Contemporary Engineering Sciences, Vol. 17, 2024, no. 1, 35 - 46 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2024.93127

Biophysical Results with Liquid Model Systems

Ignat Ignatov 1,*, Ludmila Pesotskaya 2,3 and Georgi Gluhchev 4

¹ Scientific Research Center of Medical Biophysics (SRCMB) 1111 Sofia, Bulgaria * Corresponding author

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2024 Hikari Ltd.

Abstract

The impact of biophysical fields on water and water solutions model systems has been studied. In two of from the three of the models, an external electric field was applied under corona gas discharge conditions. The biophysical influence was applied to water samples with a volume of 120 mL. Following the biophysical exposure, water droplets were taken and subjected to corona gas discharge at the interface between the air and liquid phases. The control samples consisted of water droplets not subjected to biophysical influence.

In the first method, the corona glow was analyzed as a result of dielectric permittivity of water (Ignatov, 2007).

In the second method the analysis of the corona discharge produced brightness histograms (Pesotskaya, Glukhova et al. 2013).

In the third type of experiments one co-author Gluhchev, a physiological solution or 0.9% sodium chloride (NaCl) was used.

The applied comprehensive analysis using three methods enables the evaluation of the effects of biophysical fields on liquid systems.

² Dnipro University of Technology, 49005 Dnipro, Ukraine

³ Dnipro State Medical University, 49044 Dnipro, Ukraine

⁴ Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Keywords: corona electric discharge, water parameters, histogram, brightness

1. Introduction

Living organisms exhibit a highly organized molecular and cellular structure, with life process occurring on these levels. Among the essential bio parameters of living organisms is bioelectrical activity. Bioelectric potentials generated by various cells are widely utilized in in medical diagnostics, such an electrocardiograms (ECG) and electroencephalograms (EEG). Human tissues emit weak electromagnetic waves. These are determinated by ion by ion concentrations (e. g. K⁺, Na⁺, Cl⁻). The ion concentrations permeability across cell membranes with typical ranging from 50-80 mV in the human body [1].

The electromagnetic fields (EMFs), categorized under non-ionizing radiation (NIR), do not generate ions of its emission but cause biological effects [2].

In 1983 the scientists Gulyaev and Godik from the former USSR were investigated biophysical fields emanated by people [3-5]. Essential components in biophysical fields are the electric and magnetic fields. Gulyaev and Godik are using a common term - physical fields of biological objects. The term biophysical fields of man was used [6]. The vital activity of man is realized at a temperature of 36,6 °C. Temperature alterations signal disease. By thermovision Gulyaev and Godik have registered infrared radiation from man [3-5]. That radiation is then used in medicine for thermovisual diagnostics. Gulyaev and Godik have proved that the human body emanates acoustic fields. They have also proved that skin emanates light in the close ultraviolet, the optic range and in the close infrared range. This phenomenon is called hemiluminescence [3-5]. A radiothermal emanation from the internal organs is proved.

Human skin is known to electromagnetic waves across the near-ultraviolet, optical, and near-infrared ranges. Infrared thermal biofield predominantly falls the middle infrared spectrum, spanning wavelengths from 8 to 14 μm . Its peak intensity occurs at a wavelength of 9.7 μm when the skin temperature is approximately 36.6 °C. At this temperature, the skin radiation closely matches absolute black body (ABB) at the same temperature. Infrared radiation penetrates the skin to a depth about 0.1 mm. It reflects according to the physical principles governing reflection in the visible spectrum. The energy from the radiation, when absorbed, reflect according to the physical principles governing reflection in the visible spectrum. The energy from this radiation, when absorbed, influences the underlying tissues.

Gulyev and Godik identified the threshold sensitivity of the skin infrared radiation as approximately 10^{-14} W cm⁻². When thermal influence is applied to the point of threshold skin sensitivity, there is developed a physiological reaction toward the thermal current. The intensity of the radiated thermal current generated by skin makes up $\sim 2.6 \cdot 10^{-2}$ W/cm² [7].

The second component of electromagnetic waves is bioluminescence [8,9]. It is supposed that biophotons, or ultraweak photon emissions of biological objects, are weak electromagnetic waves in the optical range of the spectrum [10]. The typical observed emission of biological tissues in the visible and ultraviolet frequencies ranges from 10^{-19} to 10^{-16} W/cm² (~1–1000 photons·cm⁻²·sec⁻¹) [11, 12]. This light intensity is much weaker than that one to be seen in the perceptually visible and well-studied spectrum of normal bioluminescence detectable above the background of thermal radiation emitted by tissues at their normal temperature [13].

The energy of hydrogen bonds in water changes in response to chemical substances and external fields. Biophysical fields influence the energy of hydrogen bonds, leading to restructuring of water molecules and changes in the physical parameters of water and aqueous solutions [14].

Studies have been conducted to analyze the effects of water as a sensor for weak electromagnetic fields [15].

In the second half of the 20th century and into the 21st century, research has been carried out on the parameters of water conditions of corona electric gas discharge, which some authors also refer to as plasma conditions.

Using the Ignatov method the photon emission spectrum of a sample containing dissolved chemical substances or subjected to external influences is compared to that of a control sample [16-18]. With color coronal spectral analysis, the analysis of calcium carbonate was also performed [19].

The originators of this type of histogram method are Pesotskaya, Glukhova and coauthors with patents and scientific publications [20-22].

Before the histogram analysis, the liquid drops are the objects of influence with fields or chemical substances. After that, the drops are activated with corona electric discharge from the contact medium air-liquid. The histogram method analyzes images' brightness and pixel distribution, enabling a quantitative investigation of physical and biological processes. Using this method the following analyses are applied:

The image's brightness is divided into intervals (or categories), typically black to white. For each interval, the number of pixels falling within the corresponding brightness range is recorded.

The resulting data is presented as a graph (histogram) that shows the brightness distribution.

The aim of the investigation is to analyze the effects of biophysical fields on the three liquid model systems – water influenced with corona electric discharge and estimation of electric parameters and brightness, and solution of 0.9% NaCl with pH results.

2. Methods and Materials

2.1. Color coronal electric discharge

Electric corona discharge emission from air and contact medium with water drops was studied with the method for color coronal spectral analysis [7,16-19]. The experiments were performed in darkness room with temperature 25 °C and humidity 65%. The emissions were captured using photosensitive color film Kodak on a transparent electrode with a diameter 87 mm. The electrode was filled with a conductive liquid comprising a 1% NaCl solution in distilled water. Pulses of 12 kV voltage with carrier frequency of 15 kHz were applied between the water drops and electrode. The scheme is shown in [7,16-19].

A corona gas discharge was generated in the gap between the investigated objects and the transparent electrode, producing a distinctive glow around and in the contact area. The electromagnetic emissions, spanning from 380 to 495 nm and 570 to 750±5 nm [23], illuminated the photosensitive material in accordance with the specific properties of the objects under study.

The spectral characteristics of the emissions were measured in electron volts.

2.2. Histogram method for electric corona images' brightness

The Histogram method for electric corona images' brightness is patented [24] and object of scientific articles [20-22].

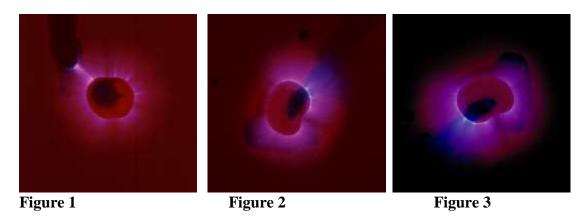
Before the histogram analysis, the liquid drops are objects of dissolving of chemical compounds or objects of influence with fields. After that, the drops are activated with corona electric discharge from contact medium air-liquid. The images are reordered on black-white X Ray photographic films. The analyses were done using the computer program Python.

The histogram method analyzes images' brightness and pixel distribution, enabling a quantitative investigation of physical and biological processes. Using this method:

- 1. The image's brightness is divided into intervals (or categories) from black to white.
- 2. From each interval, the number of pixels falling within the corresponding brightness range is recorded.
- 3. The resulting data is presented as a graph (histogram) that shows the brightness distribution.

2.3. Licensed Solution with 0.9 % NaCl

The licensed physiological 0.9 % solution of 50 mL Sodium Chloride (NaCl) solution was used.


3. Results

3.1. Results with coronal electric discharge spectral analysis

Electric discharge per unit area of the recording medium can be expressed with formulas published in [18,25,26]. Coronal gas discharge method has applications for researching H_2O drops electrical parameters in gas discharge conditions [18].

The dielectric constant as a parameter of coronal gas discharge was described by [18, 25, 26]. It is a reliable dielectric permittivity in a homogenous medium. The object conductivity is not practically reflected in the formation of the electric image.

Fig. 1 is with the control sample with distilled water, and the Fig. 2 and Fig. 3 show the results of water after bioinfluence of Anne Hübner and Tanja Aeckersberg.

Figure 1. Control sample with distilled water; **Figure 2.** Result of Anne Hübner **Figure 3.** Result of Tanja Aeckersberg

A control sample of water with photon energy E=1.97 eV.

The photon emission after the bioinfluence of Anne Hübner is E=2.45 eV. The difference E=2.45-1.97=0.48 eV for the effect of increasing photon emission from water drop.

The photon emission after Tanja Aeckersberg 's bioinfluence is E=2.45 eV. The difference E=2.47-1.97=0.50 eV is for the effect of increasing photon emission from water drops.

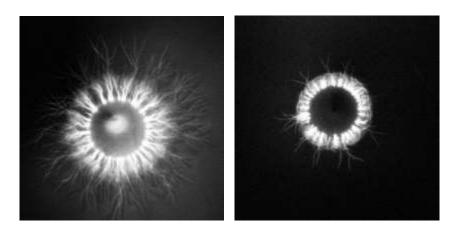
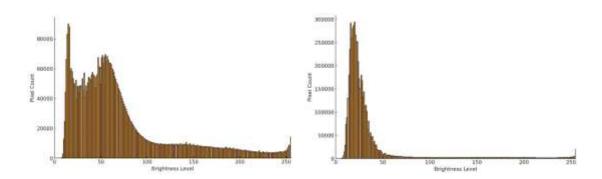
The results present effects as result of color coronal glow of influenced water drops regarding the control samples drops on color photographic film.

3.2. Results with median brightness of water drops after corona discharge

The method investigates the median brightness of water drops after corona discharge on black-white X Ray photographic films.

Results of Anne Hübner

Fig. 4 illustrates corona glow of water drops after the bioinfluence of Anne Hübner on liquid. Fig. 5 shows the control sample result of the liquid drop.

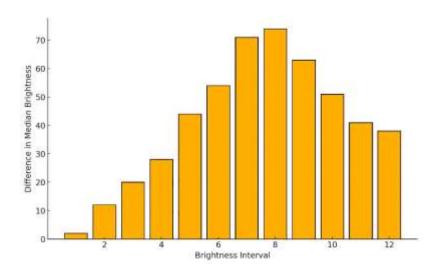

Figure 4. Image of corona glow of Anne Hübner and Figure 5 with control sample

Fig. 6 is connected with brightness after the bioinfluence of Anne Hübner on liquid and Fig. 7 is associated with the control sample result of the liquid drop.

Figure 6. Brightness after the bioinfluence of Anne Hübner on liquid and **Figure 7** Control sample result of the liquid drop.

Fig. 8. shows the comparative analysis of the difference in median brightness between Anne Hübner results and the control sample.

Figure 8. Comparative analysis of the difference in median brightness between Anne Hübner results and the control sample.

Results of Tanja Aeckersberg

Fig. 9 illustrates corona glow of water drops after the bioinfluence of Anne Hübner on liquid. Fig. 5 shows the control sample result of the liquid drop.

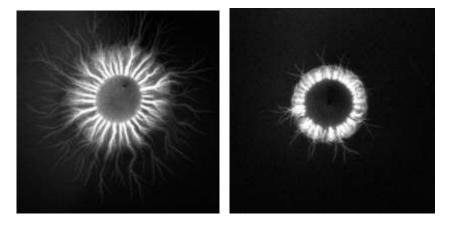


Figure 9. Image of corona glow of Tanja Aeckersberg and Figure 5 with control sample

Fig. 10 is connected with brightness after the bioinfluence of Tanja Aeckersberg on liquid and Fig. 7 is associated with the control sample result of the liquid drop.

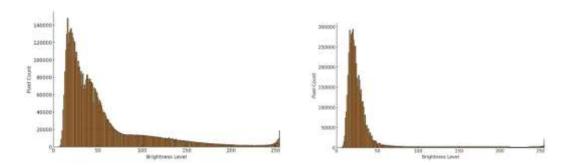
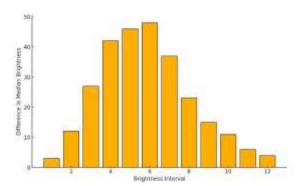



Figure 10. Brightness after the bioinfluence of Tanja Aeckersberg on liquid

Fig. 11 shows the comparative analysis of the difference in median brightness between Tanja Aeckersberg results and the control sample.

Figure 11. Comparative analysis of the difference in median brightness between Tanja Aeckersberg results and the control sample.

3.3. Results with 0.9 % solution of NaCl

The studies were performed from one of the co-authors Gluhchev. The obtained results of Anne Hübner are shown in the following Table 1.

	pН	Values of the
		hydrogen ions (H ⁺)
		(mol L ⁻¹)
Control sample	6.98	1.05×10^{-7}
Sample	6.11	7.76×10^{-7}
Difference	0.87	6.71×10^{-7}

A difference from Table 1 of of the test sample relative to the control one was established. This indicates 6.71×10^{-7} mol L⁻¹ increase in hydrogen ions (H⁺) in the sample after the influence.

The table 2 presents the results of Tanja Acckersorig			
	pН	Values of the	
		hydrogen ions (H ⁺)	
		$(\text{mol } L^{-1})$	
Control sample	6.97	1.06×10^{-7}	
Sample	6.11	7.76×10^{-7}	
Difference	0.86	6.70×10^{-7}	

The table 2 presents the results of Tanja Aeckersberg

A difference from Table 2 of the test sample relative to the control one was established. This indicates 6.70×10^{-7} mol L⁻¹ increase in hydrogen ions (H⁺) in the sample after the influence.

4. Conclusions

The study analyzed the effects of biophysical fields on water and NaCl solution models using three methods.

- 1. Color corona photon emission analysis: Corona gas discharge revealed increased photon energy (up to 0.50 eV) in influenced water drops compared to control samples, indicating enhanced energetic states.
- 2. Brightness Histogram Analysis: Median brightness levels of water drops demonstrated significant differences after biophysical exposure, highlighting structural and optical changes in the liquid.
- 3. Hydrogen ion analysis and pH: Sodium Chloride (NaCl) 0.9% solution exhibited a measurable increase in hydrogen ion concentration (up to 6.71x10⁻⁷ mol L⁻¹), reflecting chemical alterations under biophysical influence.

These results underscore the potential of biophysical fields to induce measurable physical and chemical changes in liquid systems.

References

- [1] H. H. Ussing, Transport of ions across cellular membranes, *Physiological Review*, **1949** (1949), no. 29, 127-155. https://doi.org/10.1152/physrev.1949.29.2.127
- [2] Ng. Kwan-Hoong, Non-ionizing radiations sources, biological effects, emissions and exposures, *Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR2003). Electromagnetic Fields and Our Health.* 20–22 October (2003).
- [3] Yu. V. Gulyaev, E. E. Godik, On the possibilities of the functional diagnostics of the biological subjects via their temporal dynamics of the infrared images. *USSR Academy Nauk Proceedings/Biophysics*, **277** (1984), 1486-1491.

- [4] Yu. V. Gulyaev, E. E. Godik, Functional imaging of human body, *IEEE Eng. Med. Biol.*, (1991), 21-29. https://doi.org/10.1109/51.107165
- [5] Yu. V. Brashevan, Y. I. Zavadskii, K. A. Zinis, et al., Optoelectronic system for dynamic monitoring of thermal fields in medical diagnostics, *Proc. SPIE 3200, Third Conference on Photonic Systems for Ecological Monitoring*, (1997). https://doi.org/10.1117/12.284731
- [6] I. Ignatov, A. Antonov, T. Galabova, Medical biophysics biophysical fields of man. *Gea Libris*, (1998), 1-71.
- [7] I. Ignatov, O.V. Mosin, H. Niggli, Ch. Drossinakis, G. Tyminsky, Methods for registering non-ionizing radiation emitted from human body, *European Reviews of Chemical Research*, **1** (2015), no. 3, 4-24. https://doi.org/10.13187/ercr.2015.3.4
- [8] R. E. Young, C. F. Roper, Bioluminescent countershading in midwater animals: evidence from living squid, *Science*, **191** (1976), 1046-1048. https://doi.org/10.1126/science.1251214
- [9] F. A. Popp, J.J. Chang, A. Herzog, Z. Yan and Y.Yan, Evidence of non-classical (squeezed) light in biological systems, *Physics Letters A*, **293** (2002), no. 1-2, 98-102. https://doi.org/10.1016/s0375-9601(01)00832-5
- [10] S. Cohen, F.A.Popp, Biophoton emission of the human body, *Journal of Photochemistry and Photobiology B: Biology*, **40** (1997), no. 2, 187–189. https://doi.org/10.1016/S1011-1344(97)00050-X
- [11] J. Jessel-Kenyon, Light emission from the human body, *British Homoeopathic Journal*, **78** (1989), 269. https://doi.org/10.1016/s0007-0785(89)80112-7
- [12] C. Choi, W. M. Woo, M. B. Lee et al., Biophoton emission from the hands, *J. Korean Physical. Soc*, **41** (2002), 275–278.
- [13] H. Niggli, Artificial sunlight irradiation induces ultraweak photon emission in human skin fibroblasts, *Journal of Photochemistry and Photobiology B: Biology*, **18** (1993), no. 2–3, 281–285. https://doi.org/10.1016/1011-1344(93)80076-L
- [14] S. Bhattacharyya, S. Pal, A. Banerjee, Biophysical analysis of water exposed to meditative energy field using UV-Vis spectroscopy, *Water*, **13** (2022), 5.

- [15] V. I. Lobyshev, Water is a sensor to weak forces including electromagnetic fields of low intensity, *Electromagnetic Biology and Medicine*, **24** (2005), no. 3, 449–461. https://doi.org/10.1080/15368370500382248
- [16] Ignatov, I. Energy Biomedicine. ICH, Munich. 2005.
- [17] Marinov M, Ignatov I., *Color Kirlian Spectral Analysis*, Color observation with visual analyzer. Euromedica. Hanover, 2008, 57-59.
- [18] I. Ignatov, A. Antonov, N. Neshev, H. Niggli, Ch. Stoyanov, Ch. Drossinakis, Color coronal spectral analysis of bioelectrical effects of humans and water, *Contemporary Engineer Sciences*, **14** (2021), no. 1, 61-72. https://doi.org/10.12988/ces.2021.91781
- [19] I. Ignatov, Ch. Drossinakis, A. I. Ignatov, Color coronal spectral analysis: Results with water solution of calcium carbonate, *Port. Electrochim. Acta*, **43** (2025), no. 2, 113-126.
- [20] L. A. Pesotskaya, N. V. Glukhova, V. N. Lapitskiy, Analysis of the images of the water drops Kirlian glow, *Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu*, **1** (2013), 91-96.
- [21] N. Glukhova, Development of express-evaluation method of water biological properties, *East. -Eur. J. Enterp.*, **6** (2014) 18-25. https://doi.org/10.15587/1729-4061.2014.31546
- [22] I. Ignatov, L. Pesotskaya, N. Glukhova et al., Registration of different types of water with corona gas discharge effects and parameters of brightness. *Port. Electrochim. Acta.*, **43** (2025), no. 4, 217-224.
- [23] G. Nevoit, I. Bumblyte, A. Korpan et al., The biophoton emission in biotechnological and chemical research: From meta-epistemology and meaning to experiment. Part 1, *Ukrainian Journal of Physics*, **69** (2024), no. 3, 190-206. https://doi.org/10.15407/ujpe69.3.190
- [24] Pesotskaya LA, Churilov VV, Glukhova NV et al., Device for registration of gas discharge glow of various objects "RGS-1". Patent Ukraine. 2023; 37.
- [25] A. Antonov, Research of the non-equilibrium processes in the area of allocated systems. *Dissertation Thesis for Degree "Doctor of Physical Sciences"*, *Blagoevgrad*, *Sofia*, 1995, 1-255.

[26] I. Ignatov, M. T. Iliev, P. S. Gramatikov PS., Education program on Physics and Chemistry for non-equilibrium processes at the interfaces between solid-liquid-gaseous media. *Eur. J. Contemp. Educ.*, **12** (2023), no. 3, 862-873. https://doi.org/10.13187/ejced.2023.3.862

Received: December 1, 2024; Published: December 17, 2024