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Abstract
Let g be a complex simple Lie algebra with Cartan subalgebra h and

standard Borel subalgebra b. Put n = [b, b]. In this paper, we describe
Lie triple derivations of the nilpotent subalgebras n for the classical Lie
algebra Dm(m ≥ 6) over the complex number field C.
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1 Introduction

Let C be the complex number field and g a simple Lie algebra over C with
Cartan subalgebra h and root system ∆. Fix a basis Π = {α1, . . . , αn} of ∆, let
∆+ (∆−) denote the positive root set (negative root set). Then b = h⊕ ∑

α∈∆+
gα

is the standard Borel subalgebra of g and n = [b, b] =
∑

α∈∆+
gα is a nilpotent

subalgebra of g. Denote the height of the root α by htα.

Definition 1.1.[1] A linear mapping φ : n→ n is called a Lie triple derivation
if it satisfies

φ([[x, y], z]) = [[φ(x), y], z] + [[x, φ(y)], z] + [[x, y], φ(z)], for all x, y, z ∈ n.
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Clearly, Lie derivations are all Lie triple derivations, while the converse may
not be true.

Recently, many studies have been done in Lie derivations of matrix algebras
and their subalgebras (see [1]). And they use matrices commutation to obtain
many equalities. However, it is difficult to find such equalities for Dm. As
0 = [gα, gβ] for α + β /∈ ∆, in this paper, we use root system to obtain some
equalities and simplify the image of φ on n of the classical Lie algebra Dm,
which generalize the arithmetic of [2].

It is obvious that the nonzero root vectors in gα with htα = 1 are generators
of n, if a Lie triple derivation φ : n → n satisfies φ(gα) = 0 with htα = 1, 2,
then φ(gα) = 0 for all α ∈ ∆+. Our main idea arises from this.

2 Main results

For g = Dn = SO(2m,C), it is well known that

h = {diag(x1, x2, . . . , xn,−x1,−x2, . . . ,−xn) |xi ∈ C},
∆ = {±(λi − λj),±(λi + λj) | 1 ≤ i < j ≤ n},
Π = {λi − λi+1, λn−1 + λn | 1 ≤ i ≤ n− 1},
∆+ = {λi − λj, λi + λj | 1 ≤ i < j ≤ n},
gλi−λj = CAij, Aij = Eij − En+j,n+i,

gλi+λj = CBij, Bij = Ei,n+j − Ej,n+i,

where λi (diag(x1, x2, . . . , xn,−x1,−x2, . . . ,−xn)) = xi, 1 ≤ i ≤ n. Then

n =
∑

1≤i<j≤n
gλi−λj +

∑
1≤i<j≤n

gλi+λj .

Firstly, we give four types standard Lie triple derivations of n, which de-
scribe any Lie triple derivation of n. They are defined as follows:

(1) Inner triple derivations:
Let x ∈ n, then adx : n→ n, y 7→ [x, y] is a Lie triple derivation.

(2) Diagonal triple derivations:
Let y ∈ h, then ηy : n→ n, x 7→ [y, x] is a Lie triple derivation.

(3) Central triple derivations:
If m ≥ 6, let ξ = (ξ4, . . . , ξn−1), where ξi = (ki, li), ki, li ∈ C, 4 ≤ i ≤
n− 1,

ζ = (ζ1, . . . , ζn−2), where ζj = (k′j, l
′
j), k

′
j, l
′
j ∈ C, 1 ≤ j ≤ n− 2,

θ = (p2, p3), where p2, p3 ∈ C,
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ϑ = (q2, q3), where q2, q3 ∈ C.
Define a linear mapping µ(ξ,θ,ζ,ϑ) : n→ n as follows:

µ(ξ,θ,ζ,ϑ)(Ai,i+1) = kiB12 + liB13, 4 ≤ i ≤ n− 1,

µ(ξ,θ,ζ,ϑ)(Bn−1,n) = p2B12 + p3B13,

µ(ξ,θ,ζ,ϑ)(Aj,j+2) = k′jB12 + l′jB13, 1 ≤ j ≤ n− 2,

µ(ξ,θ,ζ,ϑ)(Bn−2,n) = q2B12 + q3B13,

µ(ξ,θ,ζ,ϑ)(Apq) = µ(ξ,θ,ζ,ϑ)(Bpq) = 0, otherwise.

It is easy to verify that µ(ξ,θ,ζ,ϑ) is a Lie triple derivation and

µ(ξ,θ,ζ,ϑ) = µ(ξ,0,0,0) + µ(0,θ,0,0) + µ(0,0,ζ,0) + µ(0,0,0,ϑ).

(4) Extremal triple derivations:
Let m1,m2,m3 ∈ C. We define a linear mapping ρ3 : n→ n as follows:

ρ3(A12) = m1B12,

ρ3(A23) = m2B13,

ρ3(A34) = m3B12,

ρ3(Apq) = ρ3(Bpq) = 0, otherwise.

It is clear that ρ3 is Lie triple derivation.

Theorem 2.1 For m ≥ 6, every Lie triple derivation φ of n can be
uniquely expressed as:

φ = adx0 + ηy0 + µ(ξ,θ,ζ,ϑ) + ρ3,

where adx0, ηy0 , µ(ξ,θ,ζ,ϑ) and ρ3 are inner, diagonal, central and extremal triple
derivations, respectively.
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