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Abstract

In this paper, we studied the influence of centralizers on the struc-

ture of groups and demonstrate that the alternating groups An (for

n = 13, 14, 15) can be uniquely determined by two crucial quantita-

tive properties: its even-order components of the group and the set

πpm(G). Here, G represents a finite group, and π(G) is the set of prime

factors of the order of G, and pm is the largest element in π(G),and

πpm(G) ={|CG(x)||x ∈ G and |x| = pm } denotes the set of orders
of centralizers of pm-order elements in G.
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1 Introduction

The groups mentioned in this paper are all finite groups.
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Let G be a finite group. K. W. Gruenberg and O. Kegel defined the
prime graph Γ(G) of a finite group G as follows: the vertex set of G is
the set of all prime factors of |G|, and two vertices p and q are adjacent
if and only if G contains an element of order pq (see [9]). The number
of connected components in the prime graph of G is denoted by t(G), and
the set of connected components in the prime graph of G is denoted by
T (G) = {πi(G)|i = 1, 2, . . . , t(G)}. When G is an even-order group, it is
stipulated that 2 ∈ π1(G). If π1, π2, . . . , πt(G) are all the connected compo-
nents of G’s prime graph, then |G| = m1m2 · · ·mt(G), where the prime factor
set of mi is πi for i = 1, 2, . . . , t(G). The numbers m1,m2, . . . ,mt(G) are called
the order components of G, and OC(G) = {m1,m2, . . . ,mt(G)} is the set of
order components of G (see [2]). For convenience, we denote the even-order
component of G as m1(G). Professor Guiyun Chen gave the order components
of all simple groups whose prime graph is disconnected (see [2] Table1-Table4).

Using the concept of order components, Professor G. Y. Chen and other
group theorists such as Professor H. G. Shi have studied the following problem:
Let G be a finite group and S be a non-abelian simple group. If OC(G) =
OC(S), are G and S isomorphic?

Many group theorists have conducted in-depth studies on this problem,
and some of their achievements can be found in [2–5, 8]. From these results,
it can be seen that the order components are effective quantitative properties
for characterizing simple groups.

This paper investigated the impact of the even order component m1(G) of a
group and πpm(G) ={|CG(x)||x ∈ G and |x| = pm }, which is the set of orders
of centralizers of pm-order elements in G, and utilizes them to characterize the
alternating groups An (for n = 13, 14, 15).

MAIN THEOREM. Let G be a finite group, and let M be one of the
alternating groups A13, A14, or A15. Then G is isomorphic to M if and only
if:

(1) m1(G) = m1(M);

(2) πpm(G) = πpm(M).

2 Preliminaries

In this paper, we adopt the following conventions: π(G) denotes the set of
prime factors of the order of G; pm stands for the largest element of π(G), and
πpm(G) represents the set of orders of centralizers of pm-order elements in G.
The symbol |π(G)| refers to the number of prime factors of the order of G. All
other symbols not explicitly defined are standard and can be found in [6].

The following theorem provides a characterization of the structure of finite
groups when t(G) ≥ 2.



Characterization of alternating simple groups 33

Lemma 2.1 [9, Corollary] Let G be a finite group with disconnecting prime
graph. Then the structure of G is as follows:

(1) G is a Frobenius group or a 2-Frobenius group;
(2) G has a normal series 1 EH EK EG, where H is a nilpotent π1(G)-

group, G/K is soluble π1(G)-group, K/H is a non-abelian simple group, and
|G/K| divides |Out(K/H)|.

Definition 2.2 Let G be a finite group. G is called a 2-Frobenius group
if there exists a normal series 1 E H E K E G, such that G/H and K are
Frobenius groups with kernels K/H and H, respectively (see [1]).

The following two lemmas respectively provide characterizations of the
structure of even-order Frobenius groups and even-order 2-Frobenius groups.

Lemma 2.3 [1, Theorem 1] Let G be an even-order Frobenius group with
Frobenius kernel H and Frobenius complement K. Then t(G) = 2 and T (G) =
{π(H), π(K)} Moreover, the structure of G is one of the following:

1) If 2 ∈ π(H), then the Sylow subgroups of K are cyclic;
2) If 2 ∈ π(K), then H is an abelian group. When K is soluble, the

odd-order Sylow subgroups of K are cyclic and the Sylow 2-subgroup is either
a cyclic group or a generalized quaternion group. When K is insoluble, there
exists K0 ≤ K such that |K : K0| ≤ 2 and K0 ' Z×SL(2, 5), where (|Z|, 30) =
1 and the Sylow subgroups of Z are cyclic.

Lemma 2.4 [1, Theorem 2] Let G be an even-order 2-Frobenius group.
Then t(G) = 2 and G has a normal series 1EHEKEG, such that π(K/H) =
π2(G), π(H)∪ π(G/K) = π1(G), |G/K| divides |Aut(K/H)|, and both |G/K|
and |K/H| are cyclic groups. In particular, |G/K| ≤ |K/H| and G is soluble.

3 Proof of Main Theorem

Given a subgroup K of a group G, it is obvious that m1(K) divides m1(G).
In the following proof, we will frequently use this result without further expla-
nation.

Lemma 3.1 Let G be a finite group, and let M be one of the alternating
groups A13, A14, or A15. If G satisfies the following conditions:

(1) m1(G) = m1(M);
(2) πpm(G) = πpm(M).
Then G has a normal series 1 E H E K E G such that H and G/K

are π1-groups, K/H is a non-abelian simple group, H is nilpotent, G/K is
solvable, and |G/K|||Out(K/H)|.
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Proof: Case 1 M ∼= A13(2
9 · 35 · 52 · 7 · 11 · 13).

In this case, m1(G) = m1(M) = 29 · 35 · 52 · 7, and πpm(M) = {13}. Since
m1(G) = m1(M) = 29 · 35 · 52 · 7, we have t(G) ≥ 2, which implies that G has
the following structure according to Lemma 2.1:

1) G is a Frobenius group or a 2-Frobenius group;

2) G has a normal series 1 EH EK EG, with H being a nilpotent π1(G)-
group, G/K being a solvable π1(G)-group, and K/H being a nonabelian simple
group.

However, G cannot be a Frobenius group. Otherwise, we have G = HK,
where H is the Frobenius kernel and K is the Frobenius complement, and
T (G) = {π(H), π(K)}.

1) If 2 ∈ π(H), then π(H) = π1(G). Since H is a nilpotent group, we
have H = S2 × S3 × S5 × S7, where Si EG and Si ∈ Syli(G) for i = 2, 3, 5, 7.
Therefore, |K|||Aut(S7)|. However, since 13||K| and |Aut(S7)||6, we have a
contradiction.

2) If 2 ∈ π(K), then by the given condition, the Sylow 13-subgroup S13 of
G is normal in G and has order 13. If we let the Sylow 7-subgroup of G act on
S13, we obtain an element of order 91 in G, which contradicts πpm(M) = {13}.
Therefore, G is not a Frobenius group.

G is also not a 2-Frobenius group. Otherwise, we have t(G) = 2 and
G has a normal series 1 E H E K E G, such that π(K/H) = π2(G) and
π(H) ∪ π(G/K) = π1(G). Since m1(G) = m1(M) = 29 · 35 · 52 · 7, we have
13 ∈ π2(G), which means K contains an element of order 13. If we let the 13-
order element in K act on the Sylow 2-subgroup of H or the Sylow 3-subgroup
of H or the Sylow 5-subgroup of H or the Sylow 7-subgroup of H, we will
obtain a contradiction. Therefore, G is not a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal
series 1 E H E K E G, such that π(H) ∪ π(G/K) ⊆ π1(G), H is a nilpotent
group, G/K is a solvable π1(G)-group, and K/H is a nonabelian simple group
with |G/K|||Out(K/H)|.

Case 2 M ∼= A14(2
10 · 35 · 52 · 72 · 11 · 13).

In this case, m1(G) = m1(M) = 210 · 35 · 52 · 72 · 11, and πpm(M) = {13}.
Since m1(G) = m1(M) = 210 · 35 · 52 · 72 · 11, we have t(G) ≥ 2, which implies
that G has the following structure according to Lemma 2.1:

1) G is a Frobenius group or a 2-Frobenius group;

2) G has a normal series 1 EH EK EG, with H being a nilpotent π1(G)-
group, G/K being a solvable π1(G)-group, and K/H being a nonabelian simple
group.

However, G cannot be a Frobenius group. Otherwise, we have G = HK,
where H is the Frobenius kernel and K is the Frobenius complement, and
T (G) = {π(H), π(K)}.
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1) If 2 ∈ π(H), then π(H) = π1(G). Since H is a nilpotent group, we have
H = S2×S3×S5×S7×S11, where SiEG and Si ∈ Syli(G) for i = 2, 3, 5, 7, 11.
Therefore, |K|||Aut(S11)|. However, since 13||K| and |Aut(S11)||10, we have
a contradiction.

2) If 2 ∈ π(K), then by the given condition, the Sylow 13-subgroup S13 of
G is normal in G and has order 13. If we let the Sylow 11-subgroup of G act on
S13, we obtain an element of order 143 in G, which contradicts πpm(M) = {13}.
Therefore, G is not a Frobenius group.

G is also not a 2-Frobenius group. Otherwise, we have t(G) = 2 and
G has a normal series 1 E H E K E G, such that π(K/H) = π2(G) and
π(H) ∪ π(G/K) = π1(G). Since m1(G) = m1(M) = 210 · 35 · 52 · 72 · 11, we
have 13 ∈ π2(G), which means K contains an element of order 13. If we let
the 13-order element in K act on the Sylow 2-subgroup of H or the Sylow
3-subgroup of H or the Sylow 5-subgroup of H or the Sylow 7-subgroup of H
or the Sylow 11-subgroup, we will obtain a contradiction. Therefore, G is not
a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal
series 1 E H E K E G, such that π(H) ∪ π(G/K) ⊆ π1(G), H is a nilpotent
group, G/K is a solvable π1(G)-group, and K/H is a nonabelian simple group
with |G/K|||Out(K/H)|.

Case 3 M ∼= A15(2
10 · 36 · 53 · 72 · 11 · 13).

In this case, m1(G) = m1(M) = 210 · 36 · 53 · 72 · 11, and πpm(M) = {13}.
Since m1(G) = m1(M) = 210 · 36 · 53 · 72 · 11, we have t(G) ≥ 2, which implies
that G has the following structure according to Lemma 2.1:

1) G is a Frobenius group or a 2-Frobenius group;

2) G has a normal series 1 EH EK EG, with H being a nilpotent π1(G)-
group, G/K being a solvable π1(G)-group, and K/H being a nonabelian simple
group.

However, G cannot be a Frobenius group. Otherwise, we have G = HK,
where H is the Frobenius kernel and K is the Frobenius complement, and
T (G) = {π(H), π(K)}.

1) If 2 ∈ π(H), then π(H) = π1(G). Since H is a nilpotent group, we have
H = S2×S3×S5×S7×S11, where SiEG and Si ∈ Syli(G) for i = 2, 3, 5, 7, 11.
Therefore, |K|||Aut(S11)|. However, since 13||K| and |Aut(S11)||10, we have
a contradiction.

2) If 2 ∈ π(K), then by the given condition, the Sylow 13-subgroup S13 of
G is normal in G and has order 13. If we let the Sylow 11-subgroup of G act on
S13, we obtain an element of order 143 in G, which contradicts πpm(M) = {13}.
Therefore, G is not a Frobenius group.

G is also not a 2-Frobenius group. Otherwise, we have t(G) = 2 and
G has a normal series 1 E H E K E G, such that π(K/H) = π2(G) and
π(H) ∪ π(G/K) = π1(G). Since m1(G) = m1(M) = 210 · 36 · 53 · 72 · 11, we
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have 13 ∈ π2(G), which means K contains an element of order 13. If we let
the 13-order element in K act on the Sylow 2-subgroup of H or the Sylow
3-subgroup of H or the Sylow 5-subgroup of H or the Sylow 7-subgroup of H
or the Sylow 11-subgroup, we will obtain a contradiction. Therefore, G is not
a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal
series 1 E H E K E G, such that π(H) ∪ π(G/K) ⊆ π1(G), H is a nilpotent
group, G/K is a solvable π1(G)-group, and K/H is a nonabelian simple group
with |G/K|||Out(K/H)|.

Here, we will provide a complete characterization of the alternating group
An for n = 13, 14, 15, that is, to prove G ∼= M .

Theorem 3.2 Let G be a finite group, and let M be one of the alternating
groups A13, A14, or A15. Then G is isomorphic to M if and only if:

(1) m1(G) = m1(M);
(2) πpm(G) = πpm(M).

Proof: The necessity of the theorem is obvious, so we only need to prove
the sufficiency. According to Lemma 3.1, we know that G has a normal series
1 E H E K E G such that H and G/K are π1-groups, K/H is a non-abelian
simple group, H is nilpotent, G/K is solvable, and |G/K|||Out(K/H)|. Now
we complete the proof based on different cases of M.

Case 1 M ∼= A13(2
9 · 35 · 52 · 7 · 11 · 13).

Since m1(G) = m1(M) = 29 · 35 · 52 · 7, it follows that t(G) ≥ 2, which
implies that π(H) ∪ π(G/K) ⊆ {2, 3, 5, 7}. Additionally, 13 ∈ π(K/H). If H
is nontrivial, let us assume H = S2 × S3 × S5 × S7, where Si ∈ Syli(H) for
i = 2, 3, 5, 7. Since H is a nilpotent group, we have SiEK for i = 2, 3, 5, 7. By
letting the 13-order element of K act on Si, we obtain πpm(M) 6= {13}, which
leads to a contradiction. Therefore, we conclude that H = 1.

In this way, G has a normal nonabelian simple subgroup K with π(G/K) ⊆
π1(G) = {2, 3, 5, 7} and 13 ∈ π(K). If |π(K)| = 3, then K is a simple K3-
group. According to [7], the order of all simple K3-groups does not contain the
prime factor 13. If |π(K)| = 4, then because πpm(M) = 13, we have t(K) ≥ 2.
When t(K) = 2, by examining Table 3 and Table 4 in [2] and utilizing the
condition πpm(M) = 13, it can be concluded that such a simple group does not
exist. When t(K) ≥ 3, by examining Table 2 and Table 4 of [2] and utilizing
the condition πpm(M) = 13, it can be concluded that such a simple group
does not exist. If |π(K)| ≥ 5, then because πpm(M) = 13 and t(K) ≥ 3, by
examining Table 2 to Table 4 of [2] and utilizing the condition πpm(M) = 13,
it can be deduced that K can only be one of the following groups: A13, A14,
A15, and Suz.
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If K ∼= Suz, then |K| = 213 · 37 · 52 · 7 · 11 · 13. Since in this case m1(K) =
213 · 37 · 52 · 7, it clearly contradicts m1(G) = 29 · 35 · 52 · 7, hence K � Suz.
Similarly, K � A14 and A15.

Hence, we have K ∼= A13, which implies 1EA13EG. In this case, it is clear
that CG(A13) = 1 and |Out(A13)| = 2. Therefore, we either have G ∼= A13

or G ∼= Aut(A13). If G ∼= Aut(A13), then we have evidently that m1(G) >
m1(A13) = m1(M), which contradicts our assumption. Hence, G ∼= A13.

Case 2 M ∼= A14(2
10 · 35 · 52 · 72 · 11 · 13).

Since m1(G) = m1(M) = 210 · 35 · 52 · 72 · 11, we have t(G) ≥ 2. Therefore,
π(H)∪π(G/K) ⊆ {2, 3, 5, 7, 11} and 13 ∈ π(K/H). Similar to Case 1, we can
prove that H = 1, implying that G has a normal nonabelian simple subgroup K
with π(G/K) ⊆ π1(G) = {2, 3, 5, 7, 11} and 13 ∈ π(K). If |π(K)| = 3, then K
is a simple K3-group. According to [7], the order of all simple K3-groups does
not contain the prime factor 13. If |π(K)| = 4, then because πpm(M) = 13, we
have t(K) ≥ 2. When t(K) = 2, by examining Table 3 and Table 4 in [2] and
utilizing the condition πpm(M) = 13, it can be concluded that such a simple
group does not exist. When t(K) ≥ 3, by examining Table 2 and Table 4
of [2] and utilizing the condition πpm(M) = 13, it can be concluded that such
a simple group does not exist. If |π(K)| ≥ 5, then because πpm(M) = 13 and
t(K) ≥ 3, by examining Table 2 to Table 4 of [2] and utilizing the condition
πpm(M) = 13, it can be deduced that K can only be one of the following
groups: A13, A14, A15, and Suz.

If K ∼= A13, then |K| = 29 ·35 ·52 ·7 ·11 ·13. Since m1(G) = 210 ·35 ·52 ·72 ·11
and m1(K) = 29 ·35 ·52 ·7 ·11, we have 2 ·7||G/K|||Out(A13)| = 2, which leads
to a contradiction. Therefore, K is not isomorphic to A13.

If K ∼= Suz, then |K| = 213 · 37 · 52 · 7 · 11 · 13. Since in this case m1(K) =
213 ·37 ·52 ·7, it clearly contradicts m1(G) = 210 ·35 ·52 ·72 ·11, hence K � Suz.
Similarly, K � A15.

Hence, we have K ∼= A14, which implies 1EA14EG. In this case, it is clear
that CG(A14) = 1 and |Out(A14)| = 2. Therefore, we either have G ∼= A14

or G ∼= Aut(A14). If G ∼= Aut(A14), then we have evidently that m1(G) >
m1(A14) = m1(M), which contradicts our assumption. Hence, G ∼= A14.

Case 3 M ∼= A15(2
10 · 36 · 53 · 72 · 11 · 13).

Since m1(G) = m1(M) = 210 · 36 · 53 · 72 · 11, we have t(G) ≥ 2. Therefore,
π(H)∪π(G/K) ⊆ {2, 3, 5, 7, 11} and 13 ∈ π(K/H). Similar to Case 1, we can
prove that H = 1, implying that G has a normal nonabelian simple subgroup K
with π(G/K) ⊆ π1(G) = {2, 3, 5, 7, 11} and 13 ∈ π(K). If |π(K)| = 3, then K
is a simple K3-group. According to [7], the order of all simple K3-groups does
not contain the prime factor 13. If |π(K)| = 4, then because πpm(M) = 13, we
have t(K) ≥ 2. When t(K) = 2, by examining Table 3 and Table 4 in [2] and
utilizing the condition πpm(M) = 13, it can be concluded that such a simple
group does not exist. When t(K) ≥ 3, by examining Table 2 and Table 4
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of [2] and utilizing the condition πpm(M) = 13, it can be concluded that such
a simple group does not exist. If |π(K)| ≥ 5, then because πpm(M) = 13 and
t(K) ≥ 3, by examining Table 2 to Table 4 of [2] and utilizing the condition
πpm(M) = 13, it can be deduced that K can only be one of the following
groups: A13, A14, A15, and Suz.

If K ∼= A13, then |K| = 29 ·35 ·52 ·7 ·11 ·13. Since m1(G) = 210 ·36 ·53 ·72 ·11
and m1(K) = 29 · 35 · 52 · 7 · 11, we have 2 · 3 · 5 · 7||G/K|||Out(A13)| = 2, which
leads to a contradiction. Therefore, K is not isomorphic to A13. Similarly,
K � A14.

If K ∼= Suz, then |K| = 213 · 37 · 52 · 7 · 11 · 13. Since in this case m1(K) =
213 ·37 ·52 ·7, it clearly contradicts m1(G) = 210 ·36 ·53 ·72 ·11, hence K � Suz.

Hence, we have K ∼= A15, which implies 1EA15EG. In this case, it is clear
that CG(A15) = 1 and |Out(A15)| = 2. Therefore, we either have G ∼= A15

or G ∼= Aut(A15). If G ∼= Aut(A15), then we have evidently that m1(G) >
m1(A15) = m1(M), which contradicts our assumption. Hence, G ∼= A15.

The proof has been completed.
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