Prime Ideal Spaces of A*-Algebras

T. Srinivasa Rao

Department of Mathematics, Bapatla Engineering College, Bapatla-522101, A.P, India tsnivas@gmail.com

V. Amarendra Babu

Department of Mathematics, Acharyanagarjuna university Nagarjunanagar, 522510, A.P, India amarendravelisela@gmail.com

K. Moses

Departmennt of Mathematics Andhra Christian College, Guntur, A.P, India mosesk_acc@yahoo.co.in

P. Koteswara Rao

Department of Commerce and Business Management Acharya Nagarjuna University Nagarjuna Nagar-522510, A.P, India

Abstract

In his paper [5], M. H. Stone introduced and studied the prime ideal spaces of Boolean Algebras. In this paper we introduce the prime ideal spaces of A*-algebras, prove the space is a totally disconnected compact Hausdorff space and every Boolean element of A corresponds to a clopen subset of the space and prove that every A*- algebra is isomorphic to the A*- algebra generated by the class of all clopen subsets of a totally disconnected compact Hausdorff space.

Keywords: Boolean algebra, A*-algebra, A*-ideal, prime ideal

1. Preliminaries

- **1.1 Definition:** A Boolean algebra is an algebra $(B, \lor, \land, (-)', 0, 1)$ with two binary operations, one unary operation (called complementation), and two nullary operations which satisfies:
 - (1) (B, \vee, \wedge) is a distributive lattice.
 - (2) $x \wedge 0 = 0$, $x \vee 1 = 1$
 - (3) $x \wedge x' = 0, x \vee x' = 1$
- **1.2 Definition:** An algebra $(A, \wedge, *, (-)^{\tilde{}}, (-)_{\pi}, 1)$ is an A^* algebra if it satisfies :

For a, b, $c \in A$

- (i) $a_{\pi} \lor (a_{\pi})^{\sim} = 1$, $(a_{\pi})_{\pi} = a_{\pi}$, where $a \lor b = (a^{\sim} \land b^{\sim})^{\sim}$.
- (ii) $a_{\pi} \lor b_{\pi} = b_{\pi} \lor a_{\pi}$
- (iii) $(a_{\pi} \lor b_{\pi}) \lor c_{\pi} = a_{\pi} \lor (b_{\pi} \lor c_{\pi})$
- (iv) $(a_{\pi} \wedge b_{\pi}) \vee (a_{\pi} \wedge (b_{\pi})^{\tilde{}}) = a_{\pi}$
- (v) $(a \wedge b)_{\pi} = a_{\pi} \wedge b_{\pi}$, $(a \wedge b)^{\#} = a^{\#} \vee b^{\#}$, where $a^{\#} = (a_{\pi} \vee a_{\pi})^{\sim}$
- (vi) $a_{\pi} = (a_{\pi} \lor a^{\#})^{\pi}$, $a_{\pi}^{\pi} = a^{\#}$
- (vii) $(a*b)_{\pi} = a_{\pi}, (a*b)^{\#} = (a_{\pi})^{\tilde{}} \wedge (b^{\tilde{}}_{\pi})^{\tilde{}}$
- (viii) a = b if and only if $a_{\pi} = b_{\pi}$, $a^{\#} = b^{\#}$. We write 0 for 1^{\sim} , 2 for 0*1.
- **1.3 Example:** $3 = \{0,1,2\}$ with the operations defined below is an A^* -algebra

٨	0	1	2	V	0	1	2	*	0	1	2	X	0	1	2
0	0	0	2	0	0	1	2	0	0	2	2	x~	1	0	2
1	0	1	2	1	1	1	2	1	1	1	1	X_{π}	0	1	0
2	2	2	2	2	2	2	2	2	0	2	2	x [#]	0	0	1

- **1.4 Huntington's Theorem**: Let B have one binary operation ∨and one unary operations (-)' and define
 - (i) $a \wedge b = (a' \vee b')'$ for all $a, b \in B$.

Suppose for all a, b, $c \in B$,

- (ii) $a \lor b = b \lor a$.
- (iii) $a \lor (b \lor c) = (a \lor b) \lor c$.
- (iv) $(a \wedge b) \vee (a \wedge b') = a$

Then B is a Boolean algebra.

- **1.5. Note:** From 1.2 (i) through (iv) and by 1.4, $B(A) = \{a_{\pi}/a \in A\}$ is a Boolean algebra with $\land, \lor, (-)^{\sim}$, 0 and $a \in B(A) \Rightarrow a_{\pi} = a$. Since 1,0, $(a_{\pi})^{\sim} \in B(A)$, we have $1_{\pi} = 1, 0_{\pi} = 0, (a_{\pi})^{\tilde{}}_{\pi} = (a_{\pi})^{\tilde{}} \text{ and } a_{\pi} \wedge a^{\#} = 0, a * 0 = a_{\pi}.$
- **1.6. Theorem:** Let $(B, \land, (-)', 0)$ be a Boolean algebra. Then $A(B) = \{(a, b)/a, b \in B, a \in A(B) : (a, b)/a, b \in B, a \in A(B) : (a, b)/a, b \in B, a \in A(B) : (a, b)/a, b \in B, a \in A(B)$ $a \wedge b = 0$ } becomes an A* -algebra, where the A*-algebraic operations $\wedge, \vee, *$ $(-)^{\sim},(-)_{\pi}$ are defined as follows:

For
$$a = (x_{\pi}, x^{\#}), b = (y_{\pi}, y^{\#}) \in A(B)$$

- $\begin{array}{l} a {\wedge} b \; = \; (\; x_{\pi} y_{\pi} \,, \, x_{\pi} \; y^{\#} + x^{\#} \; y_{\pi} \! + x^{\#} \; y^{\#}) \\ a {\vee} b = (x_{\pi} y_{\pi} + x_{\pi} \; y^{\#} + x^{\#} \; y_{\pi}, \, x^{\#} \; y^{\#}) \end{array}$ (i)
- (ii)
- $a \sim = (x^{\#,} x_{\pi})$ (iii)
- $a_{\pi} = (x_{\pi}, (x_{\pi})')$ (iv)
- (v) $a*b = (x_{\pi}, (x_{\pi})'y\#)$
- (vi) 1 = (1,0), 0 = (0,1), 2 = (0,0)

(where juxta position ,+,(-)' respectively $\land,\lor,(-)'$ in Boolean algebra B).

- 1.7. Theorem [1]: If A is an A*-algebra and B is a Boolean algebra then
 - (i) $B(A(B)) \cong B$
 - (ii) A (B(A)) \cong A
- **1.8. Theorem [1]:** Let A_1 , A_2 be A^* algebras and B_1 , B_2 be Boolean algebras, then
 - (i) $A_1 \cong A_2$ iff $B(A_1) \cong B(A_2)$.
 - (ii) $B_1 \cong B_2$ iff $A(B_1) \cong A(B_2)$.
- **1.9. Definition :** Let $(A_1, \land, \lor, (-)^{\tilde{}}, (-)_{\pi}, *, 1)$ and $(A_2, \land, \lor, (-)^{\tilde{}}, (-)_{\pi}, *, 1)$ be A^* algebras. A Mapping f: $A_1 \rightarrow A_2$ is called an A^* - homomorphism if for all $a, b \in A_1$
 - (i) $f(a \land b) = f(a) \land f(b)$
 - (ii) $f(a \lor b) = f(a) \lor f(b)$
 - (iii) f(a * b) = f(a) * f(b)
 - (iv) $f(a_{\pi}) = (f(a))_{\pi}$
 - $(v) f(a^{\sim}) = (f(a))^{\sim}$
 - (vi) f(1) = 1
 - (vii) f(0) = 0.

If in addition f is bijective, then f is called an A*- isomorphism and is denoted by $A_1\cong A_2$.

- **1.10. Definition:** A nonempty subset I of an A*-algebra A is said to be an A*-ideal if
 - (i) $a, b \in I \Rightarrow a \lor b, a * b \in I$.
 - (ii) $a \in I \Rightarrow a_{\pi}$, $a^{\#} \in I$
 - (iii) $a \in I$, $b \in A \Rightarrow a_{\pi} b_{\pi}$, $a^{\#} b^{\#} \in I$
 - (Here $xy = x \land y$ for all $x,y \in B(A)$).
- **1.11. Theorem [3]:** Suppose θ is a congruence relation on A. Then $\theta(0)$ is an A*-ideal.
- **1.12. Theorem [3]:** Suppose A is an A^* algebra and B = B(A). Then there is a one-to-one correspondence between the set of all ideals of A and the set of all ideals of B.
- **1.13. Note:** (i) $a\Delta b = \{ a_{\pi} b_{\pi}, a_{\pi} b^{\#}, a^{\#} b_{\pi}, a^{\#} b^{\#} \}$
 - (ii) if A is an A*-algebra and a, b, $a_i \in A$ then $a^0 = a_{\pi}$, $a^1 = a_{\pi}$, $a^2 = a^{\#}$.
 - (iii) $a^1a^0 = a^2a^1 = a^0a^2 = 0$
 - (iv) $a^{01} = a^0$, $a^{11} = a^1$, $a^{21} = a^2$, $a^{00} = a^{0}$, $a^{10} = a^{1}$, $a^{20} = a^{2}$, $a^{02} = 0$, $a^{12} = 0$, $a^{22} = 0$.
- **1.14. Definition [3]:** An ideal I of an A^* -algebra A is said to be prime ideal if for any $a,b \in A$, $a\Delta b \subseteq I \Rightarrow a \in I$ or $b \in I$.
- **1.15. Theorem [3]**: An ideal I of an A*-algebra is prime ideal iff $I \cap B$ is Boolean prime ideal, where B=B(A).
- **1.16. Theorem [3]:** Suppose A is an A*-algebra and f: $A \rightarrow 3 = \{0, 1, 2\}$ is an A*-homomorphism. Then ker $f = \{a \in A \mid f(a) = 0\}$ is a prime ideal.
- **1.17. Theorem [3]:** In an A*-algebra A every prime ideal is a maximal ideal.
- **1.18. Theorem [3]:** An ideal I of an A^* -algebra A is maximal ideal iff $I \cap B$ is Boolean maximal ideal, where B = B(A).
- **1.19. Theorem** :(i) P is prime ideal and e,f \in B(A), ef \in P \Rightarrow e \in P or f \in P (ii) P is prime ideal and for a \in A, a $_{\pi}\in$ P or a $^{\#}\in$ P.

Proof: (i)
$$e\Delta f = \{e^1 f^1, e^2 f^1, e^1 f^2, e^2 f^2\}$$
 (by 1.13)
= $\{ef, 0,0,0\}$
= $\{ef, 0\} \subseteq P$
 $\Rightarrow e \in P \text{ or } f \in P$

Therefore $ef \in P \Rightarrow e \in P$ or $f \in P$.

- (ii) Since $a_{\pi} a^{\#} = 0 \in P \Rightarrow a_{\pi} \in P$ or $a^{\#} \in P$.
- **1.20. Note**: Suppose A is an A*- algebra and C⊆A. The ideal generated by C is denoted by Gen(C) is defined as

$$Gen(C) = \{ \bigvee_{1 \le p \le q} [(a_{p p}^{\alpha} \wedge b_{p p}^{\gamma}) * (a_{p p}^{\beta} \wedge b_{p p}^{\theta})] / (a_{p p}^{\beta} \wedge b_{p p}^{\theta})] / (a_{p p}^{\beta} \wedge b_{p p}^{\theta}) \}$$

- **1.21. Note**: For every finite sequence $a_1, a_2, ..., a_n$ of $C, a_1 \lor a_2 \lor ... \lor a_n \ne 1$ Gen(C) is a proper ideal.
- **1.22. Theorem** [1]: Every proper ideal I of A is contained in a maximal ideal.

2. Prime ideal Spaces

2.1 Theorem: In an A*-algebra every maximal ideal is a prime ideal.

Proof: Suppose M is a maximal ideal.

- \Rightarrow M_{π} is a Boolean maximal ideal
- \Rightarrow M_{π} is a Boolean prime ideal

Let a, $b \in A$ and $a\Delta b \subseteq M$.

Suppose a∉M.

$$\Rightarrow a_{\pi} \notin M \text{ or } a^{\#} \notin M$$

Suppose $a_{\pi} \notin M$

Since
$$a\Delta b \subseteq M$$
, i.e., $\{a_{\pi} b_{\pi}, a_{\pi} b^{\#}, a^{\#} b_{\pi}, a^{\#} b^{\#}\}\subseteq M$

$$\Rightarrow a_{\pi} b_{\pi}, \ a_{\pi} b^{\#} \in M_{\pi}$$

$$\Rightarrow b_{\pi}, b^{\#} \in M_{\pi} (:: M_{\pi} \text{ is prime})$$

$$\Rightarrow b_{\pi} * b^{\#} \in M$$

$$\Rightarrow b \in M$$

Therefore M is a prime ideal.

- **2.2. Definition:** Suppose $(A, \land, \lor, (-)^{\tilde{}}, (-)_{\pi}, *, 0, 1, 2)$ is an A^* -algebra. Let X be the set of all prime ideals of A(X is also denoted by Spec A). Let $a \in A$, $C \subset A$. $X_a = \{P \in X/a \notin P\}$ and $X_C = \{P \in X/C \not\subset P\}$.
- **2.3 Note:** (i) $X_1 = \{P \in X/1 \notin P\} = X$

(ii)
$$X_0 = \{P \in X/0 \notin P\} = \emptyset$$

(iii) For a,
$$b \in A$$
, $a\Delta b = \{a^1 b^1, a^1 b^2, a^2 b^1, a^2 b^2\}.$

2.4 Lemma: Let $a,b \in A$, $C \subset A$. Then

$$(1) X_{a\Delta b} = X_a \cap X_b$$

(i)
$$X_{a\Delta b} = X_a \cap X_b$$

(ii) $X_C = \bigcup_{a \in C} X_a$

Proof: (i)
$$X_{a\Delta b} = \{P \in X/ a\Delta b\underline{\not\subset} P\}$$

= $\{P \in X/ a\not\in P \text{ and } b\not\in P\}$

$$= \{P \in X/a \notin P\} \cap \{P \in X/b \notin P\}$$
$$= X_a \cap X_b.$$

(ii)
$$P \in X_C \Leftrightarrow C\underline{\not\subset} P$$

 $\Leftrightarrow a \notin P \text{ for some } a \in C$
 $\Leftrightarrow P \in X_a \text{ for some } a \in C$
 $\Leftrightarrow P \in \bigcup_{a \in C} X_a$
Therefore $X_C = \bigcup_{a \in C} X_a$

2.5 Definition: A, X as in 2.2. From 2.3(i) and (ii), $\{X_a/a \in A\}$ forms an open base for which X is a topological space. This topological space X is called prime ideal space of A.

2.6 Note:
$$C \subseteq A$$
, $D \subseteq A$
 $C\Delta D = \bigcup_{a \Delta b} a \Delta b$.
 $a \in C$
 $b \in D$

2.7 Lemma:
$$X_C \cap X_D = X_{C\Delta D}$$

Proof: $P \in X_C \cap X_D \Leftrightarrow P \in X_C \text{ and } P \in X_D$
 $\Leftrightarrow C \not\subseteq P \text{ and } D \not\subseteq P$
 $\Leftrightarrow \exists a \in C, b \in D \ni a \not\in P \text{ and } b \not\in P$
 $\Leftrightarrow a \Delta b \not\subseteq P$
 $\Leftrightarrow C \Delta D \not\subseteq P$
 $\Leftrightarrow P \in X_{C\Delta D}$
Therefore $X_C \cap X_D = X_{C\Delta D}$.

2.8 Note:
$$X_{A \cup B} = X_A \cup X_B$$
.

2.9 Lemma: For every $e \in B$ (A), X_e is a clopen set.

Proof:
$$X_e = \{P \in X/e \notin P\}$$

 $X_e \sim = \{P \in X/e \sim \notin P\}$
 $= \{P \in X/e \in P\}^c$
 $= (X_e)^c$

That is $(X_e)^c$ is open set Then X_e is Closed Set. Therefore X_e is clopen set. **2.10 Theorem:** Suppose A is an A*-algebra. Then X, the Prime ideal space of A is totally disconnected.

Proof: Suppose P_1 , $P_2 \in X \& P_1 \neq P_2$

Then P₁, P₂ are two distinct Prime ideals of A

Let $a \in P_1-P_2$.

Then $a \in P_1$ and $a \notin P_2$

Since $a \in P_1 \Rightarrow a_{\pi} \in P_1$ $a^{\#} \in P_1$

Since $a \in A$ and P_2 is Prime ideal so $a_{\pi} \in P_2$ or $a^{\#} \in P_2$.

Suppose $a_{\pi} \in P_2 \implies a^{\#} \notin P_2$

Therefore $a^{\#} \in P_1$, $a^{\#} \notin P_2$

$$\Rightarrow$$
 $a^{\#} \sim \notin P_1$, $a^{\#} \notin P_2$

$$\Rightarrow P_1 \in X_a^{\#\sim}, P_2 \in X_a^{\#}$$

$$X_{a\#\, \sim} \, \cap \, X_{a\#} = X_{a\#\, \Delta \,\, a\#\, \sim}$$

$$X_0 = \emptyset$$
And $X_a^{\#^{\sim}} \cup X_a^{\#} = X_a^{\#^{\sim}} \vee a^{\#}$
 $= X_1 = X.$

Therefore for $P_1, P_2 \in X$ with $P_1 \neq P_2$, \exists two disjoint open sets $X_a^{\#^{\sim}}$, $X_a^{\#}$ such that $X_a^{\#} \cup X_a^{\#} = X$

Suppose $a_{\pi} \notin P_2$

Then
$$a_{\pi} \notin P_1$$
 and $a_{\pi} \notin P_2$
 $\Rightarrow P_1 \in X_{a_{\pi}}$, $P_2 \in X_{a_{\pi}}$ and $X_{a_{\pi}} \cap X_{a_{\pi}} = \emptyset$, $X_{a_{\pi}} \cap X_{a_{\pi}} = X$.

Therefore X is totally disconnected.

Since X is totally disconnected, X is Hausdorff Space.

2.11 Theorem: X is Compact space.

Proof: Suppose $\{X_a/a \in C\}$ is a basic open Cover for X where $C \subseteq A$.

Then
$$X = \bigcup_{a \in C} X_a$$
.

Suppose there is no finite sequence $a_1, a_2, ..., a_n \in \mathbb{C}$ such that

 $a_1 \lor a_2 \lor ... \lor a_n \ne 1$. Then the ideal generated by C i.e., $\langle C \rangle$ is a proper ideal of A.

Then \exists a maximal ideal M of A such that $\langle C \rangle \subset M$.

Since M is maximal ideal of R, M is a prime ideal of A.

Since $C \subset M \Rightarrow a \in M \ \forall a \in C$

$$\! \Rightarrow \! M \! \not \in \! X_a \forall a \! \in \! C$$

$$\Rightarrow M \notin \bigcup_{a \in C} X_a$$

 $\Rightarrow \ M \not\in X.$

It is a contradiction.

Therefore there exists $a_1, a_2, ..., a_n \in C$ such that $a_1 \lor a_2 \lor ... \lor a_n = 1$.

Then
$$X = X_1 = X_{a_1 \vee a_2 \vee ... \vee a_n}$$

$$= X_{a_1} \cup X_{a_2} \cup \dots \cup X_{a_n}$$

That is the basic open cover $\{X_a/a \in C\}$ has a finite sub-cover for X. Therefore X is Compact.

2.12 Theorem: Suppose A is an A^* -algebra and $a \in A$, then

$$X_{a} = X_{a} \cup X_{a}^{\#} = X_{a} \cup X_{a}^{\#} = X_{e}$$
, where $e = a_{\pi} \vee a^{\#} \in B$ (A)

Proof:
$$X_a = \{P \in X/a \notin P\}$$

$$= \{P \in X/ a_\pi \notin P \text{ or } a^\# \notin P\}$$

$$= \{P \in X/ a_\pi \notin P\} \cup \{P \in X/ a^\# \notin P\}$$

$$= X \bigcup_{a_\pi} \bigcup_{a^\#} X \bigcup_{a^\#}$$

$$= X \bigcup_{a_\pi \vee a^\#}$$

Therefore
$$X_a = X_{a_{\pi} \vee a^{\#}} = X_e$$
, $e = a_{\pi} \vee a^{\#} \in B(A)$

2.13 Theorem: If Y is a clopen subsets of X then $\exists e \in B(A)$ such that $X_e = Y$.

Proof: Let Y is a Clopen subset of X

Since Y is closed and X is Compact $\exists a_1, a_2, \dots, a_n \in \mathbb{R} \ni$

$$Y = X_{a_1} \cup X_{a_2} \cup \dots \cup X_{a_n}$$

$$= X_{a_1} \vee a_2 \vee \dots \vee a_n$$

$$= X_a \text{ where } a = a_1 \vee a_2 \vee \dots \vee a_n$$

Therefore $Y = X_a$

Since $X_a = X$ $a_{\pi \vee a}^{\#} = X_e$ where $e = a_{\pi} \vee a^{\#} \in B(A)$

Therefore $Y = X_e$ for some $e \in B(A)$.

2.14 Theorem: B(A) and $\{X_e / e \in B(A)\}\$ are Boolean isomorphic.

Proof: Proof is obvious.

2.15 Theorem: Every A*-algebra A and an A*-algebra generated by clopen subsets of totally-disconnected Compact Hausdorffspace are isomorphic.

Proof: Suppose $(A, \land, \lor, (-)\tilde{\ }, (-)_{\pi}, *, 0, 1, 2)$ is an A^* -algebra . Let X be the set of all prime ideals of A.

Then by Theorems 2.10& 2.11, X is a totally disconnected Compact Hausdorff -Space.

Let B=B(A), $X_B = \{X_e / e \in B(A)\}$

By the above, $B \cong X_B$.

Then $A(X_B)$ is the A^* -algebra generated by $X_{B.}$

Since $A(B) \cong A$, $A(B) \cong A(X_B)$, then $A \cong A(X_B)$. Hence the theorem.

References

- 1. P.Koteswara Rao, "A*-algebras and If –Then –Else Structures", *Ph.D. Thesis*, Nagarjuna University (1994), Andhra Pradesh, India.
- 2. P.Koteswara Rao, and Venkateswara Rao J, "Boolean algebras and A* algebras", *Journal of Pure Math.*, Vol.20 (2003), pp.33-38.
- 3. P.Koteswara Rao, and Venkateswara Rao J, "Prime Ideals and Congruences in A* -algebras", *Southeast Asian Bulletin of Mathematics*, Vol. 28 (2004), pp.1099-1119.
- 4. I.Ramabhadra Sarma and Koteswara Rao. P, "On the Algebra of Disjoint Alternatives, *SEA Bulletin of Math*, Vol.20, No.2 (1996), pp. 29-40.
- 5. M.H.Stone, "Applications of the theory Boolean rings to the General topology", *Trans. Amer. Math. Soc*, Vol.41 (1937), pp. 375-481.

Received: August, 2011