International Journal of Algebra, Vol. 5, 2011, no. 12, 563 - 568

M-SP-Projective Modules

V. Kumar, A. J. Gupta, B. M. Pandeya and M. K. Patel

Department of Applied Mathematics Institute of Technology Banaras Hindu University Varanasi-221005, India vkumar.rs.apm@itbhu.ac.in agupta.apm@itbhu.ac.in bmpandeya.itbhu@gmail.com mkpitb@gmail.com

Abstract

In this paper we studied M-small principally projective modules (In short, M-sp-projective modules) which is the dual notion of M-sp-injective modules and generalization of M-projective modules. We provide an example of a M-sp-projective modules which is not M-projective. We also study some properties related to Summand Intersection Property(SIP) and Hopfian modules.

Mathematics Subject Classification: 16D10, 16D50, 16D60

Keywords: Small submodule, *M*-cyclic submodule, *M*-principally projective module, *M*-projective module, SIP and Hopfian module

1 Introduction:

Through out the paper rings are associative with identity and modules are unitary right *R*-modules. Let *M* and *N* be two *R*-modules. A module *N* is called *M*-generated, if there is an epimorphism $M^{(I)} \longrightarrow N$ for some index set *I*, if *I* is finite then *N* is called finitely *M*-generated. In particular, a submodule *N* of *M* is called an *M*-cyclic submodule of *M*, if it is isomorphic to M/L for some submodule *L* of *M*, or equivalently to say that there exists an epimorphism from *M* to *N*. A submodule *K* of an *R*-module *M* is said to be small in *M*, written as $K \ll M$, if for every submodule $L \subset M$ with K + L = M implies L = M. A non-zero *R*-module *M* is called hollow, if every proper submodule of it is small in *M*. In [5] Sanh et.al gave the idea of *M*principally injective modules. A module *N* is called *M*-principally injective, if every *R*-homomorphism from an *M*-cyclic submodule of *M* to *N* can be extended to an *R*-homomorphism from *M* to *N*. A module *M* is called quasi principally (or semi) injective, if it is *M*-principally injective. In [6] Tansee and Wongwai studied the *M*-principally projective modules. In this paper we introduce the notion of *M*-small principally projective modules and quasi small principally projective modules. In this paper we study *M*-sp-projective module and *M*-sp-projective rings. For undefined notation and terminology see [1].

2 M-Small Principally Projective Modules

Definition 2.1 A module N is called M-small principally projective module, if for every small M-cyclic submodule K of M any homomorphism from N to K can be lifted to a homomorphism from N to M. If M is M-small principally projective module (In short M-sp-projective) then it is called quasi-small principally projective module and the ring R is called small principally projective ring, if R_R as a right small principally projective R-module.

We now give some example of M-sp-projective modules.

Example 2.2 (1) $\mathbb{Z}/4Z$ is \mathbb{Z} -sp-projective module but not \mathbb{Z} -projective.

(2) Every M-principally projective module is M-sp-projective module.

(3) Every semi-simple module is M-sp-projective module.

Lemma 2.3 Every direct summand of M-sp-projective module is an M-sp-projective module.

Lemma 2.4 Let $L \subseteq N \subseteq M$ be *R*-modules: (1) If $L \ll N$, $N \ll M$ then $L \ll M$; (2) If $L \ll N$ and $N \subseteq^{\oplus} M$ then $L \ll M$.

Lemma 2.5 Let $L \subseteq N \subseteq M$ be *R*-modules. If *L* is an *N*-cyclic submodules of *N* and *N* is an *M*-cyclic submodule of *M*, then *L* is an *M*-cyclic submodule of *M*.

Proof : Straightforward.

Lemma 2.6 Let $L \subseteq N \subseteq M$ be *R*-modules. If *L* is small *N*-cyclic submodules of *N* and *N* is small *M*-cyclic submodule of *M* then *L* is small *M*-cyclic submodule of *M*.

Proof: Applying lemmas (2.4) and (2.5) we get the proof.

Proposition 2.7 (1) Let A, B and X be an R-modules with $A \cong B$. If A is X-sp-projective module then B is X-sp-projective module; (2) Let X, Y and M be R-modules with $X \cong Y$. If M is Y-sp-projective module then M is X-sp-projective module.

Proof : Straightforward.

Corollary 2.8 Let N and M be two R-modules. N is M-sp-projective module if and only if N is X-sp-projective for any small M-cyclic submodule X of M.

Proposition 2.9 $\bigoplus_{i=1}^{n} M_i$ is *M*-sp-projective module if and only if each M_i is *M*-sp-projective module.

Corollary 2.10 Every direct summand of M-sp-projective module is an M-sp-projective module.

Remark 2.11 $Projective \Rightarrow quasi-projective \Rightarrow quasi-principally projective \Rightarrow quasi-sp-projective.$

Here, we study some property of quasi-sp-projective modules. A module M is said to have the Summand Intersection Property (SIP) if the intersection of any two direct summands of M is a direct summand of M.

Proposition 2.12 If a quasi-sp-projective module M has the SIP, then for any direct summands A and B of M, A + B is sp-projective module.

Proof: Suppose that M is quasi-sp-projective and has the SIP and let A and B be any direct summands of M. Let $M = (A \cap B) \oplus K$ for some $K \subseteq M$. Then $A = (A \cap B) \oplus (A \cap K)$, $B = (A \cap B) \oplus (B \cap K)$ and $A+B = (A \cap B) \oplus (A \cap K) \oplus (B \cap K)$. By hypothesis $A \cap B$, $A \cap K$ and $B \cap K$ are direct summands of M and so they are sp-projective and hence A + B is sp-projective.

Corollary 2.13 If a quasi-p-projective module M has the SIP, then for any direct summands A and B of M, A + B is p-projective module.

Corollary 2.14 If a quasi-projective module M has the SIP, then for any direct summands A and B of M, A + B is projective module.

The following proposition is the generalization of Proposition 1 of Varadarajan [7].

Proposition 2.15 Let M be quasi-sp-projective module. Assume that either $dim M < \infty$ or $Codim M < \infty$. Then for every integer $n \ge 1$, M^n is Hopfian.

Proof: Since dim $M^n = n(\dim M)$, Codim $M^n = n(\operatorname{Codim} M)$ and since M is quasi-sp-projective implies that M^n is quasi-sp-projective we see that M^n satisfies the hypothesis. It is suffices to prove that M is Hopfian.

Let $f: M \to M$ be any surjective endomorphism of M. Due to quasi-spprojectivity of M there exists a map $s: M \to M$ with $f \circ s = Id_M$. Hence, $M \cong M \oplus kerf$. So, dimM = dimM + kerf and CodimM = CodimM + kerf. If $dimM < \infty$ or $CodimM < \infty$ implies that kerf = 0 and so f is a monomorphism. Hence, M is Hopfian.

Corollary 2.16 Let M be quasi-p-projective module. Assume that either dim $M < \infty$ or Codim $M < \infty$. Then for every integer $n \ge 1$, M^n is Hopfian.

Corollary 2.17 Let M be quasi-projective module. Assume that either $dim M < \infty$ or $Codim M < \infty$. Then for every integer $n \ge 1$, M^n is Hopfian.

3 Semi co-Hopfian and Semi Hopfian Modules

In this section we study some properties of semi co-Hopfian and semi Hopfian modules related to quasi principally injective and quasi principally projective modules. In (2008) Aydogdu and Ozcan [4] gave the idea of semi co-Hopfian and semi Hopfian modules.

A module M is called **Semi co-Hopfian (resp. Semi Hopfian)** if any injective (surjective)endomorphism of M has direct summand image (resp. kernel).

A module M is called Epi-retractable, if every submodule of M is an M-cyclic submodule M.

Proposition 3.1 Every quasi principally injective module is semi co-Hopfian.

Proof: Since every quasi principally injective module has (C_2) and a module has this condition is semi co-Hopfian see [[4], Lemma(2.1)] M is semi co-Hopfian modules.

Proposition 3.2 Every quasi principally projective module is semi Hopfian.

Proof : Proof of this proposition is dual to the proof given in above proposition.

Proposition 3.3 Let M be Epi-retractable, and every submodule of M is M-principally injective, then M is semi co-Hopfian.

Proof: Let $f \in S = End(M_R)$. By hypothesis, f(M) is M- principally injective. Therefore, it is a direct summand of M, it follows that M is semi co-Hopfian.

ACKNOWLEDGEMENT : The first and fourth author is thankful to UGC-CSIR, New Delhi, India for awarding the Senior Research Fellowship since August(2009) and July (2010).

References

- F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, New York: Springer Verlag, 1993.
- [2] V.Kumar, A.J.Gupta, B.M.Pandeya and M. K.Patel, *M*-SP-Injective Modules, communicated.
- [3] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge 1990.
- [4] P. Aydogdu and A. C. Ozcan, Semi co-Hopfian and Semi Hopfian Modules, East West J. Math., 10(1), 2008, 57–72.
- [5] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On Quasi Principally Injective Modules, Algebra Coll. 6:3 (1999), 269–276.
- [6] H. Tansee and S. Wongwai, A note on Semi projective modules, Kyungpook Math. J., 42(2002), 369–380.
- [7] K. Varadarajan, Properties of Endomorphism Rings, Acta Math. Hungar., 74(1-2) (1997), 83–92.

[8] G. V. Wilson, Modules with the Summands Intersection Property, Comm. Algebra, 14(1986), 21–38.

Received: January, 2011