
n−1
2

+j = 2i+1, then tW (2k + 2l) = 2l+1 + 2l + 2
n−1
2

+k +
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2k+2 + 2k (has 5 terms if n > 5, but contains 3 terms for n = 5), where

{2l+1, 2l, 2
n−1
2

+k, 2k+2, 2k} = {2n+1
2

+l, 2
n−3
2

+l, 2l+1, 2l, 2l−2} 6⊇ {2i+1, 2i, 2i−2},
for n > 5. For n = 5, tW (2k+2l) = 2l+2+2l+2l−1 is such that {2l+2, 2l, 2l−1} 6=
{2i+2, 2i, 2i−1} (both facts remains valid if j is used instead of i).

If 2l = 2k+1 and 2j = 2i+1, then tW (2k + 2l) = 2
n+1
2

+k + 2
n−1
2

+k + 2k+3 + 2k

(has 4, 2, 3, and 1 terms, granted that n > 7, n = 7, n = 5, and n = 3,

respectively). Since k 6= i on Z/nZ, it is true that {2n+1
2

+k, 2
n−1
2

+k, 2k+3, 2k} 6=
{2n+1

2
+i, 2

n−1
2

+i, 2i+3, 2i}, except for n = 5. Let us note that tW (2k + 2l) does
not contain 3 consecutive addends as occurs with the previous case of the same
cardinality (4, for values n > 7). No matter which of the four previous Welch’s
cases it is, we have: tW (2k + 2l) 6= tW (2i + 2j). If (k, l) and (i, j) belong to
different cases, tW (2k + 2l) cannot coincide with tW (2i + 2j), because their
number of terms differ or due to a peculiar feature as happens between the
two cases of 4 terms—where tW (2k + 2l) contains 3 consecutive addends in one
case but 2 in the other— so tW (2k + 2l) 6= tW (2i + 2j).

Concerning the Niho function: F ′ = Nγ, provided n = 2ω+1. Its exponent

can be rewritten as: tNγ = 2
3ω+1

2 + 2ω−1 + · · · + 2 + 1 with 1 + ω addends, or
tNγ = 2ω + 2

ω
2
−1 + · · · + 2 + 1 with ω

2
+ 1 addends. Next we will prove that

tNγ (2
k + 2l) 6= tNγ (2

i + 2j) using Reductio ad Absurdum. We will do the proof
for γ = 3ω+1

2
, the case γ = ω

2
can be demonstrated analogously. Let’s assume

that tNγ (2
k + 2l) = tNγ (2

i + 2j). Equivalently we have: 2ω+l + 2
3ω+1

2
+l + 2i +

2ω+k + 2
3ω+1

2
+k + 2j = 2ω+i + 2

3ω+1
2

+i + 2l + 2ω+j + 2
3ω+1

2
+j + 2k. Since i 6= l

and i 6= k, and due to neither ω nor 3ω+1
2

is a multiple of n, it follows that

2i /∈ {2 3ω+1
2

+i, 2ω+i, 2l, 2k}. Since the right side of the previous equation is
supposed to be equal to the left side, and since 2i belongs to the left side, then
the only possibilities left for 2i are the following.

Case 2i = 2ω+j: analogously, 2j fulfills 2j /∈ {2 3ω+1
2

+j, 2ω+j, 2l, 2k}. Then
only two possibilities can happen: If 2j = 2ω+i: then n is a factor of 2ω, but
this contradicts the fact that 2ω = n − 1. If 2j = 2

3ω+1
2

+i: then n is a factor
of 5ω+1

2
= n+ n−3

4
, which contradicts n < n+ n−3

4
< 2n.

Case 2i = 2
3ω+1

2
+j. Two subcases are possible: If 2j = 2ω+i: then n is a

factor of n+n−3
4

(a contradiction). If 2j = 2
3ω+1

2
+i: then n is a factor of 3ω+1 =

n+ n−1
2

(a contradiction). Then 2i /∈ {2 3ω+1
2

+i, 2ω+i, 2l, 2k, 2ω+j, 2
3ω+1

2
+j} which

contradicts the fact that the summand 2i should be one of the six summands
on the right side of the equation. Consequently, tNγ (2

k + 2l) 6= tNγ (2
i + 2j).

Let Ĉt(2k+2l) be the part of the coefficient Ct(2k+2l) that comes from the ex-

pansion of
(∑

i∈Z/nZ aix
2i+
∑

j∈Z/nZ bjx
t2j+C

)2σ+1−
∑

i∈Z/nZ a
′
ix

2i−
∑

j∈Z/nZ b
′
jx
t2j−

C ′. Based on the inequality discussed above, the function et(k, l) = t(2k + 2l)
is injective except for the fact that et(k, l) = et(l, k) (almost injective), regard-
less of whether t is either, tKr , tW , or tNγ . Hence Ct(2k+2l) = b2

σ

l−σbk + b2
σ

k−σbl +
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∑
γ∈Z/nZ

(
b8k−3−γbl−γ + b8l−3−γbk−γ

)2γ
and Ĉt(2k+2l) = b2

σ

l−σbk + b2
σ

k−σbl, if k 6= l,

regarding Kasami case it is also requested that 2l+r 6= 2k and 2k+r 6= 2l. In Eq.

(I), the part Tr1n
((∑

i∈Z/nZ aix
2i +

∑
j∈Z/nZ bjx

t2j + C
)9)

is the composition

of the trace with a non-linear function, so the square of Ĉt(2k+2l) result in its

successor Ĉt(2k+1+2l+1). So we obtain recursive relationships of the form:

b2
σ

l+1−σbk+1 + b2
σ

k+1−σbl+1 = b2
σ+1

l−σ b
2
k + b2

σ+1

k−σ b
2
l , for any k 6= l, regarding Kasami

case the constraints 2l+r 6= 2k and 2k+r 6= 2l are added (System (1))

System (1) for σ = 1 constitutes a system of quadratic equations in the
variables bj. Two facts about the bj’s: (a). If all bj’s are zero, then due to the
form of Eq. (I) and d0(xt) ≥ 3, each b′j is equal to zero, which is a contradiction
to the fact that the quadratic and dependent variable, F (x), can be described
as the affine expression

∑
i∈Z/nZ a

′
ix

2i +C ′. So not every bj can be zero. (b). If
∃j such that bj = bj+1 = 0: parameters k, l can differ by 1 without violating
any of the conditions (2l+r 6= 2k, 2k+r 6= 2l) since r > 1. Hence the equation
of System (1), b2j+1(bj+3 + b4j+1) = b2j+2(b

4
j + bj+2), implies bj+2 = 0. In this

way, any bj is zero (contradicting item (a)). Consequently, there cannot be
two consecutive bj’s both equal to zero. Let bl′′ be a non-zero coefficient. From
System (1), we have:

b2l

(
bl′′+1 + b4l′′−1

b2l′′

)
= b4l−1 + bl+1, for any l 6= l′′, l 6= l′′ ± r (Eq. (2))

But we still need to find out if we can arrive at a similar formula for l = l′′

and l = l′′±r. Case r 6= 1, 2: applying item (b) to the consecutive coefficients
bl′′+1 and bl′′+2 we obtain the following instances.

Subcase bl′′+1 6= 0: from System (1), we have:

b2l

(
bl′′+2 + b4l′′

b2l′′+1

)
= b4l−1 + bl+1, for any l 6= l′′ + 1, l 6= l′′ + 1± r (Eq. (3))

If 2r < n−1: since {l′′ + 1, l′′ + 1± r}∩{l′′, l′′ ± r} = ∅, Eq. (2) is true for

l = l′′ + 1. Hence
bl′′+1+b

4
l′′−1

b2
l′′

=
bl′′+2+b

4
l′′

b2
l′′+1

. Equation (3) works over {l′′, l′′ ± r},

then Eq. (2) is true for any l ∈ Z/nZ. Let’s define χj :=
bj+1+b

4
j−1

b2j
, provided

bj 6= 0, and χ̃j :=
aj+1+a

4
j−1

a2j
, if aj 6= 0.

If 2r = n− 1: Eq. (3) is true for l = l′′ and l = l′′+ r except for l = l′′− r.
Again χl′′ = χl′′+1. That is, Eq. (2) also becomes true for l = l′′, l′′ + r. Let
bl′′′ 6= 0 where l′′′ is one of the consecutives, l′′− 2 or l′′− 1. From System (1),
b2l χl′′′ = b4l−1 + bl+1 for all l 6= l′′′, l 6= l′′′± r (then it holds for l = l′′− r). Since
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l′′ 6= l′′′ and l′′ 6= l′′′ ± r, thus χl′′′ = χl′′ . Then Eq. (2) holds for (l′′ − r and)
each l ∈ Z/nZ.

Subcase bl′′+2 6= 0: from System (1), we have:

b2l

(
bl′′+3 + b4l′′+1

b2l′′+2

)
= b4l−1 + bl+1, for any l 6= l′′ + 2, l 6= l′′ + 2± r (Eq. (4))

If 2r + 2 6= n: {l′′ + 2, l′′ + 2± r} ∩ {l′′, l′′ ± r} = ∅ implies Eq. (4) for
l = l′′ (so χl′′ = χl′′+2) and Eq. (2) for l ∈ {l′′, l′′ ± r}. So Eq. (2) works for
all l ∈ Z/nZ.

If 2r+2 = n: {l′′ + 2, l′′ + 2± r}∩{l′′, l′′ ± r} = {l′′−r} (because l′′+2+r =
l′′ − r on l ∈ Z/nZ) implies that Eq. (4) is true for l = l′′ (i.e. χl′′+2 = χl′′)
and l = l′′ + r. Then Eq. (2) also holds for l = l′′, l′′ + r. Let’s see what arise
for l = l′′ − r. Let l′′′ be l′′ − 2 or l′′ − 1 so that bl′′′ 6= 0. From System (1),
b2l χl′′′ = b4l−1 + bl+1 for all l 6= l′′′, l 6= l′′′ ± r (then l can be l′′ or also l′′ − r).
Then χl′′′ = χl′′ and Eq. (2) is true for every l ∈ Z/nZ.

Case r = 2: using item (b) in consecutives bl′′+3 and bl′′+4, we split this
case into two.

Subcase bl′′+3 6= 0: from System (1): b2l

(
bl′′+4+b

4
l′′+2

b2
l′′+3

)
= b4l−1+bl+1, for any

l 6= l′′+3, l 6= l′′+3±r (Eq. (5)). Being that {l′′ + 3, l′′ + 3± r}∩{l′′, l′′ ± r} =
∅, Eq. (5) is true for l = l′′, l = l′′ ± r. Then χl′′+3 = χl′′ , and Eq. (2) is true
for any l ∈ Z/nZ.

Subcase bl′′+4 6= 0: from System (1): b2l

(
bl′′+5+b

4
l′′+3

b2
l′′+4

)
= b4l−1+bl+1, for any

l 6= l′′ + 4, l 6= l′′ + 4± r. The cases l = l′′ + r (if n ≥ 8) and l = l′′ − r (only if
n = 8) still need to be covered. When applying item (b) to the pair bl′′+1, bl′′+2

the only worrying event occurs when bl′′+2 6= 0, since the value l = l′′ + r still
needs to be covered. To solve this issue it is enough to consider the pair bl′′−1,
bl′′−2. In any of the above cases, whether r = 2 or not, we get bl+1 = χl′′b

2
l +b

4
l−1,

∀l ∈ Z/nZ, referred to any t ∈ {tKr , tW , tNγ}.
The term of a particular shape (based on the set of powers of two corre-

sponding to its exponent), x2
i+tKr2

j
for 2 < 2r ≤ n and ∀(i, j) that satisfies

2i /∈ {2j+r, 2j+r+1} (to ensure that d0(x2
i+tKr2

j
) ≮ 3), owns the following coef-

ficient: a2
σ

i−σbj + b2
σ

j−σai + T
′′′

= 0. As before, this type of term is the square of

its predecessor, resulting in, a2
σ

i+1−σbj+1 + b2
σ

j+1−σai+1 = a2
σ+1

i−σ b
2
j + b2

σ+1

j−σ a
2
i , then:

a2i (bj+1+b
4
j−1) = b2j(a

4
i−1+ai+1) whenever σ = 1, 2i /∈ {2j+r, 2j+r+1} (System (2))

We still need to connect the two missing cases, 2j+r and 2j+r+1 (alterna-
tively, we could cover them by means of the relationship for the aforementioned
cubic term). If ∀i ∈ Z/nZ, ai = 0, then χl′′a

2
i = a4i−1 + ai+1, ∀i ∈ Z/nZ (next

we will obtain this formula when ∃ an ai 6= 0). From System (2), we have:
b2j χ̃i = b4j−1 + bj+1, for all j 6= i− r, i− r − 1. Let l′′′ be i− r − 2 or i− r − 3
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such that bl′′′ 6= 0 (based on item (b)), so χ̃i = χl′′′ . From System (2): for all
i 6= l′′′ + r, l′′′ + r + 1 in Z/nZ, ai+1 has the form below:

ai+1 = a2iχl′′′ + a4i−1 (Eq. (6))

Let bl′′′+3+ε be non-zero, for some ε ∈ {0, 1}. From System (2): for any
i 6= l′′′ + 3 + ε+ r, l′′′ + 4 + ε+ r in Z/nZ, ai+1 has the form below:

ai+1 = a2iχl′′′+3+ε + a4i−1 (Eq. (7))

Eq. (7) is true for i = l′′′ + r and i = l′′′ + r + 1. So Eq. (6) is too. Then
we get Eq. (6), ∀i ∈ Z/nZ. Regarding the Niho (in its two versions) and
Welch cases, System (2) does not provide information when i = j, however
Eq. (6) can be obtained analogously to the Kasami’s.

We have obtained that bk = χl′′b
2
k−1 + b4k−2 and ak = χl′′a

2
k−1 + a4k−2.

Let’s divide (η + ζ) into two sums, (η + ζ) (x) =
∑

j∈Z/nZ χl′′
(
aj−1x

2j−1
+

bj−1x
t2j−1)2

+
∑

j∈Z/nZ
(
aj−2x

2j−2
+bj−2x

t2j−2)4
=
∑

i∈Z/nZ χl′′
(
aix

2i +bix
t2i
)2

+∑
l∈Z/nZ

(
alx

2l+blx
t2l
)4

on F2n , where ζ(x) =
∑

j∈Z/nZ bjx
t2j , η(x) =

∑
i∈Z/nZ aix

2i ,

and Λ = Range (η + ζ) ⊇
(∑

l∈Z/nZ al+bl
)
F2. In order for (η + ζ) (x) to satisfy

the conditions of the quadratic system of equations on the finite field of degree
n, this sum must satisfy the following equation: η+ζ = χl′′ (η + ζ)2+(η + ζ)4.
Hence, the function L̃1(x) = (η + ζ) (x) +C cannot be a permutation (contra-
dicting its property of being a permutation) so long as n ≥ 3. It is enough to
choose n > 7 so that we do not worry about the fulfillment of any requirements
in this theorem. Therefore Fn cannot be CCZ-E to any of the known families:

Kasami Kr, Welch x2
n−1
2 +3, and Niho x2

n−1
2 +2γ−1 (all on F2n). �

Remark 1 Theorem 2.2 also provides us with another way to prove that
Fn is CCZ-inequivalent to the Dobbertin function. The entire method that
we have introduced in Theorem 2.2 is general enough in the sense that it can
also be applied to polynomials over the finite field as well as to functions that
contain a nonlinear Boolean part. This extends the case for F27 and solves
Conjecture 3 (of Budaghyan et al. in [4]) to all known APN power functions
(see Table 1). Remark 2 The function J agrees with the Budaghyan-Carlet-
Leander function Fn(x) = x3 + Tr1n(x9) —this kind of function is known as a
switching neighbor, details about it can be found in the PhD Dissertation [18]—
over the appropriate field extension F2n (≥ F2n0 ). Then J is APN on each field
extension F

2
∏l
k=0

nk
, for each l in N. The CCZ-inequivalence between J and both

classes, Gold and Kasami-Welch, guarantees that J is new, namely the first
non-monomial Exceptional-APN function. It is interesting to note that J and
the Gold x3 differ by just a Boolean function piecewise-defined throughout
the union of the field extensions. This crucial fact, as well as a point of
clarification, suggests extending the protagonist functions in Conjecture 2, by
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adding to the Gold family (as well as to the Kasami family) a Boolean function
piecewise-defined along the field extensions. Note Conjecture 2 has been a
great motivation for us to do this work. It is crucial that the research continues
in both directions with the common aim of determining which functions are
Exceptional APN and which are not. Open problem 1 Discuss the existence
of a new form of Exceptional APN function. Open problem 2 Study the
analogous question to the Exceptional APN Conjecture, for differentially δ
(≤ 6)-uniform functions. In the next section we establish a practical way to
build differentially δ-uniform trinomials over field extensions.

3 Differential δ-Uniformity Across Field Ex-

tensions

Theorem 3.1 If the monomial Xp : F2µt → F2µt is APN, where µ = 3
(respectively, µ = 11) and t ≥ 1, then the trinomial ψ1(x) = Xp+X2p+X4p is
differentially 8-uniform over F2µt (respectively, µ = 11). If Xs is differentially
δ-uniform over F2r2m , where m ≥ 0 and r : 2, 5, 7, 13. The trinomial ψ2(x) =
Xs +X2s +X4s is differentially δ-uniform (A-E to Xs).

Proof. We proceed to prove the case for µ = 3. For b0 = 1 ∈ F23 =
F2(α), the equation X + X2 + X4 = b0 has the four solutions {Xi}4i=1 =
{1, α+ 1, α2 + 1, α2 +α+ 1}. All restrictions of Xp to the subfield F23 , Xp|F23
are the APN monomials over F23 : Gold X3 and X5. Then an equation of
the form, (X + a0)

p − Xp = Xi becomes either (X + a0)
3 − X3 = Xi or

(X + a0)
5−X5 = Xi. Thus, at the direction a0 = 1 and each Xi, the numbers

δXp|F
23

(1, Xi) satisfy: δX3(1, Xi) = δX5(1, Xi) = 2. Then at point (a0 = 1, b0 =

1): δψ1(1, 1) = 4(2) = 8 solutions. Then the differential uniformity of ψ1 is
lower bounded: 8 = δψ1(a0, b0) ≤ δψ1(a, b). On the other hand, since Xp is
APN the differential uniformity of ψ1 is upper bounded by the same previous
bound: max

a∈F23t , a6=0, b∈F23t
δψ1(a, b)≤ 8. The case for µ = 11 can be demonstrated

analogously.

Unlike our previous procedure, we will prove the case for Xs by exploiting
the principle of induction. Let’s prove the case when r = 5. It can be verified
that for all b in F25 , the equation X+X2 +X4 = b has at most one solution in
F25 . Let’s consider F210 = {a0 + a1Θ; ai ∈ F25} as an extension of F25 , where
Θ2 = c0 + c1Θ, ci ∈ F25 . Let’s prove the theorem by induction on m. For m =
1, the sentence of the theorem is true. Given any b0 + b1Θ ∈ F210 , we start by
solving the equation, X+X2 +X4 = b0 + b1Θ, in the variable X = a0 +a1Θ ∈
F210 . Then, b0+b1Θ = a0+a20+a40+a21c0+a41c

2
0+a41c

2
1c0+(a1+a21c1+a41c

2
1c1)Θ.

Then we have the system of equations in the variables a0, a1 below:

(1) a1 + a21c1 + a41c
3
1 = b1,
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(2) a0 + a20 + a40 = b0 + a21c0 + a41c
2
0 + a41c

2
1c0, where c0 and c1 are fixed

values which define Θ2. It can be verified that for every b1 ∈ F25 and for the
c1 (for an arbitrary c1 ∈ F25) the equation (1) has only one solution a1. The
equation (2) has the same form of equation (1) when c1 = 1. Then for every
b0, the expression b0+a21c0+a41c

2
0+a41c

2
1c0 is in F25 and the equation (2) has one

solution a0. Then the equation over F210 , X+X2+X4 = b0+b1Θ, has only one
solution X = a0+a1Θ. Because of Xs is differentially δ-uniform, we have that
δXs(a, a0+a1Θ) ≤ δ, for every a ∈ F∗210 . In consequence for every a ∈ F∗210 , and
b0 + b1Θ ∈ F210 , δψ2(a, b0 + b1Θ) ≤ δ, which means δ(ψ2) ≤ δ. Let’s suppose
that for m = k, for all c1, b1 ∈ F2(5)2k , the equation X + c1X

2 + c31X
4 = b1

has one solution X ∈ F
2(5)2

k . It only remains to prove the statement of the
theorem for m = k+1. Given any b0 +b1Θ ∈ F2(5)2k+1 , let’s solve the equation
X + X2 + X4 = b0 + b1Θ for X = a0 + a1Θ ∈ F2(5)2k+1 , where ai, bi ∈ F2(5)2k .
We obtain the following system in the variables a0 and a1:

(1) a1 + a21c1 + a41c
3
1 = b1 (which has one solution a1 ∈ F2(5)2k ).

(2) a0 + a20 + a40 = b0 + a21c0 + a41c
2
0 + a41c

2
1c0 (this equation also has a unique

solution given by a0 ∈ F2(5)2k ). Thus, X = a0 +a1Θ ∈ F2(5)2k+1 is the only solu-
tion for the system. Then as happened for F210 : δ(Xs) ≤ δ implies δ(ψ2) ≤ δ,
over F

2(5)2
k+1 , completing the proof by induction. To prove the remaining cases,

it is enough to replace F2r2m by F2(5)2m in the proof for the case r = 5. �
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