
Contemporary Engineering Sciences, Vol. 16, 2023, no. 1, 71 - 79
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/ces.2023.93121

Computational Techniques for Locating

Industrial Products in Warehouses

Sotirios Tsakiridis

Department of Computer, Informatics and Telecommunications Engineering,
International Hellenic University - Serres Campus,

62124, Serres, Greece

Apostolos Papakonstantinou

Department of Civil Engineering and Geomatics
Cyprus University of Technology, Lemesos, Cyprus

Alexandros Kapandelis

Department of Computer, Informatics and Telecommunications Engineering
International Hellenic University - Serres Campus

62124, Serres, Greece

Paris Mastorocostas

Dept. Informatics and Computer Engineering
University of West Attica, Egaleo, Greece

Alkiviadis Tsimpiris

Department of Informatics, Computer and Telecomunications Engineering
International Hellenic University,

62124, Serres, Greece

Dimitrios Varsamis

Department of Computer, Informatics and Telecommunications Engineering,
International Hellenic University - Serres Campus,

62124, Serres, Greece



72 Sotirios Tsakiridis et al.

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2023 Hikari Ltd.

Abstract

The computational estimation of an indoor or open-space warehouse
inventory is based on the prior knowledge of the pallet dimensions. The
input data consist of a three-dimensional point-cloud created by three-
dimensional (3D) scanners (LiDAR technology) adapted to aerial ve-
hicles (Drones). For research purposes, a storage simulator has been
implemented in the Python language (version 3.9). In the first phase,
this research focuses on the ideal case of point-dispersion, with integer
values for coordinates, in which a unit length corresponds to the distance
between two neighboring pixels in the horizontal or vertical direction.
In a subsequent stage, the generator of three-dimensional points will be
modified to produce more realistic warehouse models. Improved ver-
sions of existing algorithms will be proposed, taking into consideration
the height variations.

Keywords: Point cloud, 3D scanners, Warehouse modeling

1 Introduction

The integration of automation technologies in various inventory warehouses is
considered essential for global industry, to ensure smooth and effective oper-
ation and organization of storage warehouses. The significance of integrating
automation technologies is particularly pronounced, especially nowadays, due
to the crucial impact of globalization. Numerous global industrial companies,
with a wide range of products, require live control and monitoring of their
distribution warehouses in the most modern and beneficial way. This can be
achieved by leveraging technology to its fullest extent.

Automated data creation and knowledge extraction from product reposito-
ries has been of extensive interest to the scientific community in recent years.
The rapid development of aerial vehicles (drones) combined with their rela-
tively low cost of acquisition and operation, has significantly contributed to
this direction. In the work of [1], the different types of aerial vehicles are
described and categorised according to their size, weight and energy consump-
tion, to make the right choice in each use case.

In parer [2] the authors successfully describe the simultaneous control of
several autonomous navigation robots in an industrial warehouse environment.

In paper[3] the authors propose a method for the estimation of the volume
of a material that is randomly scattered in warehouses.



Computational techniques for locating industrial products in warehouses 73

The work of [4] use a GNSS device mounted on an unmanned aerial vehicle
to estimate the volume of four piles of wood chips using image processing
algorithms.

The specific approaches initially require data acquisition and subsequently
involve processing the data to derive the results. In this study, we focus on
simplifying the algorithmic methods without compromising the accuracy of
the results. The aim is to reduce the computational complexity, making an
algorithm suitable for real-time application. Data collection is performed using
LIDAR (LIght Detection and Ranging) sensors adapted to unmanned aerial
vehicles (UAVs).

In this paper, the methodology of data processing is presented at a the-
oretical level. Issues related to sensors and drone technical specifications, as
well as the determination of optimal sampling frequencies and flight speeds,
will be addressed in future research.

2 Methodology: Brute Force

The method of brute force [5] thoroughly examines all points in space. A
necessary condition is the arrangement, according to geographical longitude
and latitude. Consequently, the points in space are reduced to a kind of two-
dimensional grid, in which the rows number of a cell corresponds to the x
component of the point, whereas the columns number corresponds to the y
component and the value of the cell to the z component. In simulation condi-
tions, the values of the components are integers.

Let the P = p̂1, p̂2, . . . , p̂n as a finite set of three-dimensional vectors, where
each vector corresponds to a point in the cloud with p̂i = (xi, yi, zi). Initially,
two ordered sets X, Y are respectively created for the discrete values of the
components x and y. Their creation occurs in two steps. In the first step, the
unique values of x and y for all points in the cloud are recorded in two sets and
in the next step these sets are sorted in ascending order. The classification of
the components in the two sets is done by a single pass of the cloud points,
meaning it has a complexity of O(n). For the classification of the sets, the
”merge sort” algorithm has been chosen with a time complexity of O(nlogn).
Thus, the overall complexity of the ordered sets for the components x, y created
in this phase is O(nlogn).

A hash table is created to rank the value of the z component of the cloud
points. An encoding of the x, y components of the point in an alphanumeric
(string) of the form ”(x, y)” is used as a key. The hash function is defined as
follows:

f : ”(xi, yi)”→ zi, ∀p̂i = (xi, yi, zi) ∈ P

The time complexity of hash table creation is O(n), while the recovery com-



74 Sotirios Tsakiridis et al.

plexity in the general case is O(1).
The ordered sets X, Y, along with the array representing the fragmentation

of the z component, create the desired arrangement of points in the cloud on a
grid, meaning, a Cartesian coordinate system is formed with axes representing
the values of the sets and Y, where at position (xi, yi) and (xi + w, yi + l)
exists a height value z. The algorithm for calculating the number of pallets in
a point cloud is following

1. procedure COUNT_PALLETS(P, w, l, h)

2. X []

3. Y []

4. HASH {}

5. PALLETS 0

6. for p in P do

7. if p.x not in X then

8. X.append(p.x)

9. end if

10. if p.y not in Y then

11. Y.append(p.y)

12. end if

13. key (p.x, p.y)

14. HASH[key] p.z

15. end for

16. merge_sort(X)

17. merge_sort(Y)

18. for i1 to LENGTH(X) do

19. for j1 to LENGTH(Y) do

20. EXISTS, HEIGHT CHECK_STACK(i, j, X, Y, HASH, w, l)

21. if EXISTS then

22. PALLETS PALLETS + HEIGHT/h

23. REMOVE_STACK(i, j, X, Y, HASH, w, l)

24. end if

25. end for

26. end for

27. return PALLETS

28. end procedure

The stack check algorithm at position (i, j) (CHECK_STACK) is presented
below.

1. procedure CHECK_STACK(i, j, X, Y, HASH, w, l, dx, dy)

2. (X[i],Y[j])

3. z HASH[KEY]



Computational techniques for locating industrial products in warehouses 75

4. if z = NULL or z = 0 then

5. return FALSE, 0

6. end if

7. k i + 1

8. width 0

9. while X[k] - X[i] <= w do

10. (X[k],Y[j])

11. if HASH[KEY] = z then

12. width X[k] - X[i]

13. k k + 1

14. else

15. break

16. end if

17. end while

18. k j + 1

19. length 0

20. while [k] - Y[j] <= l do

21. (X[i],Y[k])

22. if HASH[KEY] = z then

23. length Y[k] - Y[j]

24. k k + 1

25. else

26. break

27. end if

28. end while

29. if width >= w 2*dx and length >= l 2dy then

30. return TRUE, z

31. else

32. return FALSE, 0

33. end if

34. end procedure

Since the scanning of space by LIDAR sensors is done incrementally with
a specific and predetermined frequency, it is unlikely to detect points exactly
at the boundaries of the stack.

Assuming dx is the minimum distance between two consecutive width
scans, which depends on the maximum sampling frequency of the LIDAR and
the flight speed of the UAV. If the expected width of the stack is W, then the
worst-case scenario leading to the maximum deviation is to detect a point, be-
fore or immediately after the start and end of the stack, respectively. Thus, the
maximum deviation that can be observed is 2dx. The same applies to length-
wise scanning. These parameters are considered in the CHECK_STACK algorithm
to detect stacks with widths and lengths slightly smaller than expected based



76 Sotirios Tsakiridis et al.

on the scanning frequency.
We should also consider the occasion where neighboring stacks exist, as

shown indicatively in Figure 1.

Figure 1: The detection of two neighboring stacks

If the current check point is (a, b), it is evident that a non-existent stack
will be detected, due to the points overlapping issue occurred from the two
neighboring stacks. To address this case and given that the algorithm will
examine the point (i, j) before (a, b), due to the arrangement of and Y sets,
in case a stack is detected at position (i, j), it will be removed from the hash
table by removing all keys of points belonging to it, except for the points on
the top and right side, which may belong to the beginning of a neighboring
stack. Thus, the point (a, b), will not be checked again. Figure 2 represents
three adjacent stacks (A, B, and C) and depicts the points that have been
removed from the hash table after detecting stack A.

The stack removal algorithm (REMOVE_STACK) is following

1. procedure REMOVE_STACK (i, j, X, Y, HASH, w, l)

2. m i

3. n j

4. while X[m] - X[i] < w do

5. while Y[n] + Y[j] < l do

6. (X[m],Y[n])

7. HASH.remove(KEY)

8. n n + 1



Computational techniques for locating industrial products in warehouses 77

Figure 2: The detection of three neighboring stacks

9. end while

10. m m + 1

11. n j

12. end while

13. end procedure

3 Time complexity study

The minimum time complexity of the counting algorithm is obviously (n),
since each of the n points in the point cloud must be examined at least once.
The two while loops in the CHECK_STACK algorithm, theoretically, raise the
time complexity to O(n2). However, practically, this does not occur. The two
loops only check the two sides of the stack and not the intermediate points,
and the dimensions of the stack are much smaller compared to the warehouse.
Thus, with a predetermined and constant stack size, the CHECK_STACK algo-
rithm has practically constant complexity O(1). A similar situation applies
to the REMOVE_STACK algorithm. The two nested while loops in lines 4 and 5
can theoretically be executed n times, making the overall complexity of the
algorithm O(n2). The extreme theoretical scenario occurs in the case of a



78 Sotirios Tsakiridis et al.

stack size equal to that of the warehouse, which obviously does not hold. The
much smaller dimensions of the stack compared to the warehouse and the fact
that REMOVE_STACK is executed only in the case of stack detection make its
time complexity practically constant, i.e., (1). Therefore, we can practically
consider that the time complexity of the counting algorithm is (n) which, com-
bined with the sorting complexity of the point cloud, results in an overall time
complexity of the proposed methodology as O(nlogn).

4 Conclusion Future Research

The requirement for parallel alignment of stacks with the scanning direction is
quite restrictive. In the case of disorderly placement of stacks in the warehouse,
the proposed methodology fails. If the current examined point has a height
greater than the reference point (meaning it does not belong to the warehouse
floor), we cannot consider it as the bottom-right corner of a potential stack.
The while loops of the CHECK_STACK algorithm need to be modified to detect
the orientation of the sides. One obvious approach could be the recursive
examination of neighbors of the point under consideration to find the stack’s
orientation. However, this dramatically increases the time complexity, making
the algorithm practically infeasible. Therefore, a different approach needs to
be followed.

Following the research, algorithms will be studied and evaluated for con-
verting point clouds into images with brightness values representing the z-
component. This enables the application of image processing techniques from
the scientific field of digital image processing to detect coherent regions that
might belong to stack positions.

To apply the algorithm in real-world conditions, small fluctuations in the
values of point components should be considered. In the ideal case examined,
the component values were integers. In practice, small deviations in these val-
ues are expected for points that need to be categorized at the same height,
width, or length. The warehouse simulation algorithm will be appropriately
modified by introducing error parameters for the three components. Compo-
nents of points with values within the error bounds will be considered equal.

Finally, parallelization techniques will be tested to reduce execution times
and enable real-time application. The specific implementations of the CHECK_STACK
and REMOVE_STACK algorithms are suitable for parallel execution since there
are no linear dependencies. Ideally, parallelization could occur on a graph-
ics card (GPU). Modern GPUs have hundreds of cores capable of executing
basic calculations in parallel. However, the primary goal of the work is to
apply the algorithms ”on-the-fly.” Data collection and processing will be done
by microcontrollers or microcomputers (e.g., Raspberry Pi) adapted for aerial
vehicles. These microcomputers inherently have limited computational power



Computational techniques for locating industrial products in warehouses 79

and graphics cards with few cores. Parallelization will be done at the CPU
level. Obviously, in a second stage, processing of the overall data can be
performed ”off-the-fly” on computing systems that offer parallelization capa-
bilities on the GPU.

Acknowledgements. This research work was carried out as part of the
project ”Optimization of placement and counting products in large industrial
areas using UAV” (Project code: 6-0083129) under the framework of the Ac-
tion ”Investment Plans of Innovation” of the Operational Program ”Central
Macedonia 2014 2020”, that is co-funded by the European Regional Develop-
ment Fund and Greece.

References

[1] B. Vergouw, H. Nagel, G. Bondt, B. Custers, Drone technology: types,
payloads, applications, frequency spectrum issues and future develop-
ments, The Future of Drone Use, New York, NY: Springer, 2016, 21-45.
https://doi.org/10.1007/978-94-6265-132-6 2

[2] HR. Everett, DW. Gage, GA. Gilbreath, RT. Laird, RP. Smurlo, Real-
world issues in warehouse navigation, Wolfe WJ, Chun WH, eds. Mobile
Robots IX, Vol 2352, Bellingham,Washington: International Society for
Optics and Photonics, SPIE Proceedings, 1995, 249-259.
https://doi.org/10.1117/12.198975

[3] C. Arango, CA. Morales, Comparison between multicopter uav and total
station for estimating stockpile volumes, ISPRS Int Arch Photogramm
Remote Sens Spatial Inf Sci., 1 (2015), 131-135.
https://doi.org/10.5194/isprsarchives-xl-1-w4-131-2015

[4] M. Mokros, M. Tabacak, M. Lieskovsky, M. Fabrika, Unmanned aerial
vehicle use for wood chips pile volume estimation, Int Arch Photogramm
Remote Sens Spat Inf Sci., 41 (2016), 953.
https://doi.org/10.5194/isprs-archives-xli-b1-953-2016

[5] Marijn Jh Heule, Oliver Kullmann, The science of brute force, Commu-
nications of the ACM, , 60 (2017), no. 8, 70-79.
https://doi.org/10.1145/3107239

Received: December 7, 2023; Published: December 23, 2023


