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Abstract 

 

Pneumonia is a respiratory tract infection and the leading cause of death in children 

between 1 and 5 years old. Qualified radiologists are responsible for diagnosing 

pneumonia in chest X-rays; however, deep learning techniques have shown favorable  
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results in developing computer-aided diagnosis systems that allow for the automatic 

detection of respiratory diseases such as pneumonia and can support specialists. This 

work proposes detecting pneumonia in chest X-rays of children under 5 years old using 

Transfer Learning applied to 5 Deep Learning models: DenseNet, ResNet, MobileNet, 

Inception V3, and EfficientNet. The models were compared using the metrics of 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 obtained from the confusion 

matrix of each model. The model that showed the best results was DenseNet, with the 

following metric values: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 90.4%, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.95, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
0.83, and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.90. 

 

Keywords: Deep Learning, Transfer Learning, DenseNet, ResNet, MobileNet, 

Inception V3, EfficientNet, and Pneumonia 

 

1. Introduction 
 

Pneumonia is a common respiratory tract infection affecting the lungs and mainly 

occurs in the elderly and children [1]. It is categorized based on where the infection 

was acquired; it can be community-acquired or hospital-acquired pneumonia, with 

Streptococcus pneumoniae being the primary cause of community-acquired pneumonia 

[2]. Pneumonia is one of the leading causes of mortality and morbidity worldwide. 

Before the COVID-19 era, there were over two million deaths annually worldwide [3]. 

For example, in the United Kingdom, the incidence of pneumonia has been increasing, 

from 1.5 per 1,000 people per year in 2022 to 2.2 per 1,000 in 2017, making it the 

leading cause of hospital admission and the third leading cause of respiratory mortality 

[4]. Globally, pneumonia is one of the leading infectious causes of death in children. 

Most healthy children can naturally fight off an infection; however, 

immunocompromised children are at higher risk of contracting pneumonia. UN 

statistics show that in 2017, over 808,000 children under 5 years old died, indicating 

that 15% of all deaths in children under 5 were due to pneumonia [5]. For example, in 

the United States, annual outpatient visits due to pneumonia range from 16.9 to 22.4 

per 1,000 children. Some symptoms in pediatric patients include chest pain, poor 

feeding, cough, difficulty breathing, vomiting, and diarrhea [6]. There are several ways 

to detect pneumonia, such as computed tomography, and pulse oximetry, but the most 

common method is through radiographic evidence of new consolidation [7, 8]. 

However, in developing countries, timely detection of pneumonia in infants is 

concerning. In these countries, computer-aided diagnosis (CAD) systems are used due 

to their lower operational costs [9]. Although qualified radiologists usually diagnose 

pneumonia through chest X-rays (CXR), errors are common, generating false 

negatives. Hence, for analyzing difficult images, a hybridization between the 

radiologist and CAD systems is performed [7, 9].  
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Deep learning techniques have shown favorable results in developing CAD systems 

that enable the automatic detection of respiratory diseases [10]. Deep learning models 

require large amounts of data for training. However, nowadays, the transfer learning 

technique is used to avoid working with large datasets. For this, a deep learning model 

is trained using a large dataset and then the weights are transferred to train another 

model for new tasks to be classified using a smaller training dataset [9]. This work 

proposes detecting pneumonia in X-ray images of children under 5 years old using 

transfer learning and five deep learning models: DenseNet121, ResNet, EfficientNet, 

Inception, and MobileNet. The model results are compared using the confusion matrix 

and metrics such as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 

 

2. Literature review 
 

Pneumonia is one of the severe diseases affecting the lungs, causing significant human 

losses worldwide. Therefore, it is essential to have CAD systems capable of detecting 

pneumonia [11]. Various machine learning (ML) techniques have been employed for 

this purpose, such as using SVM to detect pneumonia caused by COVID-19 [12] in 

RGB images of CXR, or using texture features to feed classifier algorithms like K-NN, 

SVM, and Random Forest [13]. Other studies have used the histogram of oriented 

gradients (HOG) and local binary pattern (LBP) to extract features from CXR and 

subsequently used classifiers such as Random Forest, SVM, XGBoost, Decision Trees, 

Naïve Bayes, AdaBoost, K-NN, Logistic Regression, and Ensemble Model [14]. 

Furthermore, some studies use deep learning techniques for feature extraction, such as 

VGG16, which feeds into classifiers based on neural networks, SVM, KNN, Random 

Forest, and Naïve Bayes [8]. Other research utilizes deep learning to detect pneumonia 

caused by COVID-19 in CT scans and X-ray images [15], while other studies detect 

COVID-19 pneumonia using deep learning applied to lung ultrasound images [16]. 

Additionally, some research employs deep learning but transfers knowledge from a 

large pre-trained network to a smaller network using distillation techniques [10], and 

others use convolutional neural network (CNN) architectures with dropout layers 

carefully placed in the convolutional part of the network [17] instead of using 

distillation or transfer learning techniques. Transfer learning do researchers frequently 

use a technique today, alleviating the need for large amounts of data for deep learning 

training. For instance, some studies use transfer learning for pneumonia detection in 

CXR images aided by feature selection techniques based on particle swarm 

optimization [9]. Others use transfer learning to segment and detect pneumonia in CXR 

images using architectures like ResNet50, InceptionV3, and InceptionResNetV2 [18]. 

Some works focus on diagnosing pneumonia in children using single-channel 

photoplethysmography and employ ML algorithms such as Fine Decision Tree, Linear 

Discriminant Analysis, Weighted K Nearest Neighbors, Wide Neural Network, and  
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Ensemble of Bagged [19]. Other studies use deep learning with CNNs applied to CXR 

radiographs [20], and some combine deep learning with transfer learning [21]. 

 

3. Methodology 
 

 3.1 Convolutional Neural Networks (CNN) 

Artificial Neural Networks (ANNs) are computational models inspired by the 

functioning of biological neural networks. They enable a training process where the 

weights of the network are adjusted to produce the desired output data, aiming to 

perform classification tasks. The simplest ANN model is known as the Single 

Perceptron. On the other hand, the Multilayer Perceptron (MLP), the most general 

model, consists of an input layer, hidden layers, weighted connections, an activation 

function, and an output layer. Each layer is fully connected, and the training is 

conducted through backpropagation. Figure 1 shows the general model of MLP [22]. 
 

. 

Fig. 1. Architecture of MLP with k hidden layers 

 

 

Its three main types of layers characterize a CNN: convolutional layer, pooling layer, 

and fully connected (FC) layer. The convolutional layer is the first layer of a CNN and 

requires input data, a kernel, and a feature map. The pooling layer's task is to reduce 

dimensionality, and the fully connected layer is responsible for the classification 

process based on the features extracted in the previous layers. The main applications 

of CNNs are found in image recognition in computer vision [23], audio processing 

[24], and object segmentation [25]. Figure 2 shows the general architecture of a CNN. 
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Fig. 2. Architecture of a CNN. 

 

As the number of network layers increases in traditional CNN models, they tend to 

suffer from the vanishing gradient problem. To address this issue, Residual Networks, 

or more commonly known as ResNet, were introduced. 

 

3.2 Residual Networks (ResNet) 

ResNet is a deep learning model widely used in image classification that introduces the 

concept of skip connections to move over a set of layers. This is achieved through the 

implementation of so-called blocks. ResNet comprises residual and convolutional 

blocks. The identity block is used when the input and output have the same dimensions, 

and the convolutional block is used when the input and output dimensions are different. 

Figure 3  

shows the structure of a residual block, where the arrow indicates the data flow, ReLU 

is the activation function, 𝑥 is the input data to the block, and 𝑓(𝑥) + 𝑥 is the output 

data [26]. 

 

 

Fig. 3. Structure of a residual block 
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3.3 Densely Connected Convolutional Networks (DenseNet) 

DenseNet is a CNN architecture composed of densely interconnected blocks chained 

sequentially. Each layer is connected to its subsequent layers within each block, and 

the blocks are interspersed with transition layers. Each dense block consists of multiple 

densely connected convolutional layers [27]. Figure 4 shows the architecture of 

 

 

DenseNet.  

Fig. 4. DenseNet architecture. 

 

 

 

3.4 Efficient Convolutional Neural Networks for Mobile Vision Applications 

(MobileNet) 

 

 MobileNet is a CNN designed primarily for mobile and embedded applications. It uses 

depth-wise separable convolutions to build deep and lightweight neural networks, 

significantly reducing the number of parameters compared to a CNN with regular 

convolutions of the same depth. A depth-wise separable convolution comprises two 

convolution operations: depth-wise convolution, which filters the input, and point-wise 

convolution 1 × 1, which receives the filtered values and creates new features [28]. 

MobileNet uses batch normalization (BN), which adds an additional step between 

neurons and the activation function to normalize the output. Figure 5 shows the 

comparison between using standard convolution and depth-wise separable convolution 

with ReLU activation layers. 
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Fig. 5. Standard convolution (left) vs Depth-wise separable convolution (right) with 

ReLU activation layers. 

 

3.5 Inception V3 

Inception V3 is a CNN from the Inception family widely used in computer vision tasks. 

It uses blocks with multiple filters of different sizes at the same level, then concatenates 

them to extract features at different scales. Inception V3 shows improvements in the 

optimizer, loss function, and the addition of BN compared to its predecessors [29]. 

Figure 6 shows the architecture of Inception V3. 
 

Fig. 6. Inception V3 architecture. 

 

 

3.6 Rethinking Model Scaling for Convolutional Neural Networks (EfficientNet) 

EfficientNet is a CNN that uses a compound scaling coefficient across all dimensions 

of depth, width, and resolution, scaling them uniformly using a set of fixed scaling  
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coefficients to optimize accuracy and efficiency relative to its size. Depth scaling 

involves adding more convolution layers to the convolution blocks, width scaling 

involves increasing the filters in the convolution layers, and resolution scaling involves 

increasing the input image size. Figure 7 shows the difference between a standard CNN 

and EfficientNet [30]. 

 

 

 

 

Fig. 7. Different types of CNN scaling. Standard convolution (left) vs EfficientNet 

(right). 

 

 

3.7 Transfer Learning 

Transfer learning is a machine learning technique that involves using part of the 

knowledge from previously trained models for a specific task as a starting point for 

developing other models with new tasks [31]. To use transfer learning, one needs to 

download the weights of the pre-trained network, replace the fully connected layer 

responsible for the classification process with the fully connected layer for the new 

task, and finally retrain the network. Figure 8 shows the concept of transfer learning. 
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Fig. 8. Concept of Transfer Learning. 

 

3.8 Confusion Matrix 

The purpose of a confusion matrix is to evaluate the performance of a classifier model 

by describing how the actual values are distributed relative to the values output by the 

classifier model. Figure 9 shows a confusion matrix, grouping true positives (𝑇𝑃), true 

negatives (𝑇𝑁),         false positives (𝐹𝑃), and false negatives (𝐹𝑁) that the model 

produces as results. 

 
 

 

Fig. 9. Confusion matrix. 

 

 

From the confusion matrix, the following metrics can be obtained [32]: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸). Indicates the proportion of positive cases that a model correctly 

classifies. 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃). Indicates the model's ability to predict negative cases. 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.  Measures the proportion of relevant instances among the retrieved 

instances, calculated by the ratio of true positive predictions to all actual positive facts. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶). Represents the proportion of correct predictions, measuring how 

well a classification predicts a condition. 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃
 

 

4. Experiments and Results 

For the experimental part, the Chest X-ray Images (Pneumonia) dataset available 

at https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia was 

used. This dataset consists of 5,862 chest X-ray images of pediatric patients aged one 

to five years from the Guangzhou Women and Children's Medical Center. The dataset 

is divided into two categories: pneumonia and normal. The chest X-rays were taken as 

part of routine clinical care, and the images were carefully reviewed by two medical 

experts. For the experimental development, deep learning was used with five models: 

DenseNet121, ResNet, EfficientNet, Inception V3, and MobileNet. Each model was 

trained using an 80% train-test split, with 80% for the training set and 20% for the test 

set. In total, 16 complete training sessions were carried out using optimizers such as 

Adagrad and Adam. To determine the hyperparameters that yield the minimum error 

function, different values for the learning rate were chosen, varying between a range of 

0.00001 and 0.001. Figure 10 shows the 16 training sessions conducted with the 

DenseNet121 model. 

 

 
 

Fig. 10. DenseNet121 model training for hyperparameter selection. 
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The results in Figure 10 show that the best results are obtained using the Adam 

optimizer with a learning rate of 0.0002. Therefore, when using DenseNet121, the 

following hyperparameters were used: 

 Image rescaling: 256𝑝𝑥 ×  256𝑝𝑥. 

 Model type: binary (pneumonia/normal)). 

 Classifier: sequential. 

 Activation function: ReLU. 

 Optimizer: Adam. 

 Learning Rate: 0.0002. 

 Epochs: 100. 

 Loss function: binary cross-entropy. 

 Convergence detection: early stopping. 

With this set of parameters, the loss function for the DenseNet121 model was 0.3091. 

Figure 11 shows the results of the confusion matrix and the values of the metrics 𝑆𝐸, 

𝑆𝑃, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐴𝐶𝐶 for the DenseNet121 model. 

 

Fig. 11. Confusion matrix for the DenseNet121 model. 

 

 

Similarly, experiments were conducted for the ResNet, EfficientNet, Inception V3, and 

MobileNet architectures with the Adam and Adagrad optimizers. Figure 12 shows the 

training results of the four models with the Adam and Adagrad optimizers. 

Inception V3—achieves better results when using the Adagrad optimizer with 

learning rates of 0.0004, 0.0003, 0.0003, and 0.0009, respectively.  

Figure 13 shows the resulting confusion matrix for the ResNet, EfficientNet, 

MobileNet, and Inception V3 models when using the following hyperparameters: 

 Image rescaling: 256𝑝𝑥 ×  256𝑝𝑥. 

 Model type: binary (pneumonia/normal). 

 Classifier: sequential.  

 Activation function: ReLU. 

 Optimizer: Adam. 

 Epochs: 100. 
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 Loss function: binary cross-entropy.  

 Convergence detection: early stopping. 

and the respective learning rates obtained from Figure 12. 

 

 

 
Fig. 12. Training of ResNet, EfficientNet, MobileNet, and Inception V3 models with Adam 

and Adagrad optimizers. 

 

 

 
 

 

From Figure 12, it is inferred that each model—ResNet, EfficientNet, MobileNet, and 

Table 1 shows the comparison of the models of the five architectures used in this work 

and the values of the 𝑆𝐸, 𝑆𝑃, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝐴𝐶𝐶 metrics, and the loss function value. 
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Fig. 13 Confusion matrix resulting from using ResNet, EfficientNet, MobileNet and 

Inception V3. 

 

 

Model 𝑆𝐸 𝑆𝑃 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐴𝐶𝐶 𝐿𝑜𝑠𝑠 

DenseNet121 0.95 0.83 0.90 90.4% 0.3091 

EfficientNet 0.98 0.64 0.82 85.4% 0.6069 

Inception V3 0.96 0.55 0.77 81.4% 0.5188 

MobileNet 0.98 0.48 0.76 80.0% 0.5904 

ResNet 0.76 0.63 0.77 71.8% 0.5439 
 

Table 1. Comparison of different metrics applied to the five models. 

 

 

5. Conclusions 
 

In this work, five Deep Learning models were presented and applied to the problem of 

detecting pneumonia in children under 5 years old using the Chest X-ray Images 

(Pneumonia) dataset obtained from Kaggle. The dataset consists of chest X-rays of 

patients with pneumonia and healthy patients, divided into two categories: pneumonia 

and normal. The models applied were DenseNet121, EfficientNet, Inception V3, 

MobileNet, and ResNet. DenseNet showed the best results in hyperparameter  
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configuration using the Adam optimizer, while the rest of the models showed better 

results with the Adagrad optimizer. Figures 11 and 13 show the confusion matrix results 

for each model, and Table 1 compares the five models using metrics obtained from the 

confusion matrix such as 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, as well 

as the loss function value for each model. A 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 value closer to 1 indicates a 

reduction in false negatives. Although EfficientNet, Inception V3, and MobileNet 

achieved higher 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 values (0.98, 0.96, and 0.98 respectively) compared to 

DenseNet121 (0.95), the 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values were better 

for DenseNet121. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 values closer to 1 indicate a reduction in false positives. 

DenseNet121 achieved a 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 value of 0.83 and an 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 90.4%, the 

best results compared to the other models. Additionally, the loss function yielded the 

lowest value with DenseNet121 at 0.3091, quantifying the discrepancy between the 

model's predicted values and the actual values. This work concludes that Transfer 

Learning with the DenseNet121 model yields the best results compared to the models 

proposed in Table 1 for detecting pneumonia in chest X-rays of children under 5 years 

old. 
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