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Abstract

Let G be a finite group, M (G) denotes the number of elements of
maximal order of G. In this note a finite group G with M(G) = 28 is
determined.
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1 Introduction

All groups considered are finite. In this paper, S, denotes Sylow p-subgroup
of G, k denotes the maximal order of elements in G and A x B denotes the
semidirect product of A and B. For some natural number m and n, C"* always
denotes the direct product of m cyclic groups of order n.

For convenience, in the whole paper we always set:

G, = (a,b,c|a4 =b' = L, a? = 027 [CL7C] = a2a [ba C] = aza [avb] = 1>7
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Gy = (a,b,cla* = b* = 1,¢% = a?V?, [a,c] = d?[b, ] = 2, [a,b] = 1);

G3 == <a17a27a37a47a/57a6|a% = CL% = a% = 0’121 = ag = CL% = 1,[@1,@2] -
as, a1, az] = ae, [a1, as) = (a1, as] = [a1, ag] = 1, [az, as] = 1, (a2, as] = as, [ag, as] =
las, ag] = 1, [as, as] = [as, a5] = [as, as] = 1, [a4, a5] = [a4, ag] = 1, [as, ag] = 1).

For a finite group G, we denote by M (G) the number of elements of max-
imal order of G, and the maximal element order in G by k = k(G). There is
a topic related to one of Thompson’s Conjectures:

Thompson’s Conjecture Let G be a finite group. For a positive integer
d, define G(d) = |{x € G|the order of x is d}|. If S is a solvable group, G(d) =
S(d) ford =1, 2, ..., then G is solvable.

Recently, some authors have investigated this topic in several articles(see
2], [5], [6], [8]). In particular, in [1] the authors gave a complete classification
of the finite group with M(G) = 30, and the finite group with M(G) = 24
are classified in [4]. In this paper, we consider a finite group G satisfying
M (G) = 28. Our main result of this paper is:

Main Theorem Suppose G is a finite group having exactly 28 elements
of mazimal order. Then G is solvable and one of the following holds:

(]) ka} = 47 then G = Qg X C4,G1,GQ or Gg,'

(2) if k =6, then |G| =2%-3°, where 2 < a <6 and 1 < B < 4;

(3) if k =10, then S5 = C5 <G, |Cq(Ss)| = Cs5 x C3 and |G /Cq(Ss)||4;

(4) if k € {29,58}, then Cq(x) = (x) I G. Therefore, G/Cq(x) < Aut(Cy)
, where o(x) = k.

By the above theorem, we have:
Corollary Thompson’s Conjecture holds if G has exactly 28 elements of
mazimal order.

2 Preliminaries

The following lemma reveals the relationship of M(G) and k.

Lemma 2.1 /8, Lemma 1] Suppose G has ezxactly n cyclic subgroups of order
[, then the number of elements of order | (denoted by n,(G)) is ni(G) = no(l),
where ¢(l) is the Euler function of l. In particular, if n denotes the number of
cyclic subgroups of G of mazimal order k, then M (G) = no(k).

By above lemma, we have:
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Lemma 2.2 [f M(G) = 28 and k is mazimal element order of G, then possible
values of n, k and ¢(k) are given in the following table:

n | o(k) k
28| 1 2
141 2 3,4,0
7 4 5,10,12
4 7 null
2| 14 null
1] 28 29,58

In proving our main theorem, the following two results will be frequently
used.

Lemma 2.3 [1, Lemma 8] If the number of elements of maximal order k is
m, then there exists a positive integer o such that |G| divides mk®.

Lemma 2.4 [6, Lemma 2.5] Let P be a p-group with order p' where p is a
prime, and t is a positive integer. Suppose b € Z(P), where o(b) = p* =k
with w a positive integer. Then P has at least (p — 1)p'~! elements of order k.

Lemma 2.5 Let G be a finite 2-group. If exp(G) =4 and M(G) = 28. Then
G is isomorphic to the following groups: Qg x Cy, G1,Gs or G3.

proof If G is a nonabelian 2-group with exp(G) = 4 and every = in G of
order 2 is contained in Z(G). We prove that |G| < 64. Suppose that |G| > 64.
Then G has a proper subgroup H = Cy x Uy x Uy x Uy x Cy, Since every element
of order 2 is contained in Z(G) and exp(G) = 4. Obviously, ny(H) = 32, a
contradiction. If G is nonabelian and there exists an element of order 2 which
is not contained in Z(G), then |G| < 64 by [4, lemmad]. If G is abelian, let
|G| = 2'. Then 2!~! < 28 by Lemma 2.4. Hence t < 5 and |G| < 32. Therefore
|G| = 32 or |G| = 64. If |G| = 64, then G = G5 by [3]. If |G| = 32, then
G = Qs x Cy, Gy or Gy by [7, Part 3].

3 Proof of Main Theorem

By the hypothesis M(G) = 28, then k # 2,3 and 5 by [1, Lemma 6]. In the
following we prove our theorem case by case for the remaining possible values
of k.

Case 1 k£ = 4. By Lemma 2.3, in this case G is a 2-group. By Lemma 2.5,
(7 is isomorphic to one of the following groups: Qg x Cy, G1, G5 or G3. Thus
(1) holds.
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Case 2 k = 6. In this case |G| = 2%3°, where a > 0 and 3 > 0 by
Lemma 2.3. Let x be an element of order 6. Then |Cq({z))| = 2* - 3". Since
there exists no element of order 9 or 4 in Cg(z), we have v < 3 and u < 3
by M(G) = 28. Since G has exactly 14 cyclic subgroups of order 6, we have
|G : Neg({z))] = 1,2,3,4,6,8,9 or 12. If there is an element y of order 6 in
G such that |G : Ng({y))| = 6,8 or 9, then there exists another element z of
order 6 in G such that |G : Ng((2))] = 1,2,3,4,6 or 12. That is to say, G
always has an element « of order 6 such that |G : Ng((z))| = 1,2,3,4,6 or 12.
Therefore ]G|‘26 -3%since |G| = |G : Ne({x))|-|Ng({z)) : Ca({x))]-|Ca({z))].
Thus (2) follows.

Case 3 k = 10. By Lemma 2.3, we may assume that |G| = 2% - 5% . 77,
where o, 5 > 0 and v =0, or 1.

If v =0, then G is a {2,5}-group and |G| = 2% - 5°. Since the number of
cyclic subgroups of order 10 in G is 7, it follows that |G : Ng({x))| =1, 2, 4
or 5 for some element x of order 10. If |G : Ng({x))] = 4 or 5, then there
must be another element y of order 10 such that |G : Ng((y))| = 2 or 1. Let
|Ce({z))| = 2*-5Y. Then v < 3 and v < 2 since Cg(x) contains at most
28 elements of order 10. And it always follows that |Ng((z))/Ca((z))] |4 and
Ca((z)) is a {2,5}-group. So we get |G|’26 - 52 since |G| = |G : Ng((z))| -
INc((x)) : Ca({z)| - |Ca((z))|. Let S5 € Syls(G). Then S5 < Cg(x). If v =1
and S5 is not normal in G, then |G : Ng(S5)| # 1. Assume u = 2 or 3. Then
Ce(z) contains at least 8 elements of order 10. Since all elements of order 5 in
G are conjugate and |G : Ng(S5)| > 6, there are at least 48 elements of order
10 in G, a contradiction. If u = 1, then Cg({x)) = (z) contains 4 elements
of order 10. Therefore |G : Ng(S5)| = 7, which contradicts v = 0. If v =1
and S is normal in G, then |G/Cq(Ss)||[4 and |Ca(S5)| = C5 x CZ. Thus (3)
follows.

If v =2, then Cg(x) contains at least 24 elements of order 10 since S5 <
Ce(z). Thus M(G) # 28, a contradiction.

If v = 1, there exists an element y of order 10 such that |G : Ng((y))| = 7.
Otherwise, as 7 1 |Aut({y))|, G must have an element of order 70, a contadic-

tion. Since ]Ng((y>)/Cg(y)]|4, we have S5 < Cg((y)), for some S5 € Syl;(G).

By Sylow’s Theorem, |G : Ng(S5)| = 5k' + 1 > 56 since 7 ‘|G|, which implies
that there are at least 224 elements of order 10, a contradiction.

Case 4 k = 12. By Lemma 2.3, we may assume that |G| = 2% - 3% .77,
where o, 5 > 0 and v =0, or 1.

If v = 0, then G is a {2,3}-group and |G| = 2% - 3%. Since the number of
cyclic subgroups of order 12 in G is 7, it follows that |G : Ng((x))| =1, 2, 3, 4
or 6 for some element = of order 12. If |G : Ng({x))| = 3 or 6, then there must
be another element y of order 12 such that |G : Ng((y))| = 1, 2 or 4. Hence
there is an element x of order 12 such that |G : Ng({x))] = 1, 2 or 4. Let
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|Ca({x))] = 2*-3". By Lemma 2.4, Cq({x)) has at least 2*~! elements of order
4. On the other hand, all 3-elements of C((x)) is of order 3 since C((z)) has
no element of order 9. Hence we have 2-2%"1 +2(3" — 1) — 4 < 28 by Lemma
2.4 and our assumption. Therefore we get 1 < v <2 and 2 < u < 4. So we get
G]]28 - 8 since |G| = |G : No(())] - [Na((2)) : Cal(2)] - [Co((2)]. Let S5 €
Syl3(G). Then S5 < Cg(x). If v = 1 and S3 is normal in G, then n3(G) = 2 and
hence, 28 = M(G) = n3(G)n2(Cq(Ss)) = 2n2(Ci(Ss)), so na(Ce(S;)) = 14,
which is a contradiction, because the number of the elements of order 2 is
always an odd number. a contradiction. If v = 1 and S5 is not normal in G,
then |G : Ng(S93)| # 1. Since [G : Ng(S5)] = 2s > 2,n3(G) =2s+ 1 > 4 and
hence, 28 = M(G) = n12(G) = n3(G)n4(Cg(Sg)) = 25+1n4(Cg(53)), which is
impossible. Suppose now that v = 2. Then C' = Cg({z)) = C; x C? contains 16
elements of order 12. Choose y € G\C be an element of order 12, then Cg(y)
also contains 16 elements of order 12. We prove that for every ¢t € G\Cg(x)
with o(t) = 12, C¢(t) N C contains no element of order 12. Otherwise, there
is z € C'NCq(t) with o(z) = 12. Since C and Cg(t) are abelian, we have
Ce(t) < Cg(z) and C < Cg(z). Noting that all the centralizers of cyclic
subgroup of order 12 are conjugate, we know that C, Cs(t) and Cg(z) are also
conjugate. Hence C' = Cq(t) = Cg(z), a contradiction. Hence C' U Cg(t)
contains 32 elements of order 12, a contradiction.

If v = 1, there exists an element = of order 12 such that |G : Ng({z))| =7
and hence all the cyclic subgroups of order 12 are conjugate in (. Since
|Ng(<x))/Cg(:1:)\|4, we have S3 < Cg(z), for some S € Syl3(G). Let C =
Ca(z),Se € Syla(G) and S3 € Syl3(G). By Lemma 2.4 and our assumption,
we have 1 < v < 2 and 2 < u < 4. Obviously (x) < Z(C), the center
of C. Suppose that 3? divides |C|. Then C' > (z). If C is abelian, then
|C| = 22 - 3% and C contains exactly 16 elements of order 12. By the same
argument as above, we can get a contradiction. If |C| = 36, then we can
get C' is abelian since (z) < Z(C'). Therefore we may assume that |C| > 36
and C' is not abelian. Hence |C| > 72. Obviously Cg(S;) = S3 x Sz, where
Sy € Syla(Ce(Ss)). Since 4 € m.(Z(C)) and S5 < C,4 € 7.(S2). So for every
y € Ss,

n4(Caly)) = 2. ()

We continue the proof in the following cases:

Subcase 1 S3 < G, then since 9 ¢ 7w .(G), S is 3-elementary abelian.
So G/Cq(93) < GLy(3). Thus 7||Cq(S53)| and hence, 21 € 7. (G), which is a
contradiction.

Subcase 2 S5 4 G, then then ng(G) > 24, and 28 = n12(G) > 242, using
(**), which is impossible.

Case 5 k € {29,58}. Let = be an element of order k. Then Cg(z) = (z) <
G. Therefore, G/Cq(x) < Aut(Cy) and Cg(z) = Ck. Thus (5) holds.
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