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Abstract

Let p, q be integers ≥ 2. A finite-dimensional real algebra A is said
to be weak division of index (p, q) if the equality xpyq = 0 implies x = 0
or y = 0, and there exists non-zero a, b ∈ A such that apbq−1 = 0 or
ap−1bq = 0. We show that every weak division algebra, whose index is a
pair of odd integers ≥ 3, is a real division algebra and that the mapping
x 7→ xm is onto for all odd integer m ≥ 1.

Mathenmatics Subject Classifications: 17A35
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1 Introduction

One of the fundamental and powerful results about real division algebras is
the (1, 2, 4, 8)-theorem. It states that the dimension of every real division
algebra is either 1, 2, 4 or 8 [2]. It is proved partially by Hopf [3] then finished,
independently, by Kervaire [6] and Milnor-Bott [1].

Yang [7, Lemma 1] showed that for every unital real division algebra of
dimension ≥ 2, the square mapping x 7→ x2 is onto. This persists if the unit
is replaced by a non-zero central element [4, Remark 1].

Here we introduce a new notion of division, weaker than the ordinary. Let
A be a real algebra of finite dimension. We define the powers to the left of an
element x ∈ A by: x1 = x and xn+1 = xxn for all n ≥ 1. Algebra A is called
weak division of index (p, q) (p, q being integers ≥ 2) if the equality xpyq = 0
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implies x = 0 or y = 0, and there exists a, b ∈ A \ {0} such that apbq−1 = 0 or
ap−1bq = 0.

Our objective in the present paper is to give a result analogous to those
in ([7, Lemma 1], [4, Remark 1]) for weak division algebras whose index is
a pair of odd integers ≥ 3 (Lemma 3). This will allow an extension of the
(1, 2, 4, 8)-theorem (Corollary 2). It also leads to a surprising surjectivity of
the mapping x 7→ xm (m being an odd fixed integer ≥ 1) for any real division
algebra (Corollary 1).

2 Definitions and notations

Definitions 1 Let A be a non-associative real algebra of finite dimension and
let p, q be integers ≥ 2.

1. The powers to the left of an element x ∈ A are defined by: x1 = x and
xn+1 = xxn for all n ≥ 1.

2. A is said to be a real division algebra if it has no divisors of zero.

3. A is said to be a real weak division algebra of index (p, q) if the equality
xpyq = 0 implies x = 0 or y = 0, and there exists a, b ∈ A \ {0} such
that apbq−1 = 0 or ap−1bq = 0.

The following example shows that there are real weak division algebras
which are not real division algebras:

Example 1 Let e1, e2, e3 be the canonical basis of the euclidian space (R3, ||.||).
Then R3 equipped with the multiplication defined by the following table:

� e1 e2 e3

e1 e1 0 0
e2 0 e1 0
e3 0 0 e1

is a 3-dimensional real weak division algebra with index (2, 2) having,
clearly, a non-zero central idempotent e1.

Indeed, for every x = αe1 + βe2 + γe3 ∈ R3, we have:

x � x = (αe1 + βe2 + γe3) � (αe1 + βe2 + γe3)

= (α2 + β2 + γ2)e1

= ||x||2e1.
Now, for x, y ∈ R3 : (x � x) � (y � y) = ||x||2||y||2e1. So the equality (x � x) �

(y � y) = 0 gives x = 0 or y = 0. Moreover, the equality (x � x) � y = 0 holds
for x = e1 6= 0 and y = e2 6= 0. �
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3 Preliminary results

We have the following preliminary results:

Lemma 1 Every real division algebra A is a real weak division algebra whose
index is an arbitrary pair of integers ≥ 2.

Proof. Let p, q be arbitrary integers ≥ 2 and let x, y ∈ A. We have

xpyq = 0 ⇒ xp = 0 or yq = 0 because A has no divisors of zero

⇒ x = 0 or y = 0 for the same reason.

2

Lemma 2 Let A be a real weak division algebra whose index is a pair (p, q)
of integers ≥ 2. Then A has no nilpotent element of index ≤ min(p, q).

Proof. Assume that p ≤ q and let x be in A such that xr = 0 6= xr−1 with
2 ≤ r ≤ p. Let Lx be the left-multiplication operator by x. Now, for arbitrary
nonzero y ∈ A :

0 = Lp−(r−1)
x (xr−1) because p− (r − 1) ≥ 1 and xr = 0

= xp

= xpyq.

This gives x = 0 since A has index (p, q) and y 6= 0, which contradicts the
fact that xr−1 6= 0. The result is the same if q < p. 2

4 Main result

Let Sn−1 be the unit sphere of Euclidian space (Rn, ||.||). A continuous mapping
f : Sn−1 → Sn−1 induces a homomorphism f∗ : Hn−1(Sn−1) → Hn−1(Sn−1),
where Hn−1(Sn−1) is the (n−1)th homology group of the sphere Sn−1. It is well
known that Hn−1(Sn−1) = Z [5, Theorem 9.1.9], so f∗ has the form f∗ : x 7→ αx
for some fixed α ∈ Z. The integer α is called the degree of f denoted by deg(f)
[5, p. 199].

We have the following key result:

Lemma 3 Let A be a real algebra, with underlying space Rn, and assume that
it is a weak division algebra of index a pair (p, q) of odd integers ≥ 3. Then
both mappings x 7→ xp, x 7→ xq are onto.

Proof. The mapping g : Sn−1 → Sn−1 x 7→ ||xp||−1xp is well defined by
Lemma 2. It is continuous and odd. So deg(g) 6= 0 [5, Proposition 10.2.5] and
then g is onto. Therefore the mapping A → A x 7→ xp is onto. 2
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Theorem 1 Let A be a finite-dimensional real algebra. Then the following
assertions are equivalent:

1. A is a division algebra,

2. A is weak division algebra of index a pair (p, q) of odd integers ≥ 3.

Proof. (2) ⇒ (1). Let x, y ∈ A such that xy = 0. There exists z, t ∈ A
such that (x, y) = (zp, tq) by Lemma 3. Now zptq = xy = 0. So z = 0 or t = 0,
that is x = 0 or y = 0. 2

As consequences

Corollary 1 Let A be a real division algebra and m an odd integer ≥ 1. Then
the mapping A → A x 7→ xm is onto.

Corollary 2 Let A be a weak division algebra of index a pair (p, q) of odd
integers ≥ 3. Then the dimension of A is either 1, 2, 4 or 8.
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