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Abstract

The use of contemporary information and communication technol-
ogy to maximize agricultural output while reducing labor costs is known
as ”smart agriculture”. This term is becoming more and more prevalent.
The primary challenge in the agricultural sector lies in the vastness of
crops, coupled with varied topography and soil instability, making con-
trol challenging. In this paper, a system for determining the average
predicted height of healthy plants at a given growth stage is proposed
and evaluated. Based on this height, we then classify agricultural plants
as healthy or unhealthy. It’s important to note that our system works
with any crop kind and growth stage.
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1 Introduction

In the ever-evolving landscape of agriculture, the integration of cutting-edge
technologies has ushered in a new era of efficiency and precision Smart Agri-
culture. As global populations burgeon, the demand for sustainable and high-
yielding crop production intensifies, [19]. Smart Agriculture, empowered by
innovative technologies and data-driven methodologies, emerges as a transfor-
mative solution to address these challenges, [20], [14], [5], [2], [4]. Modern
technology has significantly contributed to the improvement of various indus-
trial sectors, including agriculture. In the field of agriculture, it has provided
solutions to often time-consuming and labor-intensive tasks, fundamentally
altering the way we perceive agricultural production, [15], [10], [6], [16]. The
essence of Smart Agriculture lies in its ability to not only streamline traditional
practices but also address key factors that often lead to reduced yields and
compromised product quality. Key factors leading to reduced yields and di-
minished product quality include plant infestations by pests and diseases, [11],
nutrient deficiencies, as well as the growth of weeds competing with plants for
nutrients and water. All of the above result in the alteration of the external ap-
pearance of plants, primarily hindering their growth and causing discoloration
of plant parts.

The alteration in the plants as a result of the aforementioned external
factors does not manifest uniformly throughout the entire cultivation. In-
stead, it initially appears in isolated and often non-adjacent areas in the form
of irregular ”spots”, that progressively spread throughout the entire cultiva-
tion. Therefore, the detection of these problematic areas at an early stage, [9],
is imperative to address them promptly using chemical, biological, or other
methods, thereby minimizing production loss and consequently mitigating the
reduction in farmers’ income.

Detecting all these problematic areas in large expanses is particularly chal-
lenging, especially in crops with tall plant heights (such as corn, sunflowers,
etc.) where ground-based methods are impractical, [7]. A panoramic capture
is required to identify areas with plant heights lower than expected, based on
the specific stage of their development. Therefore, the semantic segmentation
of the field represents the first and most crucial stage in effectively addressing
and limiting the spread of ”diseased” plants, [3].

Smart Agriculture leverages an array of methods to monitor and optimize
crop performance. Remote sensing technologies, such as satellite imagery, [21],
and aerial drones, [17], [7], provide a bird’s-eye view of agricultural landscapes,
enabling farmers to assess crop health, detect anomalies, [13], and make in-
formed decisions. In addition, in recent agricultural research, advanced tech-
nologies such as convolutional neural networks, [12], and LiDAR scanners have
been also employed in plant analysis, [18], [1]. These tools, combined with data
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analytics, facilitate real-time monitoring and timely interventions. However,
most of the studies specialize in specific types of crops (agroforestry, vegetables,
etc.) and address specific challenges related to these cultivations. Addition-
ally, the proposed methodologies incur high computational costs and cannot
be applied in real-time.

The primary objective of this work is to study and implement a unified
computational model for identifying problematic areas in large-scale cultiva-
tions (agroforestry, cereals, industrial plants, medicinals, etc.) without prior
knowledge of the crop type or the stage of plant growth. The problem is ap-
proached incrementally, starting from smaller to larger scales, using a field
simulator with problematic areas developed in the Python language.

The rest of the paper is structured as follows: Section 2 introduces the
fundamental elements of the theory and methodology employed. Section 3
presents the results of the comparative study and finally, Section 4 offers the
discussion and the conclusions..

2 Materials and Methods

As previously mentioned, the primary objective of this study is to implement
a unified computational model for identifying problematic areas in large-scale
cultivations without prior knowledge of the crop type or the stage of plant
growth. To achieve this, LIDAR was employed for data acquisition. Initially, a
sampling of the cultivation is conducted with predetermined frequencies along
both the length and width. Under simulation conditions, the maximum pos-
sible resolution was utilized (1 pixel per unit length). Subsequently, three in-
terpolation techniques (Flat, Half Flat, and Linear) are applied to regenerate
the cultivation from the sampled points, enabling a close approximation of the
actual situation. This approach allows real-time reshaping with simultaneous
interpolation during the sampling point acquisition. Data processing occurs
during the flight through a controller adapted to the aerial vehicle. Finally,
criteria for the rapid detection of problematic areas are explored, involving the
calculation of a height threshold for plants. Specifically, it is explained how
the threshold is applied to distinguish healthy and unhealthy plants in the
regenerated field. The research utilizes a UAV model with tilted rotors and
an ArduPilot controller for data collection, with a Raspberry Pi serving as the
microcontroller for data processing. Figure 1 depicts the three fundamental
stages of the computational process.
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Figure 1: Project Flowchart.

2.1 Interpolation techniques

2.1.1 Flat interpolation

In flat interpolation, the sampled value is extended to all intermediate points
between two sampled positions. In simpler terms, if f(a) and f(b) represent
consecutive sampled values at points a and b along the flight direction, every
midpoint between them assumes the value of f(a). This can be succinctly
expressed as:

∀c ∈ (a, b) : f(c) = f(a)

2.1.2 Half flat interpolation

In half flat interpolation, the midpoints receive the value f(a), and the remain-
ing ones receive the value f(b):

∀c1 with a < c1 ≤ a+

⌈
b− α

2

⌉
: f(c) = f(a)

∀c2 with a+

⌈
b− α

2

⌉
< c2 < b : f(c) = f(b)

2.1.3 Linear interpolation

In linear interpolation, a smooth transition is made from the value f(a) to the
value f(b). If there are n points between a and b (depending on the sampling
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frequency), we define the step increase step as follows:

step =
f(b)− f(a)

n

and values are assigned as follows:

∀ci with α < ci ≤ b, 1 ≤ i ≤ n : f(ci) = f(ci−1 + i · step)

2.2 Equipment

For the research needs, a UAV model with tilted rotors and an ArduPilot
controller, [8], have been utilized. In these UAVs (drones), the rotors are
positioned on wings and can tilt between vertical and horizontal positions. In
the vertical mode, they function like a helicopter, allowing vertical takeoff and
landing. In the air, the rotors can tilt into a horizontal position, enabling the
UAV to fly like a fixed-wing aircraft.

A Raspberry Pi (version 3) was used as the microcontroller for data collec-
tion and processing. This model is essentially a microcomputer with an ARM
Cortex-A53 SoC processor and 1GB RAM. It features interfaces for attaching
external devices and sensors. These interfaces facilitate the connection with
the ArduPilot microcontroller of the UAV.

3 Results and Discussion

This research focuses on the following points:
a. Criteria for accurate cultivation mapping:

• Determining the optimal sampling rate (drone speed) and the best flight
path for collecting the required data.

• Identifying the optimal algorithm for real-time mapping.

b. Criteria for rapid detection of problematic areas:

• Finding the optimal recording rate (drone speed) and the best (shortest
time) flight for sampling.

• Identifying the best (in terms of execution speed and computational sim-
plicity) algorithm for real-time mapping.

In order to accomplish this, crop simulations covering an area of 40,000
square meters, including specific problematic areas, were generated. The sim-
ulation was conducted for three distinct cases.
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In this section, we present a comprehensive analysis of the results obtained
from the simulation. The focus will be on one of the three cases, with a
subsequent summary of findings across all scenarios. Figure 2 illustrates a 3D
rendering of the simulated crop. The green color denotes the healthy portion
of the crop, whereas the yellow indicates areas where the crop has not grown
properly. Two problematic areas are evident in the illustration. The smaller
of the two is situated in the left part, approximately in the middle of the field,
while the larger one is located in the lower-left part of the field.

Figure 2: 3D rendering of the crop.

Figure 3 illustrates the actual crop simulation, showcasing plant heights
and highlighting areas with issues.

We observe that across the entire field, the plants exhibit a height equal to
or greater than 20. However, in the lower-left and left-middle sections, there
are noticeable regions where plant development is less robust (indicated by the
pink-orange areas). In these specific zones, some plants have a height ranging
from 10 to 15, significantly lower than the general field average. The goal is
to capture the field and identify areas (if any) where issues are present, and
plants have not developed as expected. To achieve this objective, a variety of
methodologies have been explored in the existing literature.

One approach to capturing the development of a cultivation involves the
application of remote sensing and machine learning methodologies. A draw-
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Figure 3: Crop Simulation: Troubled Areas.

back of this method is that the flight must be completed before data processing
can occur, rendering it unsuitable for real-time use. Moreover, this approach
does not provide the capability to monitor field issues in real-time. To address
this limitation, we adopt an alternative strategy. Instead of conducting a com-
prehensive survey across the entire field, we opt for a sampling method. In
this particular study, we employ a data acquisition technique using LIDAR.
Initially, a sampling of the cultivation is conducted with predetermined fre-
quencies along both the length and width. The highest resolution (1 pixel
per unit length) was utilized. The outcomes of this sampling are depicted in
Figure 4.

Subsequently, three interpolation techniques are applied to regenerate the
cultivation from the sampling points. In particular, the Flat interpolation, Half
Flat interpolation and Linear interpolation methods, which were examined in
Sections 2.1.1, 2.1.2, and 2.1.3, respectively. The results of the interpolation
are illustrated in Figures 5, 6 and 7.

We observe that Half Flat and Flat interpolations exhibit almost identical
results, while Linear interpolation slightly differs in plant height determina-
tions. Nevertheless, in all three interpolation cases, the regeneration of the field
from the sampling points closely approximates the actual situation (Fig. 1),
and problematic areas are precisely identified. This approach enables real-time
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Figure 4: Sampling result.

reshaping with simultaneous interpolation during the acquisition of sampling
points. Data processing occurs during the flight through a controller adapted
to the aerial vehicle. It is noteworthy that the computational complexity in
all three interpolation methods is minimal.

To identify problematic areas, it is essential to calculate a height threshold
for plants. Points with values above this threshold are classified as belonging
to healthy plants, while those below it are considered unhealthy. Initially,
the points from the regenerated field through interpolation are grouped after
normalizing the values to the nearest integer. Figure 8 visually represents the
distribution of points in a frequency histogram.

Visually, it is apparent that points with a height value exceeding 20 units
correspond to healthy plants, whereas those below 20 units indicate unhealthy
ones. The red line in the graph signifies the mean value between the maximum
and minimum values of the classes. The threshold value is established as the
first class with a frequency exceeding this mean value. Consequently, in Figure
8, the threshold value is determined to be 20.

Upon applying the threshold to the points of the regenerated field through
sampling, specifically in the case of flat interpolation, the resulting represen-
tation is depicted in Figure 9. Put simply, every height value surpassing 20
is deemed indicative of a healthy plant and is visually represented in green,
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Figure 5: Flat interpolation.

Figure 6: Half Flat interpolation.
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Figure 7: Linear interpolation.

Figure 8: Frequency Distribution of Plant Height.
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while all points registering a height below 20 are identified as diseased plants,
visualized in yellow. Conventionally, if t represents the threshold value and
f(x, y) denotes the height of the point at position (x, y) within the field, the
threshold function g is succinctly defined as follows:

g(x, y) =

{
1 if f(x, y) ≥ t

0 if f(x, y) < t

Figure 9: Threshold application.

For the remaining two cases under investigation, the outcomes and resulting
conclusions align closely with the outcomes and subsequent conclusions of the
initial case. In the interest of efficiency, and to conserve both time and space,
we opt not to provide an exhaustive presentation. Within each case, concise
graphical representations are presented which showcase actual crop, sampling
result, flat, half-flat and linear interpolation and the associated threshold ap-
plication. Figures 9 and 10 provide a succinct portrayal of these elements for
Cases 2 and 3, respectively.
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(a) Actual (b) Sampling (c) Flat

(d) Half-Flat (e) Linear (f) Threshold

Figure 10: Graphical representations illustrating actual crop, sampling results,
flat, half-flat, and linear interpolation, along with threshold application.

(a) Actual (b) Sampling (c) Flat

(d) Half-Flat (e) Linear (f) Threshold

Figure 11: Graphical representations illustrating actual crop, sampling results,
flat, half-flat, and linear interpolation, along with threshold application.
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4 Conclusion

Building upon the earlier analysis, our study demonstrates that the iden-
tification of problematic areas in crop fields, particularly under simulation
conditions, achieves a remarkable level of precision. The significance of this
precision lies in its potential to enable early detection and intervention, pro-
viding producers with a valuable tool to address compromised crop growth.
The proactive approach facilitated by this methodology not only safeguards
against potential income reduction but also contributes to the overall health
and productivity of the cultivation.

The low computational complexity in this methodology enhances its prac-
ticality for real-time implementation. The ability to operate in real-time, cou-
pled with suitability for parallel execution, ensures that the methodology is
not only effective but also efficient. Producers can seamlessly integrate this
approach into their cultivation practices, allowing for continuous monitoring
and timely interventions.

Our findings highlight the methodology’s robustness, as it offers a compre-
hensive solution for precision agriculture. The integration of sampling tech-
niques, LIDAR technology, and interpolation methods allows for the accurate
regeneration of the field, enabling producers to visualize and address prob-
lematic areas with precision. This integrative approach empowers producers
with timely insights, fostering proactive decision-making for optimal cultiva-
tion management.

In conclusion, our study provides an efficient methodology for monitor-
ing and managing crop fields. By combining technological advancements and
computational methods, we offer a solution that not only identifies problem-
atic areas accurately but also facilitates real-time interventions. The proactive
nature of this approach positions it as a valuable tool for producers, contribut-
ing to the sustainability and efficiency of modern agriculture practices.
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