International Journal of Algebra, Vol. 18, 2024, no. 1, 11 - 14 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2024.91850

A Note on Real Weak Division Algebras

Elhassan Idnarour and Abdellatif Rochdi

Département de Mathématiques et Informatique Faculté des Sciences Ben M'Sik Université Hassan II, 7955 Casablanca, Morocco

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2024 Hikari Ltd.

Abstract

Let p, q be integers ≥ 2 . A finite-dimensional real algebra \mathcal{A} is said to be *weak division of index* (p, q) if the equality $x^p y^q = 0$ implies x = 0or y = 0, and there exists non-zero $a, b \in \mathcal{A}$ such that $a^p b^{q-1} = 0$ or $a^{p-1}b^q = 0$. We show that every weak division algebra, whose index is a pair of odd integers ≥ 3 , is a real division algebra and that the mapping $x \mapsto x^m$ is onto for all odd integer $m \geq 1$.

Mathenmatics Subject Classifications: 17A35

Keywords: Weak division algebras, degree of a continuous mapping between spheres

1 Introduction

One of the fundamental and powerful results about real division algebras is the (1, 2, 4, 8)-theorem. It states that the dimension of every real division algebra is either 1, 2, 4 or 8 [2]. It is proved partially by Hopf [3] then finished, independently, by Kervaire [6] and Milnor-Bott [1].

Yang [7, Lemma 1] showed that for every unital real division algebra of dimension ≥ 2 , the square mapping $x \mapsto x^2$ is onto. This persists if the unit is replaced by a non-zero central element [4, Remark 1].

Here we introduce a new notion of division, weaker than the ordinary. Let \mathcal{A} be a real algebra of finite dimension. We define the powers to the left of an element $x \in \mathcal{A}$ by: $x^1 = x$ and $x^{n+1} = xx^n$ for all $n \ge 1$. Algebra \mathcal{A} is called weak division of index (p,q) (p,q) being integers ≥ 2 if the equality $x^p y^q = 0$

implies x = 0 or y = 0, and there exists $a, b \in \mathcal{A} \setminus \{0\}$ such that $a^p b^{q-1} = 0$ or $a^{p-1}b^q = 0$.

Our objective in the present paper is to give a result analogous to those in ([7, Lemma 1], [4, Remark 1]) for weak division algebras whose index is a pair of odd integers ≥ 3 (Lemma 3). This will allow an extension of the (1, 2, 4, 8)-theorem (Corollary 2). It also leads to a surprising surjectivity of the mapping $x \mapsto x^m$ (*m* being an odd fixed integer ≥ 1) for any real division algebra (Corollary 1).

2 Definitions and notations

Definitions 1 Let \mathcal{A} be a non-associative real algebra of finite dimension and let p, q be integers ≥ 2 .

- 1. The powers to the left of an element $x \in \mathcal{A}$ are defined by: $x^1 = x$ and $x^{n+1} = xx^n$ for all $n \ge 1$.
- 2. \mathcal{A} is said to be a *real division algebra* if it has no divisors of zero.
- 3. \mathcal{A} is said to be a *real weak division algebra* of index (p,q) if the equality $x^p y^q = 0$ implies x = 0 or y = 0, and there exists $a, b \in \mathcal{A} \setminus \{0\}$ such that $a^p b^{q-1} = 0$ or $a^{p-1} b^q = 0$.

The following example shows that there are real weak division algebras which are not real division algebras:

Example 1 Let e_1, e_2, e_3 be the canonical basis of the euclidian space $(\mathbb{R}^3, ||.||)$. Then \mathbb{R}^3 equipped with the multiplication defined by the following table:

\diamond	e_1	e_2	e_3
e_1	e_1	0	0
e_2	0	e_1	0
e_3	0	0	e_1

is a 3-dimensional real weak division algebra with index (2, 2) having, clearly, a non-zero central idempotent e_1 .

Indeed, for every $x = \alpha e_1 + \beta e_2 + \gamma e_3 \in \mathbb{R}^3$, we have:

$$x \diamond x = (\alpha e_1 + \beta e_2 + \gamma e_3) \diamond (\alpha e_1 + \beta e_2 + \gamma e_3)$$

= $(\alpha^2 + \beta^2 + \gamma^2)e_1$
= $||x||^2 e_1.$

Now, for $x, y \in \mathbb{R}^3$: $(x \diamond x) \diamond (y \diamond y) = ||x||^2 ||y||^2 e_1$. So the equality $(x \diamond x) \diamond (y \diamond y) = 0$ gives x = 0 or y = 0. Moreover, the equality $(x \diamond x) \diamond y = 0$ holds for $x = e_1 \neq 0$ and $y = e_2 \neq 0$.

3 Preliminary results

We have the following preliminary results:

Lemma 1 Every real division algebra \mathcal{A} is a real weak division algebra whose index is an arbitrary pair of integers ≥ 2 .

Proof. Let p, q be arbitrary integers ≥ 2 and let $x, y \in \mathcal{A}$. We have

 $x^p y^q = 0 \implies x^p = 0 \text{ or } y^q = 0$ because \mathcal{A} has no divisors of zero $\implies x = 0 \text{ or } y = 0$ for the same reason.

Lemma 2 Let \mathcal{A} be a real weak division algebra whose index is a pair (p,q) of integers ≥ 2 . Then \mathcal{A} has no nilpotent element of index $\leq \min(p,q)$.

Proof. Assume that $p \leq q$ and let x be in \mathcal{A} such that $x^r = 0 \neq x^{r-1}$ with $2 \leq r \leq p$. Let L_x be the left-multiplication operator by x. Now, for arbitrary nonzero $y \in \mathcal{A}$:

$$\begin{array}{rcl} 0 & = & L_x^{p-(r-1)}(x^{r-1}) & \text{because } p-(r-1) \geq 1 \mbox{ and } x^r = 0 \\ & = & x^p \\ & = & x^p y^q. \end{array}$$

This gives x = 0 since \mathcal{A} has index (p, q) and $y \neq 0$, which contradicts the fact that $x^{r-1} \neq 0$. The result is the same if q < p. \Box

4 Main result

Let \mathbb{S}^{n-1} be the unit sphere of Euclidian space $(\mathbb{R}^n, ||.||)$. A continuous mapping $f : \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}$ induces a homomorphism $f_* : H_{n-1}(\mathbb{S}^{n-1}) \to H_{n-1}(\mathbb{S}^{n-1})$, where $H_{n-1}(\mathbb{S}^{n-1})$ is the $(n-1)^{th}$ homology group of the sphere \mathbb{S}^{n-1} . It is well known that $H_{n-1}(\mathbb{S}^{n-1}) = \mathbb{Z}$ [5, Theorem 9.1.9], so f_* has the form $f_* : x \mapsto \alpha x$ for some fixed $\alpha \in \mathbb{Z}$. The integer α is called the *degree of* f denoted by deg(f) [5, p. 199].

We have the following key result:

Lemma 3 Let \mathcal{A} be a real algebra, with underlying space \mathbb{R}^n , and assume that it is a weak division algebra of index a pair (p,q) of odd integers ≥ 3 . Then both mappings $x \mapsto x^p$, $x \mapsto x^q$ are onto.

Proof. The mapping $g : \mathbb{S}^{n-1} \to \mathbb{S}^{n-1} x \mapsto ||x^p||^{-1}x^p$ is well defined by Lemma 2. It is continuous and odd. So $\deg(g) \neq 0$ [5, Proposition 10.2.5] and then g is onto. Therefore the mapping $\mathcal{A} \to \mathcal{A} x \mapsto x^p$ is onto. \Box

Theorem 1 Let \mathcal{A} be a finite-dimensional real algebra. Then the following assertions are equivalent:

- 1. \mathcal{A} is a division algebra,
- 2. A is weak division algebra of index a pair (p,q) of odd integers ≥ 3 .

Proof. (2) \Rightarrow (1). Let $x, y \in \mathcal{A}$ such that xy = 0. There exists $z, t \in \mathcal{A}$ such that $(x, y) = (z^p, t^q)$ by Lemma 3. Now $z^p t^q = xy = 0$. So z = 0 or t = 0, that is x = 0 or y = 0. \Box

As consequences

Corollary 1 Let \mathcal{A} be a real division algebra and m an odd integer ≥ 1 . Then the mapping $\mathcal{A} \to \mathcal{A} \ x \mapsto x^m$ is onto.

Corollary 2 Let \mathcal{A} be a weak division algebra of index a pair (p,q) of odd integers ≥ 3 . Then the dimension of \mathcal{A} is either 1, 2, 4 or 8.

References

- R. Bott and J. Milnor, On the parallelizability of the spheres, *Bull. Amer. Math. Soc.*, **64** (1958), 87-89. https://doi.org/10.1090/s0002-9904-1958-10166-4
- [2] F. Hirzebruch, M. Koecher and R. Remmert, *Numbers*, Springer-Verlag, 1991.
- [3] H. Hopf, Ein topologischer beitrag zur reellen algebra, Comment. Math. Helvet., 13 (1940), 219-239. https://doi.org/10.1007/bf01378062
- [4] E. Idnarour and A. Rochdi, Algebraic extensions of some results by Yang, Communications in Algebra, (2023), 1-7. https://doi.org/10.1080/00927872.2023.2259474
- [5] A. Jeanneret, D. Lines, Invitation à la topologie algébrique tome 1 Homologie. Editions Cépaduès, Toulouse, (2014).
- [6] M. Kervaire, Non-parallelizability of the *n*-sphere for n > 7, Proc. Nat. Acad. Sci. USA, 44 (1958), 280-283. https://doi.org/10.1073/pnas.44.3.280
- [7] C. T. Yang, Division algebras and fibrations of spheres by great spheres, *Journal of Differential Geometry*, V, 16 (1981), no. 4, 577-593. https://doi.org/10.4310/jdg/1214436369

Received: February 3, 2024; Published: February 16, 2024