Contemporary Engineering Sciences, Vol. 15, 2022, no. 1, 13 - 39
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ces.2022.91908

Self-learning, Adaptive Software: An Example from
Aerospace Engineering

Mohamed Jrad

Kevin T. Crofton Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Currently at M4 Engineering, Inc., Long Beach, CA, USA
Rakesh K. Kapania

Kevin T. Crofton Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Joseph A. Schetz

Kevin T. Crofton Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Layne T. Watson

Department of Computer Science, Department of Mathematics, and Kevin T. Crofton
Department of Aerospace & Ocean Engineering
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2022 Hikari Ltd.

Abstract

A novel application of machine learning concepts towards making software learn from
its own experience in solving similar problems is proposed. The objective is to
continuously improve the computational performance as the software solves more
problems, avoid the cost of repeated runs, and make software able to take effective

14 Mohamed Jrad et al.

decisions for rapidly solving complex nonlinear problems (e.g., which numerical
method and initial guess to employ for solving a set of nonlinear equations). The
illustrative problem consists of finding oblique shock solutions of supersonic flow over
a wedge, which involves four, coupled, nonlinear equations with six variables. The key
idea of the proposed self-learning concept consists of constructing local surrogate
functions that help determine a good approximation of the expected solution as a
starting initial guess. Three different approaches (Delaunay triangulation, cubic
interpolation, and locally trained neural network) have been implemented and
compared. Moreover, the software is given the ability to implement and compare
different nonlinear solver techniques across the parameter space. A demonstration of
the implementation of the new high-dimensional Delaunay triangulation in a machine
learning context is performed. Moreover, the concept of locally trained neural network
with moving weights is presented as a way to allow continuous growth of the
constructed database used in the training. The self-learning approach is shown to be
very efficient, especially since it reduces the burden of finding appropriate initial
guesses. Although this approach is applied for solving nonlinear equations, as a proof
of concept, the concept can be extended to other engineering applications.

Keywords: machine learning, artificial neural networks, Delaunay triangulation,
oblique shock, normal shock, MACH wave

Nomenclature

k: Ratio of specific heats

M: Mach number

p: Pressure

p: Mass density

o: Angle of shock to incoming flow in degrees
6: Turning angle across shock in degrees

LB;: Lower bound of the output variables

UB;: Upper bound of the output variables

r: Residue

f: Flag

ng: Number of function evaluations
Number of Jacobian matrix calls
n;:: Number of iterations

At: CPU time

ts: Analysis start time

Self-learning, adaptive software 15

|. Introduction

The design of modern, advanced aerospace systems with significant interactions
amongst various disciplines, requires that high-fidelity analyses be used as early as
possible in their design optimization. This is because a substantial fraction (roughly
70%) of the cost of developing a new system is committed in the early stages. If not
done right, substantial cost overruns could occur as many design changes are needed
during the testing stage. While performing the multi-disciplinary design optimization
of an efficient supersonic vehicle, completely different configurations could be
obtained using low- and high-fidelity models. Despite this need of employing high-
fidelity models, very few entities (government, industry, and academia) are able to do
so due to the extremely high computational cost of running such models at the
preliminary, let alone at the conceptual, design stage.

A number of researchers have employed surrogate models, namely response
surface approximations, Kriging, and artificial neural networks (deep learning) that are
generated by using high-fidelity models [1, 2, 3, 4]. Development of these surrogate
models is not without substantial computational cost as a large number of
computational runs are required to generate the data needed for their development
(“'learning’’) [5]. Caixeta and Marques [4] conducted multidisciplinary optimization
of aircraft wing structures using genetic algorithms. They have constructed metamodels
using artificial neural networks for the critical flutter speed prediction and employed
Latin hypercube sampling. A review of metamodeling techniques used in engineering
design optimization has been conducted by Wang and Shan [6]. As new data (output
of a response quantity for a given set of input data) becomes available, these surrogate
models require retraining or updating, further increasing the cost of their use for
multidisciplinary design optimization. There is thus a need for studying alternative
computational paradigms that can use high-fidelity models at the early design stage
avoiding redesigns and resulting cost overruns. The general tendency of the available
commercial software is to consider each simulation independently. Previously run
simulation history is generally neither saved nor used in future analyses. We propose,
in this work, a new methodology for solving problems by making the software learn
from its own experience. The final objective is to improve the computational
performance as the software solves more problems, avoid the cost of repeated runs, and
give the software the ability to make effective decisions (e.g., select a better initial
guess, select appropriate algorithm or tuning parameters, etc.) towards improving the
process for finding the solution for complex nonlinear problems.

Among several existing definitions for self-adaptive software, one is provided in a
DARPA Broad Agency Announcement (BAA) [7]: “Self-adaptive software evaluates
its own behavior and changes behavior when the evaluation indicates that it is not
accomplishing what the software is intended to do, or when better functionality or
performance is possible.” Scientists and engineers have made significant efforts to

16 Mohamed Jrad et al.

design and develop self-adaptive systems. A review of self-adaptive software presented
by Salehie and Tahvildari [8] shows how an open-loop system can be converted to a
closed-loop system using feedback, and they proposed a taxonomy of adaptation.

The problem addressed in the present work consists of solving the nonlinear
system of equations that governs oblique shocks formed in a supersonic flow over a
wedge [9]. This problem is selected due to its moderate level of complexity. The
number of obtained solutions (strong shock, weak shock) depends on the problem
parameters and is unknown beforehand. The proposed algorithm makes the software
learn from similar problems studied earlier and use the lessons learned from those
problems for solving a completely new problem. One key idea of the proposed self-
learning concept consists of constructing local surrogate functions from solutions of
earlier problems that determine a good approximation of the expected new solution as
an initial guess. Such an approach is shown here to be very efficient, especially since
it reduces the difficulty of finding appropriate initial guesses when solving a nonlinear
problem numerically. To efficiently construct the local surrogate functions, three
different approaches (Delaunay triangulation [10], cubic interpolation, and locally
trained neural network [11] with moving weights) have been implemented and
compared. An implementation of the new high-dimensional Delaunay triangulation,
developed by Chang et al. [10], in a machine learning application is demonstrated in
this work. Moreover, unlike the traditional use of the neural network, the concept of
locally trained neural network with moving weights is presented herein as a way to
allow continuous growth of the constructed database used in the training. Second, a
few numerical techniques are also compared in each region of the parameter space to
collect information that serves subsequently in determining which numerical solver to
consider for a new problem. For this purpose, the nonlinear solver nlegslv [12] has been
employed to compare several numerical techniques and line searches. It is shown that
the choice of the nlegslv numerical technique and line search depends on the problem
and how far the initial guess is from the solution.

I1. Example Case of Oblique Shocks in Supersonic Flow

Consider a steady, two-dimensional (plane) supersonic flow passing over a turn or
wedge with a certain angle & with the flow direction as shown in Figure 1 [9]. An
oblique shock is then observed with an angle . An oblique shock is a special form of
pressure discontinuity within the fluid, which is inclined to the direction of the
oncoming flow. This problem was selected here to apply and test the proposed
algorithm because of several factors. First, the complexity of the resulting system of
equations makes it difficult to solve four, highly nonlinear equations with four
unknowns numerically in an efficient way. The user will have to keep making initial
guesses in a 4-D space. Furthermore, depending on other problem inputs described
below, a different number of solutions could be obtained (either two solutions: a weak

Self-learning, adaptive software 17

shock and a strong shock, one unique solution, or no solutions at all). Hence, it becomes
tougher, more tedious, and more time consuming, since one is required to find two
initial guesses: one for the weak shock, and the other for the strong shock. Since this
number of solutions is not known a priori, it is a challenge to know when to stop
searching for a solution if a user has tried several initial guesses, but the algorithm did
not converge. The question that arises naturally is: Can one make use of the solutions
of previously solved similar problems so as to determine: (a) how many solutions there
might be for a problem at hand, (b) what are the most appropriate initial guesses that
are close to these expected solutions to make the numerical solution converge faster,
and (c) what numerical equation solver approach is most appropriate.

@

Streamline

Surface

Figure 1. Oblique Shock

The solutions for the particular case of § = 0° are two simple, limiting cases of this
problem, where there is no change observed in the flow direction. The first solution,

. . . -1 1
o = 90°, is called a normal shock, whereas the second solution, ¢ = sin™?! —o @ Mach
1

wave. The Mach wave corresponds to the weak shock with the least possible shock
angle o.
Using conservation of mass, momentum, and energy, and assuming the fluid to be a

perfect gas, the six oblique shock parameters of a supersonic flow (Mach numbers M,

and M,, density ratio % pressure ratio 22, shock angle o, flow turning angle &) are

v p1’
governed by the nonlinear system of four equations

18 Mohamed Jrad et al.

k+1P2_1 (1)
k—
fin =B - <o,
C =y
P1
_ P2 tano _
() =25 = 0,)
f() == (14 kM (sin?o) (1 - 29) = 0, ®)
P1 P2
AOO=R=1-kM,? (1-2)si(c-0) =0, @
D2 P1
where the subscript “1” denotes “before the shock™, and “2” “after the shock”. The
parameter vector for each problemis X = (Ml, S, MZ,%,Z—Z, 0) and this is solved for
1 1

by picking two parameters (in this work, we choose M; and &) and solving for the
remaining four parameters using the four nonlinear equations presented above. The
following physical inequalities govern our problem parameters:

0<M, <M, (5)
< P2
1= Pl’ (6)
<P
1 - P1’ (7)
0 <o <90°, (8)
0<6<90° 9)

In what follows, the problem is solved numerically to have a minimal residual r =

max(] f; (X))=0.

I11. Numerical Equation Solver Methods

The numerical equation solver package considered in this work is nlegslv [12], a
FORTRAN 77 library that solves a system of nonlinear equations using quasi-Newton
and Newton type methods with a choice of global strategies such as line search and
trust region. There are options for using a numerical or user-supplied Jacobian matrix,
for specifying a banded numerical Jacobian matrix and for allowing a singular or ill-
conditioned Jacobian matrix. Broyden’s method starts with a computed Jacobian matrix

Self-learning, adaptive software 19

of the function and then updates this Jacobian matrix after each successful iteration
using the so-called Broyden update, and has super-linear convergence. When nlegslv
determines that it cannot continue with the current Broyden matrix, it computes a new
Jacobian matrix. Newton’s method calculates a Jacobian matrix of the function at each
iteration, and has quadratic convergence. The following options are available within
the package:

Cubic line search.

Quadratic line search.

Geometric line search.

Double dogleg: A trust region method using the double dogleg method as

described in Dennis and Schnabel [13].

5. Powell dogleg: A trust region method using the Powell dogleg method as
developed by Powell [14], [15].

6. Hookstep: A trust region method described by Dennis and Schnabel [13].

P

Hence, there are a total of 12 methods that can be employed as shown in

Table 1,
Table 1. Equation Solver Methods in nlegslv [12]
Approach Method Approach Method
1 Newton with cubic line search 7 Broyden with cubic line search
2 Newton with quadratic line search 8 Broyden with quadratic line search
3 Newton with geometric line search 9 Broyden with geometric line search
4 Newton with double dogleg 10 Broyden with double dogleg
5 Newton with Powell dogleg 11 Broyden with Powell dogleg
6 Newton with hookstep 12 Broyden with hookstep

As described in the nlegslv package manual, “Which global strategy to use in a
particular situation is a matter of trial and error. When one of the trust region methods
fails, one of the line search strategies should be tried. Sometimes a trust region will
work and sometimes a line search method; neither has a clear advantage but in many
cases the double dogleg method works quite well”. Therefore, a self-learning algorithm
was developed here such that the software initially compares several methods in
different regions of the parameter space when its database is fresh and then becomes
able to find the best method to use for each considered problem. Since some of the
built-in approaches are similar, only Approaches 1, 7, and 11 were selected and
compared in this work. The numerical Jacobian matrix option was selected.

20 Mohamed Jrad et al.

IVV. Normal Shock and Mach Wave Cases

The two sample limiting cases of oblique shocks are normal shocks and Mach
waves, corresponding to the strong shock and weak shock solutions of & = 0°,

respectively. Considering as fixed parameters P = (#,,8) = (M,, 0), the solution for

the Mach wave is, X, = ((Mz)o, (pz) (p—z) 00> = (1\711, 1,1, sin‘lé). The normal
P1 1

shock solution, however, requires the nonllnear system of Equations (1)--(4) to be

modified and then solved numerically. The first step consists of replacing ¢ = 90° and

6 = 0°in Egs. (3) and (4). Note that Eqg. (2) can be dropped, since the number of

unknowns is reduced to three. Using the new parameter vector X' = (Ml, M,, Zz ,52),
1 1

the new obtained equations are

A ktipz (10)
filxy =g =0,
P1 k=1 p1
1
11)
a n _ P2 2 _P1 —
frxy =2 (1+km’(1-2) = 0,
a N _P1_ 4 2 P2\ _
fy =B-1-km? (1-2) =0, (12)

Note that Egs. (11) and (12) are coupled while, Eg. (10) is independent. Therefore, to
compute the normal shock solution for fixed P = (M;,8) = (1\711,0), first compute
(M,)* and (ﬁ) with Egs. (11) and (12) and then obtain (pj) from Eq. (10). The
quasi-Newton with Powell dogleg method is employed for this purpose. However, one
first needs appropriate initial guesses (M), and (%)0, a challenging task that requires

several attempts. To that end, the segment I, = [1,3.5] is first discretized using a
2.5X1

sequence (M;)o<i<n = 1+ , with n > 2 being a pre-selected positive integer. The

normal shock is then solved for the right end-point (My,8) = ((M,),,0), and a
backward sweep is finally used to solve for each new input (M,); using the solution of
(M,);+4as an initial guess until reaching the left end-point (M,).

Figure 2 presents the obtained Mach wave and normal shock solutions showing the

limiting cases for the Mach number M,, density ratio 2 —, pressure ratlo =2 and the shock

angle o. It can be seen that the upper limit of M, and o (normal shock) are M, = M,
and o = 90°, respectively, while the lower limit of & and & > (Mach wave) are & =1

and 22 =1, respectively. In what follows, this obtalned data will be used and
mterpolated to compute the Mach wave and normal shock for any problem, if needed.

Self-learning, adaptive software

Mach wave il

normal shock

20 25 30
M1

(a) Mach number

14 ! normal shock Mach wave
12
10

8

P2/P1

6

4

|
2|
|
|

LT I

1.0 1.5

TR

3.5

{IIHI]

2.0

2.5 3.0

M1
(c) Pressure ratio

Rho2/Rhol

I
o

Sigma

>
o

W w
o v

N
w

—
w

.25
o

80

40

20

normal shock |

AR
1.0 15

- Ml -
(b) Density ratio

20 25

normal shock

m
|
I

2.0
M1

1.0 1. 2.5

5

Mach wave

3.0

Mach wave

Iy
iy

3.0

21

ULLURNI DR DALL DR MBI R LR LR R L D U R DR LR LR)

35

35

(d) Shock angle

Figure 2. Mach wave and normal shock solutions

V.Continuation Method

Before developing the self-learning algorithm, it is important to develop a method that
is able to solve the nonlinear system of equations (1)--(4) for any problem, which can
be used as a reference method. While the choice of the reference method is not crucial
and is problem dependent, the continuation method is employed here. Our objective is
to solve the problem forany P = (IT/I\1 5) using only the Mach wave and normal shock
solutions to approximate the required initial guesses and obtain both the weak and
strong shock solutions. We start with the weak shock, then obtain results for the strong
shock. If during the search for the weak shock solution, we first find the strong shock,
we save that result to avoid duplicating the effort.

22 Mohamed Jrad et al.

The proposed algorithm is as follows:

1. Find the Mach wave solution Xo: and the normal shock solution Xo for fixed M; =
M, and § = 0 from the data computed in section IV. These will be the two extreme
points that make the search line for the initial guesses. For the weak shock, start
with initial guess X,: = X,;, and for the strong shock, start with initial guess X,: =
Xo2.

Xo1 = ((Mz)l' (%)1» (%)1' (0)1) and X,, = ((Mz)z; (%)2: (E)z' (U)2>-

Solve the system for Xo using one of the three selected nlegslv methods.
3. If the system solution is obtained, stop. Otherwise,

N

Define d = { 1, for weak shock,
—1, for strong shock.
S S s

10

Go to Step 2.

The efficiency of this method and the number of attempted initial guesses depend on
how close the problem at hand is to the projection of the Mach wave and normal shock
solutions, as presented in

Figure 3. The oblique shock solutions are then computed for several points covering
the space 1 < M; <3.5and 0 < § < 90° and presented in

Figure 4 with different colors to visually link the different regions of the space for the

four parameters (MZ,%,%,G). Note from
1 1

Figure 4 that the pressure ratio (b), density ratio (c), and shock angle (d) are larger for
the strong shock than for the weak shock while the Mach number (a) is larger for the
weak shock than for the strong shock. A value of M, = 0.93 is used to approximate
the line that separates weak shocks from strong shocks [9]. Therefore, comparing
(M,)* to 0.93 can be used as a way to decide whether an obtained shock solution is
weak or strong. Note also that the weak and strong shocks coincide with the Mach wave
and normal shock, respectively, for § = 0 and keep approaching each other with
increasing & until merging at a certain value & = &,,4,, beyond which there is no
solution.

Figure 3. Continuation method.

Self-learning, adaptive software 23

-
10 2
S
s ®
» N -
B S, o .
Onp 15
ey 10, 1.0
B wmeh shech eosk shath 0 Wrwng shecs X weak shock weak_shock ¢ =roog shock
weak shock » weak shock) =rong shock
- s " e shech 0 reng shees 2 A k
B ' cmsithes & Mume et & shums shest X weak shock ¢ mrong shock § strena shock
(@) Mach number (b) Density ratio
90 1

P2/P1
ewbis
33
\

X weak_shock weak_shock ¢ strong_shock

X weak shock weak_shock ¢ strong_shock

weak_shock x weak_shock ¢ strong_shock weak shock x weak _shock ¢ strong_shock

X weak shock ¢ strona shock ¢ strona shock X weak shock strona shock ¢ wrona shock
(c) Pressure ratio (d) Shock angle

Figure 4. Oblique shock solutions obtained with the continuation method.

The objective of the present work is to develop a self-learning approach that solves

the problem in a more optimized way and only calls the continuation method when
required.

V1. The Learning Approach

The learning approach is based on the concept of “recycling” available information
from solutions to previous cases and employing it to:

- predict the existence or lack of a solution,

- decide which solver is more efficient,

- compute an initial guess as close to the solution as possible.

24 Mohamed Jrad et al.

The created database has the following record (row) format,

IT/I\l (MZ)* (%) (%) o* 8 T Ny | | Ny f a tg At |X*—X0| A
1 1

where M; and § are the problem inputs, while X* = ((MZ)*,(%)*,(z—i)*,a*)

constitutes the obtained oblique shock solution, and X, denote the selected initial guess.
The normalized distance between the selected initial guess X, and the obtained solution

X is|X* — Xyl = max(%) where LB; and UB; are the lower bound and upper
i i—LDg
bound of the output variable (MZ,%,%,O'), respectively (LB; = (0.25,1,1,0) and
1 1

UB; = (3.5,12,12,90°)). The residue r = max(|f;(X™)|) is computed using Egs. (1)--
l
(4) and the numerical solver output flag is f. The selected nlegslv approach for the
considered point is a while the number of function evaluations, Jacobian matrix calls,
and iterations are stored in ns, n;, and n;, respectively. The CPU time and the analysis
start time are stored in At and t,, respectively. Information about the different
attempted nlegslv approaches and their results is stored in the array A with the
following format,
(Q) o | § | ts

P1

—

.| (P2
a |ng |1y ng | f | My | (M) (E)

Empty database

|
v
Solve for the normal shock and

Mack wave

Initialize database

l

Software ready for use

l

User input + Compute initial guesses

|

Solve

|

Update database

Figure 5. Proposed self-learning concept

Self-learning, adaptive software 25

Three methods are employed for collecting and processing information from the
database: The Delaunay triangulation, cubic interpolation, and artificial neural
network, and their performance is compared. The proposed self-learning concept is
shown in Figure 5. It should be noted that the database initialization step is mainly used
to form an initial comparison dataset for the different nlegslv approaches that will be
employed. In the case where no comparisons are required (e.g., only one nlegslv
approach is used), the initialization database can be, then, limited to a very low number
of points, depending on the employed machine learning technique. For example, with
the Delaunay triangulation, only three points are needed, whereas 10 points are needed
for the cubic interpolations and the artificial neural network methods.

1. Delaunay Triangulation

The Fortran 2003 VT Delaunay triangulation code by Chang et al. [10] has been
wrapped in Python and employed in this work. Unlike the traditional Delaunay
triangulation, this new Delaunay triangulation interpolation can be applied to high
dimensional problems. For this method, the starting database is required to have a
minimum of three points. The proposed algorithm, described in Figure 6, is as follows.

1. Read input P = (M,,8).

2. Search for Delaunay triangle in the database input space containing P by means
of the Delaunay triangulation code [10]. The obtained triangle vertices have
weight values w; (generated also by the Delaunay triangulation code [10]) in
addition to the analysis history of these points from the database.

3. Use a convex combination to compute the initial guess based on the results of
the vertices of the selected triangle. In other words, our initial guess X, =

((Mz)o,(ﬁ)o,(Z—j)O,a(,) is computed through the equation (X,); =

12wy (X*0)., where (X*0)) i the solution component i (1 < i < 4) of the

triangle’s vertex X*U), and n is the number of vertices that have a solution (1 <
n < 3). For example, in Figure 6, the three neighboring points that form the
obtained Delaunay triangle of the point (Ml, 5) are shown in red in Figure 6-a
while their weak shock solution (X*)™) and strong shock solution (X*)®) are
shown in Figure 6-b in blue and green, respectively.

4. Figure 6-b also shows how the obtained initial guess (colored black), in both
oblique shock cases, is close to the converged solution (shown in pink).

5. Select also the best nlegslv approach to use based on the stored information of
the same vertices.

26 Mohamed Jrad et al.

(M, 6)
2-D inputs space
- ® L]
L] - — -
L
- L]
-
L] ™ s
ﬁll'l - - N i
.____..* -
L] . L] o

(a) Determining the Delaunay triangle (b) Determining the weak and strong
solutions

Figure 6. Learning approach based on Delaunay triangulation

2. Cubic Interpolation
As its name states, this method creates a surrogate function using cubic
interpolation! on a subset of points surrounding the point of interest. The proposed
algorithm, described in Figure 7, is as follows:

1. Readinput P = (M, 4).

2. Search for the nearest surrounding points in the database input space, using the
Euclidian distance, as shown in Figure 7-a. The minimum number of points is
defined by the number of unknowns required to construct the cubic
interpolation. In our case, we select ten points. Note that polynomial
interpolation in dimension greater than one is ill-posed, meaning that in the
general case, ten distinct points may not determine the ten cubic coefficients.

3. Apply piecewise cubic interpolation to approximate the four objective
functions. Compute the initial guesses for both shocks. Figure 7-b shows how
the computed initial guess (black dot) is very close to the solution (pink dot) for
both shock cases.

4. Select also the best nlegslv approach to use based on the information stored for
the same vertices.

! Note that the interpolation in dimensions greater than 1 is ill-posed, meaning that 10 distinct points
need not determine the 10 coefficients of a cubic polynomial in two variables.

Self-learning, adaptive software

(M, 6]
2-D inputs space

. . Cubic
interpolations

(M

1
F I:_i.-ﬂl ﬁ)
M1 1

Corvanged

sohiipn _——
x
/ pom X,

/

jld__

4-0 outputs space

Cenvargad
salstian

|

27

mpgoved mital gueis /
i poiek)
"

(b) Determining the weak and

(a) Determining the set of nearest points
strong solutions

Figure 7. Learning approach based on cubic interpolations

3. Artificial Neural Network
Artificial neural networks (ANN) based on the logistic sigmoid activation function
are also employed in this framework. The MLPRegressor of the Sklearn library [2] is
employed using LBFGS solver and a constant learning rate. This regressor implements
a multi-layer perceptron (MLP) that is trained using back propagation. The method
trains a small neural network using a subset of points surrounding the point of interest
to find an appropriate initial guess. Note that this approach requires several points
already existing in the database (for example: Ten points computed with continuation
method, Delaunay triangulation, or cubic interpolations). A traditional neural network
is trained using a training dataset to generate the ANN’s final weights. Once this
training dataset is updated, the neural network has to be regenerated from scratch to
account for the changes, which is computationally expensive, especially if it has to be
repeated every time a new point is added to the database. The proposed neural network
implementation, however, trains a one-time use network at a local region of interest
and generates weights that are tied to it. This process takes less computational time due
to the small size of the locally selected training set and allows for continuous growth
of the global input database. The proposed algorithm, described in Figure 8, is as
follows

1. Readinput P = (M,,4).

2. Search for the ten nearest points in the database input space using the Euclidian
distance (Figure 8-a).

3. Train a neural network for each of the four objective functions (MZ, P2 Pz a)

P1 P1

using the information from the ten points. Compute the initial guesses for both

28 Mohamed Jrad et al.

shocks. Figure 8-b shows how the computed initial guess (black dot) is very
close to the solution (pink dot) for both the shock cases. The number of hidden
layers can be based on a parametric study. However, in this work, we have
chosen 5 layers.

4. Select also the best approach to use based on the information stored for the
same vertices.

(My,8) P11

comeged 4-D outputs space

SaiLtign

2-D inputs space

. ™ " Convergad
[] L] . -) saiulion
- . Trained
. neural
network

. ——

(a) Determining the set of nearest points (b) Determining the weak and
strong solutions

Figure 8. Learning approach based on artificial neural networks

4. Initializing the Database and Collecting Information on the Different Solvers:

It is required to have a minimum number of solution points using a regular method,
the continuation method, for example, before starting to use the self-learning approach.
It is also possible to use a few points from the Mach wave and normal shock curves,
since they are already available. As shown in Figure 9, the five points selected in this
case are shown in black for the Mach wave and normal shock solutions and in red for
the continuation method. The set of three points using a continuation method are
selected quasi-randomly, as described below.

To collect some preliminary information about the different nleqgslv approaches
(Approaches 1, 7, and 11 defined above), the fresh database D is initialized using the
following algorithm:

1. Statistical sampling: create a set of 20 points I' = {(M,,)} using the Latin

hypercube (1.0 < M; <35 and 0 <4 <45°). Sort the points along
ascending 4.

Self-learning, adaptive software 29

2. Solve for the normal shock and Mach wave: Add two points from the normal
shock/Mach wave curves to the empty database, the solutions X for (M,,§) =
(1,0) and (3.5,0).

Calculate the solution for following three quasi-randomly selected points using
the continuation method and add them to the database D:

M, = max(M,), 8 = (max(8) + median(6))/2,

R pPer R PE.I" PE.F

1\111— rpgg(Ml), ci = (rglelp(S) + mgg;an(cY))/Z,

M= mg(ei}an(Ml), 0= (r}pellr}(S) + m%glgan(S))IZ.
Once these five initial points have been added to the fresh database D, the
oblique shock solution is computed for all the points in I' as described in the

remaining steps below. A typical sample set I is shown in Figure 9. Note that
only the points that have an oblique shock solution are shown in the figure.

”n
. ® ®

. ® L)

10
Ml

Figure 9. Initialization points (Mach wave and normal shock in black,
continuation method in red) and feasible solutions space (orange points). A
small number of points is recommended for this problem (n<20). The high

number of points shown in the picture is only for a better visualization.

3. Consider a new point P = (1\711, S) in I'. The remaining steps of the algorithm
will be applied for both oblique shocks (starting with the weak shock case).
a. Use the Delaunay Triangulation to find the enclosing triangle (

b. Figure 6-a). The objective of this step is to know the number of solutions
for this case by looking into the neighboring points in the inputs space,
and then compute an appropriate initial guess.

i. If no solution exists at all the triangle vertices: This input point
(M,, 8) has no physical solution either, based on the assumption
that the set of all solutions to the governing equations (1)--(4) is

30 Mohamed Jrad et al.

a convex set. If it is not the case, the continuation method can be
applied here. The user has to specify which option to use before
running the software.
ii. If at least one of the vertices has a solution: Apply one of the
two interpolation techniques (Delaunay or cubic interpolation)
. P2 D2
to compute the initial guess X, = ((MZ)O, (Z)o , (E)o , 00>.
c. Attempt the solution with the three approaches (1, 7, and 11) and
determine the one that has the lowest number of function evaluations.
d. For the weak shock case, if the algorithm by chance converges to a
strong shock solution, or does not converge at all, save the result and
continue to Step 3-d. Otherwise, go to Step 3-e.
For the strong shock case, if the algorithm does not converge, go to Step
3-d, otherwise, go to Step 3-f.
e. Determine the solution using the continuation method
f. Go to Step 3-a and redo these steps using the strong shocks sub
database.
g. After getting both weak and strong shocks, save the result into the
database and go to Step 3-a with the next point P.

Note that Latin hypercube statistical sampling is performed. However, any other
method that serves the same purpose can also be used. It is important to have a set of
points that covers the input space evenly. While quasi random methods can be a good
fit for this case, purely random methods can provide poor distribution of uncorrelated
random points, which can form clusters in some areas and leave large gaps in other
areas. The Latin hypercube is employed in this work in the database initialization and
self-learning method testing. Note also that the continuation method in Step 3-d will
only be used if there is not enough information in the region surrounding the point of
interest such that the initial guess predicted by the algorithm fails to converge to the
desired solution.

5. The Learning Approach Algorithm

After obtaining an initialized database with some preliminary comparison of the
three nlegslv approaches (1, 7, and 11), the following self-learning algorithm is applied
to any input point P.

1. Read input P = (M,,§).
2. The remaining steps of the algorithm will be applied individually for both
oblique shocks (starting with the weak shock case):

Self-learning, adaptive software 31

a. Use the Delaunay Triangulation to find the enclosing triangle Figure 6-
a). The objective of this step (a- and b-) is to determine the number of
solutions and the best nlegslv approach to use for this case by
investigating the neighboring points in the input space, and then
compute an appropriate initial guess.

i. If no solution exists at all the vertices: This input point (M,)
has no physical solution either, based on the assumption that the
set of all solutions to the governing equations (1)--(4) is a
convex set. If it is not the case, the continuation method can be
applied here. The user has to specify which option to use before
running the software.

ii. If at least one of the vertices has a solution: Apply one of the
three learning techniques (Delaunay, cubic interpolation, or
ANN) to compute the initial guess (X), =

((Mz)o: (ﬁ)o ’ (E)o) 00)-

b. Select also the best nlegslv approach to use based on the information
of the same vertices.

c. For the weak shock case, if the algorithm converged to the strong
shock, or did not converge, save the result and continue to Step 2-d.
Otherwise, go to Step 2-e.

For the strong shock case, if the algorithm did not converge, go to Step
2-d, otherwise, go to Step 2-f.

d. Determine the solution using the continuation method

e. Go to Step 2-a and redo these steps using the strong shock solutions
sub database.

f. After getting both weak and strong shocks, insert the result into its
position in the database such that it remains always sorted along
ascending &. Keeping the database sorted enables the use of the
bisection method and results, therefore, in much faster search
operations.

Note that the continuation method (Step 2-d) will only be used if there is not enough
information in the region surrounding the point of interest such that the algorithm fails
to converge from the initial guess to the desired solution. Note also that the minimum
length of the database depends on the employed method (Delaunay, cubic interpolation,
or ANN).

32 Mohamed Jrad et al.

40 l ’
’ > L]
’ v .' R X
0 a .
a
i . " x » @ -
g . =
L e
.
1 v ¢ A - " 4.
" ’ v % %5
. - -
1 5 0w) - 3
x or ° prr x 0
or $ oo L
poT » per ’
Top view Side view

Figure 10. Initialized database with the continuation method. Comparison of the 3
nlegslv approaches.

VII. Implementation and Evaluation

1. Database Initialization using Continuation Method

In this case, the fresh database is initialized using only the continuation method. In
other words, every point is simulated independently, and the database is not storing the
results. The obtained results (shock angle a*) are shown in

Figure 10. The 3 nlegslv approaches are also compared here and different colors
are used to represent the best approach obtained for each point. Results show that
Approaches 1 (Newton with cubic line search) and 7 (Broyden with cubic line search)
are better than 11 (Broyden with Powell dogleg) when initial guesses are far from the
solution. Moreover, while the maximum number of function calls reached 296 in this
case for the feasible points (

Figure 11), it did not exceed 56 for the self-learning case (Figure 13) as will be
shown later. In other words, disabling the learning feature leads the number of function
evaluations and consequently the CPU time to rise significantly.

Self-learning, adaptive software 33

Figure 11. Initialized database with the continuation method. Comparison of the
number of function calls.

. £l v
* ¢ l b "
. —— LR — T
.' z a ”r a » : _]!‘lc Ml
x . . - X wenh thack Aot Y 1roNg_Wock appros
L » SO Mo oove wokk hock apprriae 11 @ streng shock approa
Top View Side View

Figure 12. Initialized database with Delaunay triangulation. Comparison of the 3 nlegslv
approaches.

2. Database Initialization using Delaunay Triangulation

In this case, starting from a fresh database, we start by initializing it as described in
the previous section. First, three points are simulated using the continuation method
and two more points are imported from the Mach wave and normal shock curves. Then,
another twenty points are simulated using the self-learning algorithm based on the
Delaunay triangulation. The obtained results (shock angle o) are shown in Figure 12.
The points that did not have a solution are assigned with zero response functions

(M,, %, Z—Z, o). The Approaches 1, 7, and 11 are compared and different colors are used
1 1

to represent the best approach obtained for each point. The figure shows that Approach

34 Mohamed Jrad et al.

11 (Broyden with Powell dogleg) is dominant since the initial guess is always close to
the solution due to the self-learning method. Figure 13 shows the number of function
evaluations for each point. Most of the weak shock solutions required less than 34
function calls (except for the continuation method points where it reached 137 function
calls) while the strong shock solutions required less than 56 function calls. Therefore,
employing the proposed learning feature reduces the number of function evaluations
(and consequently the CPU time) significantly.

3 . ' v y L

o

@ oG ek Fowka . . M menh vhoh Bewtomtas | ® sreng sk)
y = .l . 8 Mt wonh_atock | ot | § wreng theek Lbeer

Top View Side View
Figure 13. Initialized database with Delaunay triangulation. Comparison of the
number of function calls.

3. Comparison of Delaunay Triangulation, Cubic Interpolation, and ANN

After initializing a fresh database with 40 points, we perform the test case with
another statistical sampling of another 500 points using each of the three methods
(Delaunay triangulation, cubic interpolation, and artificial neural networks). These test
points are shuffled to simulate a more realistic case of user input points for the software
over time. About half of these points have an oblique shock solution.

Figure 14 shows a comparison of the evolution of the number of function
evaluations as the database grows for the three methods. In this figure, all the points
are shown (feasible and non-feasible points). It can be seen clearly that while the
Delaunay triangulation and ANN have similar trends, the cubic interpolation gave a
better performance. The implication of this result is that the shock solutions are very
smooth functions of (M,,), and hence
the higher order cubic interpolation is more accurate than the first order Delaunay and
ANN interpolation.

The software performance can also be assessed by evaluating the distance between

the predicted initial guess and the computed solution dist = max(%) where
i i—LOg

X, isthe initial guess, X™ is the obtained solution, and LB; and UB; are the lower bound

Self-learning, adaptive software 35

and upper bound of the output variable i (MZ,%,z—z,a), respectively (LB; =
1 1

{0.25,1,1,0} and UB; = {3.5,12,12,90°}). Figure 15 shows also that the three methods
have similar trend and that the cubic interpolation method has the least variability.

-
SO A 4 TN 4 S - . - -

(a) Weak shock solutions (b) Strong shock solutions

Figure 14. Comparison of the software performance for the three methods as the
database grows.

Figure 16 shows the evolution of the CPU time for the three methods as the 500
points are being solved. The points that have a CPU time over 0.6s are non feasible
points. Even though about half of the 500 points do not have a solution, only a few of
them were attempted using the continuation method and they required a high CPU time,
while the others were found faster to have no solution due to the self-learning process.
Note also here that the cubic interpolation cases have a better CPU time and clearer
pattern while the Delaunay triangulation and ANN behave similarly. It can also be
noted that there is a slight increase in the CPU time for solving a given problem, which
can be explained as an outcome of a growing database. The bigger database makes
search operations slightly more time expensive. However, this increase would not even
be noticeable for other problems that require much more time for function evaluations,
such as computational fluid dynamics or multi disciplinary problems.

36

Distance batwoen the Dal guess and the saltion (nomakaed)

Mohamed Jrad et al.

o
3
‘1 0e
. 8 o
03 §os
3
nas s 04
o
. R -
-
134 2 04 »
e M
3
. = -
- 3 .
0zy® . B i’
- ™ | .'
.
. ?00 . g - ‘N .
014 - . k -
o & e .o 2 » ‘.
1~ =| En i ‘ .i e 5"’i)
0o«
B N A . i Al i i ssiib”A 4
| @ wesk shocy ® mong Wack 150 200 250 : . . 100 1
Fomd ID i it

(a) Delaunay triangulation (b) Cubic

0.6
-
o
0.5 -
044
. -
0314

v v -y v v v
® wesk whock % wmngsheck 150 200 250

Distance between the initial guess and the solution {normaleed)

Paint :D

(c) Neural Network

Figure 15. Improved precision in initial guess predictions as the database grows.

Self-learning, adaptive software 37

< weak shock - Cubac
® weak shock - ANN

& weak shock - Delsunay

CPU time |8)
-

point 1D

Figure 16. CPU time comparison for weak shock solutions with the three
methods

VI1II. Conclusion

A new approach for computationally solving engineering problems using the
emerging area of machine learning has been proposed and tested to significantly
reduce the computational time as the software solves an increasing number of
similar problems. As it solves a large number of problems, the software develops
an ability to make effective decisions towards improving its performance when
solving complex/nonlinear problems. The method consists of employing the
previously collected analysis information when solving a set of similar problems to
make better decisions (e.g., which numerical method to employ and which initial
guess to use for solving a set of nonlinear equations) and ensure faster convergence.
One key idea of the proposed self-learning concept consists of constructing local
representations of a function that help determine a good approximation for the
expected solution, and use it as the initial guess. To efficiently construct the local
surrogate functions, three different approaches (Delaunay triangulation, cubic
interpolation, and artificial neural network) have been implemented and compared.
An implementation of the new high-dimensional Delaunay triangulation in a
machine learning application was demonstrated in this effort. Moreover, unlike the
traditional use of the neural network, the concept of locally trained neural network
with moving weights was presented in this work as a way to allow a continuous
growth of the constructed database used in the training. Different numerical
techniques are compared in each region of the input space to help collect some
useful information that serves in determining which numerical solver to consider
when solving a new problem.

The oblique shock solution of a supersonic flow over a turn or wedge was
considered as a test case. The problem consists of a set of four coupled nonlinear
equations with six variables (two user-preselected and four unknowns). The
nonlinear solver nlegslv has been employed to implement and to compare different
numerical techniques and line search methods. Results show that Broyden method

38 Mohamed Jrad et al.

with the Powell dogleg method performs better when the initial guess is close to the
solution; the Newton method with cubic line search and the Broyden method with
cubic line search are better when using initial guesses that are somewhat far from
the solution. A self-learning algorithm has been proposed such that it finds the
number of solutions a priori, makes a proper decision on which nlegslv method to
use, and comes up with an appropriate initial guess for the new problem. The
approach has been shown to be very efficient, especially since it reduces the
difficulty of identifying appropriate initial guesses when solving the problem
numerically. It has been shown that the proposed self-learning approach reduces
the number of function evaluations significantly as compared to a reference method,
the continuation approach. For example, in the presented case study, while the
maximum number of function calls reached 296 using the continuation method, it
did not exceed 56 with the self-learning approach. The self-learning method was
also shown to have an improved performance as the database grows. Furthermore,
it has been shown that the cubic interpolations method performs better than the
Delaunay triangulation and artificial neural network for this problem.

Acknowledgments: This effort was funded by NASA through the National
Institute of Aerospace with Joseph H. Morrison as the project manager. The authors
would like to thank Tyler Chang, for providing his VT Delaunay triangulation code,
and Thomas Lux, both of Virginia Tech’s Department of Computer Science, for
help in wrapping it in PYTHON.

References

[1] Y. S. Ong, P. B. Nair, A. J. Keane and K. C. Wong, Surrogate-Assisted
Evolutionary Optimization Frameworks for High-Fidelity Engineering Design
Problems, in Knowledge Incorporation in Evolutionary Computation, edited by Jin,
Y., New York, Springer—Verlag, 2005, 307-331.
https://doi.org/10.1007/978-3-540-44511-1 15

[2] T. Shao, S. Krishnamurty and G. Wilmes, Preference-Based Surrogate
Modeling in Engineering Design, AIAA Journal, 45 (2007), no. 11, 2688-2701.
https://doi.org/10.2514/1.27777

[3] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon and M. W.
Trosset, A Rigorous Framework for Optimization of Expensive Functions by
Surrogates, Structural Optimization, 17 (1999), no. 1, 1-13.
https://doi.org/10.1007/bf01197708

[4] P. R. Caixeta Jr. and F. D. Marques, Multiobjective Optimization of an Aircraft
Wing Design with Respect to Structural and Aeroelastic Characteristics using
Neural Network Metamodel, Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 40 (2018), no. 1, 1-11.
https://doi.org/10.1007/s40430-017-0958-7

https://doi.org/10.1007/978-3-540-44511-1_15
https://doi.org/10.2514/1.27777
https://doi.org/10.1007/bf01197708
https://doi.org/10.1007/s40430-017-0958-7

Self-learning, adaptive software 39

[5] Y. LeCun, Y. Bengio and G. Hinton, Deep Learning, Nature, 521 (2015), 436—
444, https://doi.org/10.1038/nature14539

[6] G. Wang and S. Shan, Review of Metamodeling Techniques in Support of
Engineering Design Optimization, Journal of Mechanical Design, 129 (2007), no.
4, 370-380. https://doi.org/10.1115/1.2429697

[7] R. Laddaga, Self-Adaptive Software, DARPA BAA., 1997, 98-12.

[8] M. Salehie and L. Tahvildari, Self-Adaptive Software: Landscape and Research
Challenges, ACM Transactions on Autonomous and Adaptive Systems, 4 (2009),
no. 2, 1-42. https://doi.org/10.1145/1516533.1516538

[9] A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid
Flow, vol. I, New York: Ronald Press Co., 1953-54.

[10] T. H. Chang, L. T. Watson, T. C. H. Lux, A. R. Butt, K. W. Cameron and Y.
Hong, Algorithm 1012: DELAUNAYSPARSE: interpolation via a Sparse Subset
of the Delaunay Triangulation in Medium to High Dimensions, ACM Transactions
on Mathematical Software, 46 (2020), no. 4, 1-20.
https://doi.org/10.1145/3422818

[11] R. P. Lippmann, An Introduction to Computing with Neural Nets, IEEE
Acoustic Speech Signal Processing Magazine, 4 (1987), 4-22,
https://doi.org/10.1109/massp.1987.1165576

[12] B. Hasselman, Package “nleqslv”,
https://cran.rproject.org/web/packages/nlegslv/index.html, 2017.

[13] J. J. Dennis and R. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Siam, 1996.
https://doi.org/10.1137/1.9781611971200

[14] M. Powell, A Hybrid Method for Nonlinear Algebraic Equations, Numerical
Methods for Nonlinear Algebraic Equations. Gordon and Breach, 1970.

[15] M. Powell, A Fortran Subroutine for Solving Systems Nonlinear Equations,

Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz (Ed.),
Gordon & Breach, 1970.

Received: January 29, 2022; Published: February 25, 2022

https://doi.org/10.1038/nature14539
https://doi.org/10.1115/1.2429697
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/3422818
https://doi.org/10.1109/massp.1987.1165576
https://doi.org/10.1137/1.9781611971200

