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Abstract

Let G be a finite group, M(G) denotes the number of elements of
maximal order of G. In this note a finite group G with M(G) = 28 is
determined.
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1 Introduction

All groups considered are finite. In this paper, Sp denotes Sylow p-subgroup
of G, k denotes the maximal order of elements in G and A o B denotes the
semidirect product of A and B. For some natural number m and n, Cm

n always
denotes the direct product of m cyclic groups of order n.

For convenience, in the whole paper we always set:

G1 = 〈a, b, c|a4 = b4 = 1, a2 = c2, [a, c] = a2, [b, c] = a2, [a, b] = 1〉;

1This work is supported by the National Scientific Foundation of China(No:11301426)
and Scientific Research Foundation of SiChuan Provincial Education Depart-
ment(No:14ZA0314).
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G2 = 〈a, b, c|a4 = b4 = 1, c2 = a2b2, [a, c] = a2, [b, c] = c2, [a, b] = 1〉;

G3 = 〈a1, a2, a3, a4, a5, a6|a21 = a22 = a23 = a24 = a25 = a26 = 1, [a1, a2] =
a5, [a1, a3] = a6, [a1, a4] = [a1, a5] = [a1, a6] = 1, [a2, a3] = 1, [a2, a4] = a5, [a2, a5] =
[a2, a6] = 1, [a3, a4] = [a3, a5] = [a3, a6] = 1, [a4, a5] = [a4, a6] = 1, [a5, a6] = 1〉.

For a finite group G, we denote by M(G) the number of elements of max-
imal order of G, and the maximal element order in G by k = k(G). There is
a topic related to one of Thompson’s Conjectures:

Thompson’s Conjecture Let G be a finite group. For a positive integer
d, define G(d) = |{x ∈ G|the order of x is d}|. If S is a solvable group, G(d) =
S(d) for d = 1, 2, ..., then G is solvable.

Recently, some authors have investigated this topic in several articles(see
[2], [5], [6], [8]). In particular, in [1] the authors gave a complete classification
of the finite group with M(G) = 30, and the finite group with M(G) = 24
are classified in [4]. In this paper, we consider a finite group G satisfying
M(G) = 28. Our main result of this paper is:

Main Theorem Suppose G is a finite group having exactly 28 elements
of maximal order. Then G is solvable and one of the following holds:

(1) if k = 4, then G ∼= Q8 × C4, G1, G2 or G3;
(2) if k = 6, then |G| = 2α · 3β, where 2 ≤ α ≤ 6 and 1 ≤ β ≤ 4;

(3) if k = 10, then S5 = C5 EG, |CG(S5)| = C5 × C3
2 and |G/CG(S5)||4;

(4) if k ∈ {29, 58}, then CG(x) = 〈x〉 E G. Therefore, G/CG(x) . Aut(Ck)
, where o(x) = k.

By the above theorem, we have:
Corollary Thompson’s Conjecture holds if G has exactly 28 elements of

maximal order.

2 Preliminaries

The following lemma reveals the relationship of M(G) and k.

Lemma 2.1 [8, Lemma 1] Suppose G has exactly n cyclic subgroups of order
l, then the number of elements of order l (denoted by nl(G)) is nl(G) = nφ(l),
where φ(l) is the Euler function of l. In particular, if n denotes the number of
cyclic subgroups of G of maximal order k, then M(G) = nφ(k).

By above lemma, we have:
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Lemma 2.2 If M(G) = 28 and k is maximal element order of G, then possible
values of n, k and φ(k) are given in the following table:

n φ(k) k
28 1 2
14 2 3,4,6
7 4 5,10,12
4 7 null
2 14 null
1 28 29,58

In proving our main theorem, the following two results will be frequently
used.

Lemma 2.3 [1, Lemma 8] If the number of elements of maximal order k is
m, then there exists a positive integer α such that |G| divides mkα.

Lemma 2.4 [6, Lemma 2.5] Let P be a p-group with order pt where p is a
prime, and t is a positive integer. Suppose b ∈ Z(P ), where o(b) = pu = k
with u a positive integer. Then P has at least (p− 1)pt−1 elements of order k.

Lemma 2.5 Let G be a finite 2-group. If exp(G) = 4 and M(G) = 28. Then
G is isomorphic to the following groups: Q8 × C4, G1, G2 or G3.

proof If G is a nonabelian 2-group with exp(G) = 4 and every x in G of
order 2 is contained in Z(G). We prove that |G| ≤ 64. Suppose that |G| > 64.
Then G has a proper subgroup H ∼= C2×C2×C2×C2×C4, Since every element
of order 2 is contained in Z(G) and exp(G) = 4. Obviously, n4(H) = 32, a
contradiction. If G is nonabelian and there exists an element of order 2 which
is not contained in Z(G), then |G| ≤ 64 by [4, lemma4]. If G is abelian, let
|G| = 2t. Then 2t−1 ≤ 28 by Lemma 2.4. Hence t ≤ 5 and |G| ≤ 32. Therefore
|G| = 32 or |G| = 64. If |G| = 64, then G ∼= G3 by [3]. If |G| = 32, then
G ∼= Q8 × C4, G1 or G2 by [7, Part 3].

3 Proof of Main Theorem

By the hypothesis M(G) = 28, then k 6= 2, 3 and 5 by [1, Lemma 6]. In the
following we prove our theorem case by case for the remaining possible values
of k.

Case 1 k = 4. By Lemma 2.3, in this case G is a 2-group. By Lemma 2.5,
G is isomorphic to one of the following groups: Q8 × C4, G1, G2 or G3. Thus
(1) holds.
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Case 2 k = 6. In this case |G| = 2α3β, where α > 0 and β > 0 by
Lemma 2.3. Let x be an element of order 6. Then |CG(〈x〉)| = 2u · 3v. Since
there exists no element of order 9 or 4 in CG(x), we have v ≤ 3 and u ≤ 3
by M(G) = 28. Since G has exactly 14 cyclic subgroups of order 6, we have
|G : NG(〈x〉)| = 1, 2, 3, 4, 6, 8, 9 or 12. If there is an element y of order 6 in
G such that |G : NG(〈y〉)| = 6, 8 or 9, then there exists another element z of
order 6 in G such that |G : NG(〈z〉)| = 1, 2, 3, 4, 6 or 12. That is to say, G
always has an element x of order 6 such that |G : NG(〈x〉)| = 1, 2, 3, 4, 6 or 12.

Therefore |G||26 · 34 since |G| = |G : NG(〈x〉)| · |NG(〈x〉) : CG(〈x〉)| · |CG(〈x〉)|.
Thus (2) follows.

Case 3 k = 10. By Lemma 2.3, we may assume that |G| = 2α · 5β · 7γ,
where α, β > 0 and γ = 0, or 1.

If γ = 0, then G is a {2, 5}-group and |G| = 2α · 5β. Since the number of
cyclic subgroups of order 10 in G is 7, it follows that |G : NG(〈x〉)| = 1, 2, 4
or 5 for some element x of order 10. If |G : NG(〈x〉)| = 4 or 5, then there
must be another element y of order 10 such that |G : NG(〈y〉)| = 2 or 1. Let
|CG(〈x〉)| = 2u · 5v. Then u ≤ 3 and v ≤ 2 since CG(x) contains at most

28 elements of order 10. And it always follows that |NG(〈x〉)/CG(〈x〉)||4 and

CG(〈x〉) is a {2, 5}-group. So we get |G||26 · 52 since |G| = |G : NG(〈x〉)| ·
|NG(〈x〉) : CG(〈x〉)| · |CG(〈x〉)|. Let S5 ∈ Syl5(G). Then S5 ≤ CG(x). If v = 1
and S5 is not normal in G, then |G : NG(S5)| 6= 1. Assume u = 2 or 3. Then
CG(x) contains at least 8 elements of order 10. Since all elements of order 5 in
G are conjugate and |G : NG(S5)| ≥ 6, there are at least 48 elements of order
10 in G, a contradiction. If u = 1, then CG(〈x〉) = 〈x〉 contains 4 elements
of order 10. Therefore |G : NG(S5)| = 7, which contradicts γ = 0. If v = 1

and S5 is normal in G, then |G/CG(S5)||4 and |CG(S5)| = C5 × C2
2 . Thus (3)

follows.

If v = 2, then CG(x) contains at least 24 elements of order 10 since S5 ≤
CG(x). Thus M(G) 6= 28, a contradiction.

If γ = 1, there exists an element y of order 10 such that |G : NG(〈y〉)| = 7.
Otherwise, as 7 - |Aut(〈y〉)|, G must have an element of order 70, a contadic-

tion. Since |NG(〈y〉)/CG(y)||4, we have S5 ≤ CG(〈y〉), for some S5 ∈ Syl5(G).

By Sylow’s Theorem, |G : NG(S5)| = 5k′ + 1 ≥ 56 since 7 ||G|, which implies
that there are at least 224 elements of order 10, a contradiction.

Case 4 k = 12. By Lemma 2.3, we may assume that |G| = 2α · 3β · 7γ,
where α, β > 0 and γ = 0, or 1.

If γ = 0, then G is a {2, 3}-group and |G| = 2α · 3β. Since the number of
cyclic subgroups of order 12 in G is 7, it follows that |G : NG(〈x〉)| = 1, 2, 3, 4
or 6 for some element x of order 12. If |G : NG(〈x〉)| = 3 or 6, then there must
be another element y of order 12 such that |G : NG(〈y〉)| = 1, 2 or 4. Hence
there is an element x of order 12 such that |G : NG(〈x〉)| = 1, 2 or 4. Let
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|CG(〈x〉)| = 2u ·3v. By Lemma 2.4, CG(〈x〉) has at least 2u−1 elements of order
4. On the other hand, all 3-elements of CG(〈x〉) is of order 3 since CG(〈x〉) has
no element of order 9. Hence we have 2 · 2u−1 + 2(3v − 1)− 4 ≤ 28 by Lemma
2.4 and our assumption. Therefore we get 1 ≤ v ≤ 2 and 2 ≤ u ≤ 4. So we get

|G||28 · 32 since |G| = |G : NG(〈x〉)| · |NG(〈x〉) : CG(〈x〉)| · |CG(〈x〉)|. Let S3 ∈
Syl3(G). Then S3 ≤ CG(x). If v = 1 and S3 is normal inG, then n3(G) = 2 and
hence, 28 = M(G) = n3(G)n2(CG(S3)) = 2n2(CG(S3)), so n2(CG(S3)) = 14,
which is a contradiction, because the number of the elements of order 2 is
always an odd number. a contradiction. If v = 1 and S3 is not normal in G,
then |G : NG(S3)| 6= 1. Since [G : NG(S3)] = 2s > 2, n3(G) = 2s + 1 > 4 and
hence, 28 = M(G) = n12(G) = n3(G)n4(CG(S3)) = 2s+1n4(CG(S3)), which is
impossible. Suppose now that v = 2. Then C = CG(〈x〉) = C4×C2

3 contains 16
elements of order 12. Choose y ∈ G\C be an element of order 12, then CG(y)
also contains 16 elements of order 12. We prove that for every t ∈ G\CG(x)
with o(t) = 12, CG(t) ∩ C contains no element of order 12. Otherwise, there
is z ∈ C ∩ CG(t) with o(z) = 12. Since C and CG(t) are abelian, we have
CG(t) ≤ CG(z) and C ≤ CG(z). Noting that all the centralizers of cyclic
subgroup of order 12 are conjugate, we know that C,CG(t) and CG(z) are also
conjugate. Hence C = CG(t) = CG(z), a contradiction. Hence C ∪ CG(t)
contains 32 elements of order 12, a contradiction.

If γ = 1, there exists an element x of order 12 such that |G : NG(〈x〉)| = 7
and hence all the cyclic subgroups of order 12 are conjugate in G. Since

|NG(〈x〉)/CG(x)||4, we have S3 ≤ CG(x), for some S3 ∈ Syl3(G). Let C =
CG(x), S2 ∈ Syl2(G) and S3 ∈ Syl3(G). By Lemma 2.4 and our assumption,
we have 1 ≤ v ≤ 2 and 2 ≤ u ≤ 4. Obviously 〈x〉 ≤ Z(C), the center
of C. Suppose that 32 divides |C|. Then C > 〈x〉. If C is abelian, then
|C| = 22 · 32 and C contains exactly 16 elements of order 12. By the same
argument as above, we can get a contradiction. If |C| = 36, then we can
get C is abelian since 〈x〉 ≤ Z(C). Therefore we may assume that |C| > 36
and C is not abelian. Hence |C| ≥ 72. Obviously CG(S3) = S3 × S2, where
S2 ∈ Syl2(CG(S3)). Since 4 ∈ πe(Z(C)) and S3 ≤ C, 4 ∈ πe(S2). So for every
y ∈ S3,

n4(CG(y)) ≥ 2. (∗∗)

We continue the proof in the following cases:

Subcase 1 S3 E G, then since 9 6∈ πe(G), S3 is 3-elementary abelian.
So G/CG(S3) . GL2(3). Thus 7||CG(S3)| and hence, 21 ∈ πe(G), which is a
contradiction.

Subcase 2 S3 5 G, then then n3(G) ≥ 24, and 28 = n12(G) ≥ 24 ·2, using
(**), which is impossible.

Case 5 k ∈ {29, 58}. Let x be an element of order k. Then CG(x) = 〈x〉 E
G. Therefore, G/CG(x) . Aut(Ck) and CG(x) ∼= Ck. Thus (5) holds.
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