International Journal of Algebra, Vol. 18, 2024, no. 1, 31-39
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ija.2024.91852

A New Characterization of Several Alternating Simple Groups

Dongyang He
Chengdu University of Information Technology
School of Applied Mathematics
Chengdu, Sichuan 610225, China
Zhangjia Han
Chengdu University of Information Technology
School of Applied Mathematics
Chengdu, Sichuan 610225, China

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright (c) 2024 Hikari Ltd.

Abstract

In this paper, we studied the influence of centralizers on the structure of groups and demonstrate that the alternating groups A_{n} (for $n=13,14,15)$ can be uniquely determined by two crucial quantitative properties: its even-order components of the group and the set $\pi_{p_{m}}(G)$. Here, G represents a finite group, and $\pi(G)$ is the set of prime factors of the order of G, and p_{m} is the largest element in $\pi(G)$, and $\pi_{p_{m}}(G)=\left\{\left|C_{G}(x)\right| \mid x \in G\right.$ and $\left.|x|=p_{m}\right\}$ denotes the set of orders of centralizers of p_{m}-order elements in G.

Mathematics Subject Classification: 20D10; 20D20
Keywords: Finite groups; Simple Groups; Order components; Centralizers; Order

1 Introduction

The groups mentioned in this paper are all finite groups.

Let G be a finite group. K. W. Gruenberg and O. Kegel defined the prime graph $\Gamma(G)$ of a finite group G as follows: the vertex set of G is the set of all prime factors of $|G|$, and two vertices p and q are adjacent if and only if G contains an element of order $p q$ (see [9]). The number of connected components in the prime graph of G is denoted by $t(G)$, and the set of connected components in the prime graph of G is denoted by $T(G)=\left\{\pi_{i}(G) \mid i=1,2, \ldots, t(G)\right\}$. When G is an even-order group, it is stipulated that $2 \in \pi_{1}(G)$. If $\pi_{1}, \pi_{2}, \ldots, \pi_{t(G)}$ are all the connected components of G 's prime graph, then $|G|=m_{1} m_{2} \cdots m_{t(G)}$, where the prime factor set of m_{i} is π_{i} for $i=1,2, \ldots, t(G)$. The numbers $m_{1}, m_{2}, \ldots, m_{t(G)}$ are called the order components of G, and $O C(G)=\left\{m_{1}, m_{2}, \ldots, m_{t(G)}\right\}$ is the set of order components of G (see [2]). For convenience, we denote the even-order component of G as $m_{1}(G)$. Professor Guiyun Chen gave the order components of all simple groups whose prime graph is disconnected (see [2] Table1-Table4).

Using the concept of order components, Professor G. Y. Chen and other group theorists such as Professor H. G. Shi have studied the following problem: Let G be a finite group and S be a non-abelian simple group. If $O C(G)=$ $O C(S)$, are G and S isomorphic?

Many group theorists have conducted in-depth studies on this problem, and some of their achievements can be found in $[2-5,8]$. From these results, it can be seen that the order components are effective quantitative properties for characterizing simple groups.

This paper investigated the impact of the even order component $m_{1}(G)$ of a group and $\pi_{p_{m}}(G)=\left\{\left|C_{G}(x)\right| \mid x \in G\right.$ and $\left.|x|=p_{m}\right\}$, which is the set of orders of centralizers of p_{m}-order elements in G, and utilizes them to characterize the alternating groups A_{n} (for $n=13,14,15$).

MAIN THEOREM. Let G be a finite group, and let M be one of the alternating groups A_{13}, A_{14}, or A_{15}. Then G is isomorphic to M if and only if:
(1) $m_{1}(G)=m_{1}(M)$;
(2) $\pi_{p_{m}}(G)=\pi_{p_{m}}(M)$.

2 Preliminaries

In this paper, we adopt the following conventions: $\pi(G)$ denotes the set of prime factors of the order of $G ; p_{m}$ stands for the largest element of $\pi(G)$, and $\pi_{p_{m}}(G)$ represents the set of orders of centralizers of p_{m}-order elements in G. The symbol $|\pi(G)|$ refers to the number of prime factors of the order of G. All other symbols not explicitly defined are standard and can be found in [6].

The following theorem provides a characterization of the structure of finite groups when $t(G) \geq 2$.

Lemma 2.1 [9, Corollary] Let G be a finite group with disconnecting prime graph. Then the structure of G is as follows:
(1) G is a Frobenius group or a 2-Frobenius group;
(2) G has a normal series $1 \unlhd H \unlhd K \unlhd G$, where H is a nilpotent $\pi_{1}(G)$ group, G / K is soluble $\pi_{1}(G)$-group, K / H is a non-abelian simple group, and $|G / K|$ divides $|\operatorname{Out}(K / H)|$.

Definition 2.2 Let G be a finite group. G is called a 2-Frobenius group if there exists a normal series $1 \unlhd H \unlhd K \unlhd G$, such that G / H and K are Frobenius groups with kernels K / H and H, respectively (see [1]).

The following two lemmas respectively provide characterizations of the structure of even-order Frobenius groups and even-order 2-Frobenius groups.

Lemma 2.3 [1, Theorem 1] Let G be an even-order Frobenius group with Frobenius kernel H and Frobenius complement K. Then $t(G)=2$ and $T(G)=$ $\{\pi(H), \pi(K)\}$ Moreover, the structure of G is one of the following:

1) If $2 \in \pi(H)$, then the Sylow subgroups of K are cyclic;
2) If $2 \in \pi(K)$, then H is an abelian group. When K is soluble, the odd-order Sylow subgroups of K are cyclic and the Sylow 2-subgroup is either a cyclic group or a generalized quaternion group. When K is insoluble, there exists $K_{0} \leq K$ such that $\left|K: K_{0}\right| \leq 2$ and $K_{0} \simeq Z \times S L(2,5)$, where $(|Z|, 30)=$ 1 and the Sylow subgroups of Z are cyclic.

Lemma 2.4 [1, Theorem 2] Let G be an even-order 2-Frobenius group. Then $t(G)=2$ and G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $\pi(K / H)=$ $\pi_{2}(G), \pi(H) \cup \pi(G / K)=\pi_{1}(G),|G / K|$ divides \mid Aut $(K / H) \mid$, and both $|G / K|$ and $|K / H|$ are cyclic groups. In particular, $|G / K| \leq|K / H|$ and G is soluble.

3 Proof of Main Theorem

Given a subgroup K of a group G, it is obvious that $m_{1}(K)$ divides $m_{1}(G)$. In the following proof, we will frequently use this result without further explanation.

Lemma 3.1 Let G be a finite group, and let M be one of the alternating groups A_{13}, A_{14}, or A_{15}. If G satisfies the following conditions:
(1) $m_{1}(G)=m_{1}(M)$;
(2) $\pi_{p_{m}}(G)=\pi_{p_{m}}(M)$.

Then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, K / H is a non-abelian simple group, H is nilpotent, G / K is solvable, and $|G / K|||O u t(K / H)|$.

Proof: Case $1 M \cong A_{13}\left(2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13\right)$.
In this case, $m_{1}(G)=m_{1}(M)=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7$, and $\pi_{p_{m}}(M)=\{13\}$. Since $m_{1}(G)=m_{1}(M)=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7$, we have $t(G) \geq 2$, which implies that G has the following structure according to Lemma 2.1:

1) G is a Frobenius group or a 2-Frobenius group;
2) G has a normal series $1 \unlhd H \unlhd K \unlhd G$, with H being a nilpotent $\pi_{1}(G)$ group, G / K being a solvable $\pi_{1}(G)$-group, and K / H being a nonabelian simple group.

However, G cannot be a Frobenius group. Otherwise, we have $G=H K$, where H is the Frobenius kernel and K is the Frobenius complement, and $T(G)=\{\pi(H), \pi(K)\}$.

1) If $2 \in \pi(H)$, then $\pi(H)=\pi_{1}(G)$. Since H is a nilpotent group, we have $H=S_{2} \times S_{3} \times S_{5} \times S_{7}$, where $S_{i} \unlhd G$ and $S_{i} \in \operatorname{Syl}_{i}(G)$ for $i=2,3,5,7$. Therefore, $|K|\left|\left|A u t\left(S_{7}\right)\right|\right.$. However, since 13$||K|$ and $\left|A u t\left(S_{7}\right)\right| \mid 6$, we have a contradiction.
2) If $2 \in \pi(K)$, then by the given condition, the Sylow 13 -subgroup S_{13} of G is normal in G and has order 13. If we let the Sylow 7 -subgroup of G act on S_{13}, we obtain an element of order 91 in G, which contradicts $\pi_{p_{m}}(M)=\{13\}$. Therefore, G is not a Frobenius group.
G is also not a 2-Frobenius group. Otherwise, we have $t(G)=2$ and G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $\pi(K / H)=\pi_{2}(G)$ and $\pi(H) \cup \pi(G / K)=\pi_{1}(G)$. Since $m_{1}(G)=m_{1}(M)=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7$, we have $13 \in \pi_{2}(G)$, which means K contains an element of order 13 . If we let the $13-$ order element in K act on the Sylow 2-subgroup of H or the Sylow 3-subgroup of H or the Sylow 5 -subgroup of H or the Sylow 7 -subgroup of H, we will obtain a contradiction. Therefore, G is not a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $\pi(H) \cup \pi(G / K) \subseteq \pi_{1}(G), H$ is a nilpotent group, G / K is a solvable $\pi_{1}(G)$-group, and K / H is a nonabelian simple group with $|G / K|||O u t(K / H)|$.

Case $2 M \cong A_{14}\left(2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13\right)$.
In this case, $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11$, and $\pi_{p_{m}}(M)=\{13\}$. Since $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11$, we have $t(G) \geq 2$, which implies that G has the following structure according to Lemma 2.1:

1) G is a Frobenius group or a 2-Frobenius group;
2) G has a normal series $1 \unlhd H \unlhd K \unlhd G$, with H being a nilpotent $\pi_{1}(G)$ group, G / K being a solvable $\pi_{1}(G)$-group, and K / H being a nonabelian simple group.

However, G cannot be a Frobenius group. Otherwise, we have $G=H K$, where H is the Frobenius kernel and K is the Frobenius complement, and $T(G)=\{\pi(H), \pi(K)\}$.

1) If $2 \in \pi(H)$, then $\pi(H)=\pi_{1}(G)$. Since H is a nilpotent group, we have $H=S_{2} \times S_{3} \times S_{5} \times S_{7} \times S_{11}$, where $S_{i} \unlhd G$ and $S_{i} \in S y l_{i}(G)$ for $i=2,3,5,7,11$. Therefore, $|K|\left|\left|A u t\left(S_{11}\right)\right|\right.$. However, since 13$||K|$ and $\mid A u t\left(S_{11}\right) \|$, we have a contradiction.
2) If $2 \in \pi(K)$, then by the given condition, the Sylow 13 -subgroup S_{13} of G is normal in G and has order 13. If we let the Sylow 11-subgroup of G act on S_{13}, we obtain an element of order 143 in G, which contradicts $\pi_{p_{m}}(M)=\{13\}$. Therefore, G is not a Frobenius group.
G is also not a 2-Frobenius group. Otherwise, we have $t(G)=2$ and G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $\pi(K / H)=\pi_{2}(G)$ and $\pi(H) \cup \pi(G / K)=\pi_{1}(G)$. Since $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11$, we have $13 \in \pi_{2}(G)$, which means K contains an element of order 13 . If we let the 13 -order element in K act on the Sylow 2-subgroup of H or the Sylow 3 -subgroup of H or the Sylow 5 -subgroup of H or the Sylow 7 -subgroup of H or the Sylow 11-subgroup, we will obtain a contradiction. Therefore, G is not a 2 -Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $\pi(H) \cup \pi(G / K) \subseteq \pi_{1}(G), H$ is a nilpotent group, G / K is a solvable $\pi_{1}(G)$-group, and K / H is a nonabelian simple group with $|G / K|||O u t(K / H)|$.

Case $3 M \cong A_{15}\left(2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13\right)$.
In this case, $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11$, and $\pi_{p_{m}}(M)=\{13\}$. Since $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11$, we have $t(G) \geq 2$, which implies that G has the following structure according to Lemma 2.1:

1) G is a Frobenius group or a 2-Frobenius group;
2) G has a normal series $1 \unlhd H \unlhd K \unlhd G$, with H being a nilpotent $\pi_{1}(G)$ group, G / K being a solvable $\pi_{1}(G)$-group, and K / H being a nonabelian simple group.

However, G cannot be a Frobenius group. Otherwise, we have $G=H K$, where H is the Frobenius kernel and K is the Frobenius complement, and $T(G)=\{\pi(H), \pi(K)\}$.

1) If $2 \in \pi(H)$, then $\pi(H)=\pi_{1}(G)$. Since H is a nilpotent group, we have $H=S_{2} \times S_{3} \times S_{5} \times S_{7} \times S_{11}$, where $S_{i} \unlhd G$ and $S_{i} \in \operatorname{Syl}_{i}(G)$ for $i=2,3,5,7,11$. Therefore, $|K|\left|\left|A u t\left(S_{11}\right)\right|\right.$. However, since 13$||K|$ and $\mid A u t\left(S_{11}\right) \| 10$, we have a contradiction.
2) If $2 \in \pi(K)$, then by the given condition, the Sylow 13 -subgroup S_{13} of G is normal in G and has order 13. If we let the Sylow 11-subgroup of G act on S_{13}, we obtain an element of order 143 in G, which contradicts $\pi_{p_{m}}(M)=\{13\}$. Therefore, G is not a Frobenius group.
G is also not a 2-Frobenius group. Otherwise, we have $t(G)=2$ and G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $\pi(K / H)=\pi_{2}(G)$ and $\pi(H) \cup \pi(G / K)=\pi_{1}(G)$. Since $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11$, we
have $13 \in \pi_{2}(G)$, which means K contains an element of order 13 . If we let the 13-order element in K act on the Sylow 2-subgroup of H or the Sylow 3 -subgroup of H or the Sylow 5 -subgroup of H or the Sylow 7 -subgroup of H or the Sylow 11-subgroup, we will obtain a contradiction. Therefore, G is not a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $\pi(H) \cup \pi(G / K) \subseteq \pi_{1}(G), H$ is a nilpotent group, G / K is a solvable $\pi_{1}(G)$-group, and K / H is a nonabelian simple group with $|G / K|||O u t(K / H)|$.

Here, we will provide a complete characterization of the alternating group A_{n} for $n=13,14,15$, that is, to prove $G \cong M$.

Theorem 3.2 Let G be a finite group, and let M be one of the alternating groups A_{13}, A_{14}, or A_{15}. Then G is isomorphic to M if and only if:
(1) $m_{1}(G)=m_{1}(M)$;
(2) $\pi_{p_{m}}(G)=\pi_{p_{m}}(M)$.

Proof: The necessity of the theorem is obvious, so we only need to prove the sufficiency. According to Lemma 3.1, we know that G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, K / H is a non-abelian simple group, H is nilpotent, G / K is solvable, and $|G / K \|||O u t(K / H)|$. Now we complete the proof based on different cases of M.

Case $1 M \cong A_{13}\left(2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13\right)$.
Since $m_{1}(G)=m_{1}(M)=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7$, it follows that $t(G) \geq 2$, which implies that $\pi(H) \cup \pi(G / K) \subseteq\{2,3,5,7\}$. Additionally, $13 \in \pi(K / H)$. If H is nontrivial, let us assume $H=S_{2} \times S_{3} \times S_{5} \times S_{7}$, where $S_{i} \in \operatorname{Syl}_{i}(H)$ for $i=2,3,5,7$. Since H is a nilpotent group, we have $S_{i} \unlhd K$ for $i=2,3,5,7$. By letting the 13 -order element of K act on S_{i}, we obtain $\pi_{p_{m}}(M) \neq\{13\}$, which leads to a contradiction. Therefore, we conclude that $H=1$.

In this way, G has a normal nonabelian simple subgroup K with $\pi(G / K) \subseteq$ $\pi_{1}(G)=\{2,3,5,7\}$ and $13 \in \pi(K)$. If $|\pi(K)|=3$, then K is a simple $K_{3^{-}}$ group. According to [7], the order of all simple K_{3}-groups does not contain the prime factor 13 . If $|\pi(K)|=4$, then because $\pi_{p_{m}}(M)=13$, we have $t(K) \geq 2$. When $t(K)=2$, by examining Table 3 and Table 4 in [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be concluded that such a simple group does not exist. When $t(K) \geq 3$, by examining Table 2 and Table 4 of [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be concluded that such a simple group does not exist. If $|\pi(K)| \geq 5$, then because $\pi_{p_{m}}(M)=13$ and $t(K) \geq 3$, by examining Table 2 to Table 4 of [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be deduced that K can only be one of the following groups: A_{13}, A_{14}, A_{15}, and Suz.

If $K \cong S u z$, then $|K|=2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. Since in this case $m_{1}(K)=$ $2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7$, it clearly contradicts $m_{1}(G)=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7$, hence $K \nsubseteq S u z$. Similarly, $K \not \not A_{14}$ and A_{15}.

Hence, we have $K \cong A_{13}$, which implies $1 \unlhd A_{13} \unlhd G$. In this case, it is clear that $C_{G}\left(A_{13}\right)=1$ and $\left|\operatorname{Out}\left(A_{13}\right)\right|=2$. Therefore, we either have $G \cong A_{13}$ or $G \cong \operatorname{Aut}\left(A_{13}\right)$. If $G \cong \operatorname{Aut}\left(A_{13}\right)$, then we have evidently that $m_{1}(G)>$ $m_{1}\left(A_{13}\right)=m_{1}(M)$, which contradicts our assumption. Hence, $G \cong A_{13}$.

Case $2 M \cong A_{14}\left(2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13\right)$.
Since $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11$, we have $t(G) \geq 2$. Therefore, $\pi(H) \cup \pi(G / K) \subseteq\{2,3,5,7,11\}$ and $13 \in \pi(K / H)$. Similar to Case 1, we can prove that $H=1$, implying that G has a normal nonabelian simple subgroup K with $\pi(G / K) \subseteq \pi_{1}(G)=\{2,3,5,7,11\}$ and $13 \in \pi(K)$. If $|\pi(K)|=3$, then K is a simple K_{3}-group. According to [7], the order of all simple K_{3}-groups does not contain the prime factor 13. If $|\pi(K)|=4$, then because $\pi_{p_{m}}(M)=13$, we have $t(K) \geq 2$. When $t(K)=2$, by examining Table 3 and Table 4 in [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be concluded that such a simple group does not exist. When $t(K) \geq 3$, by examining Table 2 and Table 4 of [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be concluded that such a simple group does not exist. If $|\pi(K)| \geq 5$, then because $\pi_{p_{m}}(M)=13$ and $t(K) \geq 3$, by examining Table 2 to Table 4 of [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be deduced that K can only be one of the following groups: A_{13}, A_{14}, A_{15}, and Suz.

If $K \cong A_{13}$, then $|K|=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. Since $m_{1}(G)=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11$ and $m_{1}(K)=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11$, we have $2 \cdot 7\|G / K\|\left|\left|O u t\left(A_{13}\right)\right|=2\right.$, which leads to a contradiction. Therefore, K is not isomorphic to A_{13}.

If $K \cong S u z$, then $|K|=2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. Since in this case $m_{1}(K)=$ $2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7$, it clearly contradicts $m_{1}(G)=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11$, hence $K \nsubseteq S u z$. Similarly, $K \not \not A_{15}$.

Hence, we have $K \cong A_{14}$, which implies $1 \unlhd A_{14} \unlhd G$. In this case, it is clear that $C_{G}\left(A_{14}\right)=1$ and $\left|\operatorname{Out}\left(A_{14}\right)\right|=2$. Therefore, we either have $G \cong A_{14}$ or $G \cong \operatorname{Aut}\left(A_{14}\right)$. If $G \cong \operatorname{Aut}\left(A_{14}\right)$, then we have evidently that $m_{1}(G)>$ $m_{1}\left(A_{14}\right)=m_{1}(M)$, which contradicts our assumption. Hence, $G \cong A_{14}$.

Case $3 M \cong A_{15}\left(2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13\right)$.
Since $m_{1}(G)=m_{1}(M)=2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11$, we have $t(G) \geq 2$. Therefore, $\pi(H) \cup \pi(G / K) \subseteq\{2,3,5,7,11\}$ and $13 \in \pi(K / H)$. Similar to Case 1, we can prove that $H=1$, implying that G has a normal nonabelian simple subgroup K with $\pi(G / K) \subseteq \pi_{1}(G)=\{2,3,5,7,11\}$ and $13 \in \pi(K)$. If $|\pi(K)|=3$, then K is a simple K_{3}-group. According to [7], the order of all simple K_{3}-groups does not contain the prime factor 13 . If $|\pi(K)|=4$, then because $\pi_{p_{m}}(M)=13$, we have $t(K) \geq 2$. When $t(K)=2$, by examining Table 3 and Table 4 in [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be concluded that such a simple group does not exist. When $t(K) \geq 3$, by examining Table 2 and Table 4
of [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be concluded that such a simple group does not exist. If $|\pi(K)| \geq 5$, then because $\pi_{p_{m}}(M)=13$ and $t(K) \geq 3$, by examining Table 2 to Table 4 of [2] and utilizing the condition $\pi_{p_{m}}(M)=13$, it can be deduced that K can only be one of the following groups: A_{13}, A_{14}, A_{15}, and Suz.

If $K \cong A_{13}$, then $|K|=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. Since $m_{1}(G)=2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11$ and $m_{1}(K)=2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11$, we have $2 \cdot 3 \cdot 5 \cdot 7\|G / K\| \mid O$ ut $\left(A_{13}\right) \mid=2$, which leads to a contradiction. Therefore, K is not isomorphic to A_{13}. Similarly, $K \not \approx A_{14}$.

If $K \cong S u z$, then $|K|=2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. Since in this case $m_{1}(K)=$ $2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7$, it clearly contradicts $m_{1}(G)=2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11$, hence $K \not \equiv$ Suz.

Hence, we have $K \cong A_{15}$, which implies $1 \unlhd A_{15} \unlhd G$. In this case, it is clear that $C_{G}\left(A_{15}\right)=1$ and $\left|\operatorname{Out}\left(A_{15}\right)\right|=2$. Therefore, we either have $G \cong A_{15}$ or $G \cong \operatorname{Aut}\left(A_{15}\right)$. If $G \cong \operatorname{Aut}\left(A_{15}\right)$, then we have evidently that $m_{1}(G)>$ $m_{1}\left(A_{15}\right)=m_{1}(M)$, which contradicts our assumption. Hence, $G \cong A_{15}$.

The proof has been completed.

References

[1] G. Y. Chen, The structure of Frobenius group and 2-Frobenius group, J. Southwest Univ. Nat. Sci., 5 (1995), 485-487.
[2] G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq., 1 (1996), 49-58.
[3] G. Y. Chen, A new characterization of Suzuki-Ree groups, Sci. China Ser. A-Math., 5 (1997), 430-433. https://doi.org/10.1007/bf02878919
[4] G. Y. Chen, A new characterization of $P S L_{2}(q)$, Southeast Asian Bull. Math., 22 (1998), 257-263.
[5] G. Y. Chen, Characterization of ${ }^{3} D_{4}(q)$, Southeast Asian Bull. Math., 25 (2001), 389-401. https://doi.org/10.1007/s10012-001-0389-2
[6] D. Groenstein, Finite simple groups, Plenum Press, New York/London, 1968.
[7] M. Herzog, On finite simplie groups of order divisible by three primes only, J. Algebra, 10 (1968), 383-388. https://doi.org/10.1016/0021-8693(68)90088-4
[8] H. G. Shi, Z. J. Han and G. Y. Chen, $D_{p}(3)(p \geq 5)$ can be characterized by its order components, Colloq. Math., 2 (2012), 257-268.
https://doi.org/10.4064/cm126-2-8
[9] J. S. Williams, Prime graph components of finite simple groups, J. Algebra, 11 (1981), 487-513. https://doi.org/10.1016/0021-8693(81)90218-0

Received: March 23, 2024; Published: April 15, 2024

