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Abstract 

 

A novel application of machine learning concepts towards making software learn from 

its own experience in solving similar problems is proposed. The objective is to 

continuously improve the computational performance as the software solves more 

problems, avoid the cost of repeated runs, and make software able to take effective  
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decisions for rapidly solving complex nonlinear problems (e.g., which numerical 

method and initial guess to employ for solving a set of nonlinear equations). The 

illustrative problem consists of finding oblique shock solutions of supersonic flow over 

a wedge, which involves four, coupled, nonlinear equations with six variables. The key 

idea of the proposed self-learning concept consists of constructing local surrogate 

functions that help determine a good approximation of the expected solution as a 

starting initial guess. Three different approaches (Delaunay triangulation, cubic 

interpolation, and locally trained neural network) have been implemented and 

compared. Moreover, the software is given the ability to implement and compare 

different nonlinear solver techniques across the parameter space. A demonstration of 

the implementation of the new high-dimensional Delaunay triangulation in a machine 

learning context is performed. Moreover, the concept of locally trained neural network 

with moving weights is presented as a way to allow continuous growth of the 

constructed database used in the training. The self-learning approach is shown to be 

very efficient, especially since it reduces the burden of finding appropriate initial 

guesses. Although this approach is applied for solving nonlinear equations, as a proof 

of concept, the concept can be extended to other engineering applications. 

 

Keywords: machine learning, artificial neural networks, Delaunay triangulation, 

oblique shock, normal shock, MACH wave 

 

 

Nomenclature 
 

𝑘:   Ratio of specific heats 

𝑀:  Mach number 

𝑝:   Pressure 

𝜌:   Mass density 

𝜎:   Angle of shock to incoming flow in degrees 

𝛿:       Turning angle across shock in degrees 

𝐿𝐵𝑖:    Lower bound of the output variables 

𝑈𝐵𝑖:   Upper bound of the output variables 

r:        Residue 

𝑓:       Flag 

𝑛𝑓:     Number of function evaluations 

𝑛𝑗:     Number of Jacobian matrix calls 

𝑛𝑖𝑡:    Number of iterations 

∆𝑡:    CPU time 

𝑡𝑠:     Analysis start time 
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I. Introduction 
 

The design of modern, advanced aerospace systems with significant interactions 

amongst various disciplines, requires that high-fidelity analyses be used as early as 

possible in their design optimization. This is because a substantial fraction (roughly 

70%) of the cost of developing a new system is committed in the early stages. If not 

done right, substantial cost overruns could occur as many design changes are needed 

during the testing stage. While performing the multi-disciplinary design optimization 

of an efficient supersonic vehicle, completely different configurations could be 

obtained using low- and high-fidelity models. Despite this need of employing high-

fidelity models, very few entities (government, industry, and academia) are able to do 

so due to the extremely high computational cost of running such models at the 

preliminary, let alone at the conceptual, design stage.  

A number of researchers have employed surrogate models, namely response 

surface approximations, Kriging, and artificial neural networks (deep learning) that are 

generated by using high-fidelity models [1, 2, 3, 4]. Development of these surrogate 

models is not without substantial computational cost as a large number of 

computational runs are required to generate the data needed for their development 

(``learning’’) [5]. Caixeta and Marques [4] conducted multidisciplinary optimization 

of aircraft wing structures using genetic algorithms. They have constructed metamodels 

using artificial neural networks for the critical flutter speed prediction and employed 

Latin hypercube sampling. A review of metamodeling techniques used in engineering 

design optimization has been conducted by Wang and Shan [6]. As new data (output 

of a response quantity for a given set of input data) becomes available, these surrogate 

models require retraining or updating, further increasing the cost of their use for 

multidisciplinary design optimization. There is thus a need for studying alternative 

computational paradigms that can use high-fidelity models at the early design stage 

avoiding redesigns and resulting cost overruns. The general tendency of the available 

commercial software is to consider each simulation independently. Previously run 

simulation history is generally neither saved nor used in future analyses. We propose, 

in this work, a new methodology for solving problems by making the software learn 

from its own experience. The final objective is to improve the computational 

performance as the software solves more problems, avoid the cost of repeated runs, and 

give the software the ability to make effective decisions (e.g., select a better initial 

guess, select appropriate algorithm or tuning parameters, etc.) towards improving the 

process for finding the solution for complex nonlinear problems.  

Among several existing definitions for self-adaptive software, one is provided in a 

DARPA Broad Agency Announcement (BAA) [7]: “Self-adaptive software evaluates 

its own behavior and changes behavior when the evaluation indicates that it is not 

accomplishing what the software is intended to do, or when better functionality or 

performance is possible.” Scientists and engineers have made significant efforts to  
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design and develop self-adaptive systems. A review of self-adaptive software presented 

by Salehie and Tahvildari [8] shows how an open-loop system can be converted to a 

closed-loop system using feedback, and they proposed a taxonomy of adaptation. 

 The problem addressed in the present work consists of solving the nonlinear 

system of equations that governs oblique shocks formed in a supersonic flow over a 

wedge [9]. This problem is selected due to its moderate level of complexity. The 

number of obtained solutions (strong shock, weak shock) depends on the problem 

parameters and is unknown beforehand. The proposed algorithm makes the software 

learn from similar problems studied earlier and use the lessons learned from those 

problems for solving a completely new problem. One key idea of the proposed self-

learning concept consists of constructing local surrogate functions from solutions of 

earlier problems that determine a good approximation of the expected new solution as 

an initial guess. Such an approach is shown here to be very efficient, especially since 

it reduces the difficulty of finding appropriate initial guesses when solving a nonlinear 

problem numerically. To efficiently construct the local surrogate functions, three 

different approaches (Delaunay triangulation [10], cubic interpolation, and locally 

trained neural network [11] with moving weights) have been implemented and 

compared. An implementation of the new high-dimensional Delaunay triangulation, 

developed by Chang et al. [10], in a machine learning application is demonstrated in 

this work. Moreover, unlike the traditional use of the neural network, the concept of 

locally trained neural network with moving weights is presented herein as a way to 

allow continuous growth of the constructed database used in the training. Second, a 

few numerical techniques are also compared in each region of the parameter space to 

collect information that serves subsequently in determining which numerical solver to 

consider for a new problem. For this purpose, the nonlinear solver nleqslv [12] has been 

employed to compare several numerical techniques and line searches. It is shown that 

the choice of the nleqslv numerical technique and line search depends on the problem 

and how far the initial guess is from the solution. 

 

II. Example Case of Oblique Shocks in Supersonic Flow 
 

Consider a steady, two-dimensional (plane) supersonic flow passing over a turn or 

wedge with a certain angle 𝛿 with the flow direction as shown in Figure 1 [9]. An 

oblique shock is then observed with an angle 𝜎. An oblique shock is a special form of 

pressure discontinuity within the fluid, which is inclined to the direction of the 

oncoming flow. This problem was selected here to apply and test the proposed 

algorithm because of several factors. First, the complexity of the resulting system of 

equations makes it difficult to solve four, highly nonlinear equations with four 

unknowns numerically in an efficient way. The user will have to keep making initial 

guesses in a 4-D space. Furthermore, depending on other problem inputs described 

below, a different number of solutions could be obtained (either two solutions: a weak  
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shock and a strong shock, one unique solution, or no solutions at all). Hence, it becomes 

tougher, more tedious, and more time consuming, since one is required to find two 

initial guesses: one for the weak shock, and the other for the strong shock. Since this 

number of solutions is not known a priori, it is a challenge to know when to stop 

searching for a solution if a user has tried several initial guesses, but the algorithm did 

not converge. The question that arises naturally is: Can one make use of the solutions 

of previously solved similar problems so as to determine: (a) how many solutions there 

might be for a problem at hand, (b) what are the most appropriate initial guesses that 

are close to these expected solutions to make the numerical solution converge faster, 

and (c) what numerical equation solver approach is most appropriate. 

 

 

 

 
 

Figure 1. Oblique Shock 

 

 

 

The solutions for the particular case of 𝛿 = 0° are two simple, limiting cases of this 

problem, where there is no change observed in the flow direction. The first solution, 

𝜎 = 90°, is called a normal shock, whereas the second solution, 𝜎 = sin−1 1

𝑀1
, a Mach 

wave. The Mach wave corresponds to the weak shock with the least possible shock 

angle 𝜎. 

Using conservation of mass, momentum, and energy, and assuming the fluid to be a 

perfect gas, the six oblique shock parameters of a supersonic flow (Mach numbers 𝑀1 

and 𝑀2, density ratio 
𝜌2

𝜌1
, pressure ratio 

𝑝2

𝑝1
, shock angle 𝜎, flow turning angle 𝛿) are 

governed by the nonlinear system of four equations 
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𝑓1(𝑋) =

𝑝2

𝑝1
−

𝑘+1

𝑘−1

𝜌2
𝜌1

−1

𝑘+1

𝑘−1
−

𝜌2
𝜌1

= 0, 

(1) 

 

   

 
𝑓2(𝑋) =

𝜌2

𝜌1
-

𝑡𝑎𝑛 𝜎

𝑡𝑎𝑛(𝜎−𝛿)
= 0, (2) 

   

 
𝑓3(𝑋) =

𝑝2

𝑝1
− (1 + 𝑘𝑀1

2(𝑠𝑖𝑛2𝜎)(1 −
𝜌1

𝜌2
)) = 0, (3) 

   

 
𝑓4(𝑋) =

𝑝1

𝑝2
− 1 − 𝑘𝑀2

2 (1 −
𝜌2

𝜌1
) 𝑠𝑖𝑛2(𝜎 − 𝛿) = 0, (4) 

 

where the subscript “1” denotes “before the shock”, and “2” “after the shock”. The 

parameter vector for each problem is 𝑋 = (𝑀1, 𝛿, 𝑀2,
𝜌2

𝜌1
,

𝑝2

𝑝1
, 𝜎) and this is solved for 

by picking two parameters (in this work, we choose 𝑀1 and 𝛿) and solving for the 

remaining four parameters using the four nonlinear equations presented above. The 

following physical inequalities govern our problem parameters: 

 

 
0 ≤ 𝑀2 ≤ 𝑀1, (5) 

 1 ≤
𝜌2

𝜌1
, (6) 

 1 ≤
𝑝2

𝑝1
, (7) 

 
0 ≤ 𝜎 ≤ 90°, (8) 

 
0 ≤ 𝛿 ≤ 90°, (9) 

In what follows, the problem is solved numerically to have a minimal residual 𝑟 =
max(|𝑓𝑖(𝑋)|)≈0. 

 

 

III. Numerical Equation Solver Methods 
 

The numerical equation solver package considered in this work is nleqslv [12], a 

FORTRAN 77 library that solves a system of nonlinear equations using quasi-Newton 

and Newton type methods with a choice of global strategies such as line search and 

trust region. There are options for using a numerical or user-supplied Jacobian matrix, 

for specifying a banded numerical Jacobian matrix and for allowing a singular or ill-
conditioned Jacobian matrix. Broyden’s method starts with a computed Jacobian matrix 
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of the function and then updates this Jacobian matrix after each successful iteration 

using the so-called Broyden update, and has super-linear convergence. When nleqslv 

determines that it cannot continue with the current Broyden matrix, it computes a new 

Jacobian matrix. Newton’s method calculates a Jacobian matrix of the function at each 

iteration, and has quadratic convergence. The following options are available within 

the package:  

 

1. Cubic line search. 

2. Quadratic line search. 

3. Geometric line search. 

4. Double dogleg: A trust region method using the double dogleg method as 

described in Dennis and Schnabel [13]. 

5. Powell dogleg: A trust region method using the Powell dogleg method as 

developed by Powell [14], [15]. 

6. Hookstep: A trust region method described by Dennis and Schnabel [13]. 

 

Hence, there are a total of 12 methods that can be employed as shown in  

 

Table 1, 

 

 

Table 1. Equation Solver Methods in nleqslv [12] 

 
Approach Method  Approach Method 

1 Newton with cubic line search  7 Broyden with cubic line search 

2 Newton with quadratic line search  8 Broyden with quadratic line search 

3 Newton with geometric line search  9 Broyden with geometric line search 

4 Newton with double dogleg  10 Broyden with double dogleg 

5 Newton with Powell dogleg  11 Broyden with Powell dogleg 

6 Newton with hookstep  12 Broyden with hookstep 

 

 

As described in the nleqslv package manual, “Which global strategy to use in a 

particular situation is a matter of trial and error. When one of the trust region methods 

fails, one of the line search strategies should be tried. Sometimes a trust region will 

work and sometimes a line search method; neither has a clear advantage but in many 

cases the double dogleg method works quite well”. Therefore, a self-learning algorithm 

was developed here such that the software initially compares several methods in 

different regions of the parameter space when its database is fresh and then becomes 

able to find the best method to use for each considered problem. Since some of the 

built-in approaches are similar, only Approaches 1, 7, and 11 were selected and 

compared in this work. The numerical Jacobian matrix option was selected. 
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IV. Normal Shock and Mach Wave Cases 
 

The two sample limiting cases of oblique shocks are normal shocks and Mach 

waves, corresponding to the strong shock and weak shock solutions of 𝛿 = 0°, 

respectively. Considering as fixed parameters 𝑃 = (𝑀̂1, 𝛿 ) = (𝑀̂1, 0), the solution for 

the Mach wave is, 𝑋0 = ((𝑀2)0, (
𝜌2

𝜌1
)

0
, (

𝑝2

𝑝1
)

0
, 𝜎0 ) = (𝑀̂1, 1,1, sin−1 1

𝑀̂1
). The normal 

shock solution, however, requires the nonlinear system of Equations (1)--(4) to be 

modified and then solved numerically. The first step consists of replacing 𝜎 = 90° and 

𝛿 = 0° in Eqs. (3) and (4). Note that Eq. (2) can be dropped, since the number of 

unknowns is reduced to three. Using the new parameter vector 𝑋′ = (𝑀1, 𝑀2,
𝜌2

𝜌1
,

𝑝2

𝑝1
), 

the new obtained equations are 

 
𝑓1(𝑋′) =

𝑝2

𝑝1
−

𝑘+1

𝑘−1

𝜌2
𝜌1

−1

𝑘+1

𝑘−1
−

𝜌2
𝜌1

= 0, 

(10) 

 

 
𝑓3(𝑋′) =

𝑝2

𝑝1
− (1 + 𝑘𝑀1

2(1 −
𝜌1

𝜌2
)) = 0, 

(11) 

 

 
𝑓4(𝑋′) =

𝑝1

𝑝2
− 1 − 𝑘𝑀2

2 (1 −
𝜌2

𝜌1
) = 0, (12) 

Note that Eqs. (11) and (12) are coupled while, Eq. (10) is independent. Therefore, to 

compute the normal shock solution for fixed 𝑃 = (𝑀̂1, 𝛿 ) = (𝑀̂1, 0), first compute 

(𝑀2)∗ and (
𝜌2

𝜌1
)

∗

 with Eqs. (11) and (12) and then obtain (
𝑝2

𝑝1
)

∗

 from Eq. (10). The 

quasi-Newton with Powell dogleg method is employed for this purpose. However, one 

first needs appropriate initial guesses (𝑀2)0 and (
𝜌2

𝜌1
)

0
, a challenging task that requires 

several attempts. To that end, the segment Γ𝑀1
= [1,3.5] is first discretized using a 

sequence (𝑀1)0≤𝑖≤𝑛 = 1 +
2.5×𝑖

𝑛
, with 𝑛 ≥ 2 being a pre-selected positive integer. The 

normal shock is then solved for the right end-point (𝑀̂1, 𝛿 ) = ((𝑀1)𝑛, 0 ), and a 

backward sweep is finally used to solve for each new input (𝑀1)𝑖 using the solution of 
(𝑀1)𝑖+1as an initial guess until reaching the left end-point (𝑀1)0.  

Figure 2 presents the obtained Mach wave and normal shock solutions, showing the 

limiting cases for the Mach number 𝑀2, density ratio 
𝜌2

𝜌1
, pressure ratio 

𝑝2

𝑝1
, and the shock 

angle 𝜎. It can be seen that the upper limit of 𝑀2 and 𝜎 (normal shock) are 𝑀2 = 𝑀1 

and 𝜎 = 90°, respectively, while the lower limit of 
𝜌2

𝜌1
 and 

𝑝2

𝑝1
 (Mach wave) are 

𝜌2

𝜌1
= 1 

and 
𝑝2

𝑝1
= 1, respectively. In what follows, this obtained data will be used and 

interpolated to compute the Mach wave and normal shock for any problem, if needed. 
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(a) Mach number 

 
(b) Density ratio 

 
(c) Pressure ratio 

 
(d) Shock angle 

 
Figure 2. Mach wave and normal shock solutions 

 

 

V.Continuation Method 
 

Before developing the self-learning algorithm, it is important to develop a method that 

is able to solve the nonlinear system of equations (1)--(4) for any problem, which can 

be used as a reference method. While the choice of the reference method is not crucial 

and is problem dependent, the continuation method is employed here. Our objective is 

to solve the problem for any 𝑃̂ = (𝑀1̂, 𝛿 ) using only the Mach wave and normal shock 

solutions to approximate the required initial guesses and obtain both the weak and 

strong shock solutions. We start with the weak shock, then obtain results for the strong 

shock. If during the search for the weak shock solution, we first find the strong shock, 

we save that result to avoid duplicating the effort.  
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The proposed algorithm is as follows: 

1. Find the Mach wave solution X01 and the normal shock solution X02 for fixed 𝑀1 =

𝑀̂1 and 𝛿̂ = 0 from the data computed in section IV. These will be the two extreme 

points that make the search line for the initial guesses. For the weak shock, start 

with initial guess 𝑋̂0: = 𝑋01, and for the strong shock, start with initial guess 𝑋̂0: =
𝑋02.  

𝑋01 = ((𝑀2)1,  (
𝜌2

𝜌1
)

1
,  (

𝑝2

𝑝1
)

1
,  (𝜎)1) and 𝑋02 = ((𝑀2)2,  (

𝜌2

𝜌1
)

2
,  (

𝑝2

𝑝1
)

2
,  (𝜎)2). 

2. Solve the system for X0 using one of the three selected nleqslv methods. 

3. If the system solution is obtained, stop. Otherwise, 

 Define 𝑑 = {
1,  𝑓𝑜𝑟 𝑤𝑒𝑎𝑘 𝑠ℎ𝑜𝑐𝑘,

−1,  𝑓𝑜𝑟 𝑠𝑡𝑟𝑜𝑛𝑔 𝑠ℎ𝑜𝑐𝑘.
 

  𝑋0̂: = 𝑋0̂ + 𝑑 ∗
𝑋02−𝑋01

10
  

Go to Step 2. 

The efficiency of this method and the number of attempted initial guesses depend on 

how close the problem at hand is to the projection of the Mach wave and normal shock 

solutions, as presented in  

Figure 3. The oblique shock solutions are then computed for several points covering 

the space 1 ≤ 𝑀1 ≤ 3.5 and 0 ≤ 𝛿 ≤ 90° and presented in  

Figure 4 with different colors to visually link the different regions of the space for the 

four parameters (𝑀2,
𝜌2

𝜌1
,

𝑝2

𝑝1
, 𝜎). Note from  

Figure 4 that the pressure ratio (b), density ratio (c), and shock angle (d) are larger for 

the strong shock than for the weak shock while the Mach number (a) is larger for the 

weak shock than for the strong shock. A value of 𝑀2 = 0.93 is used to approximate 

the line that separates weak shocks from strong shocks [9]. Therefore, comparing 

(𝑀2)∗ to 0.93 can be used as a way to decide whether an obtained shock solution is 

weak or strong. Note also that the weak and strong shocks coincide with the Mach wave 

and normal shock, respectively, for 𝛿 = 0 and keep approaching each other with 

increasing 𝛿 until merging at a certain value 𝛿 =  𝛿𝑚𝑎𝑥, beyond which there is no 

solution.   

 
 

Figure 3. Continuation method. 
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(a) Mach number 

 
(b) Density ratio

 
(c) Pressure ratio 

 
(d) Shock angle

 

Figure 4. Oblique shock solutions obtained with the continuation method. 

 

The objective of the present work is to develop a self-learning approach that solves 

the problem in a more optimized way and only calls the continuation method when 

required. 

 

VI. The Learning Approach 
 

The learning approach is based on the concept of “recycling” available information 

from solutions to previous cases and employing it to: 

- predict the existence or lack of a solution, 

- decide which solver is more efficient, 

- compute an initial guess as close to the solution as possible. 
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The created database has the following record (row) format, 

𝑀1̂ (𝑀2)∗ (
𝜌2

𝜌1
)

∗

 (
𝑝2

𝑝1
)

∗

 𝜎∗ 𝛿 𝑟 𝑛𝑓 𝑛𝑗  𝑛𝑖𝑡 𝑓 𝑎 𝑡𝑠 ∆𝑡 |𝑋∗ − 𝑋0| 𝐴 

where 𝑀1̂ and 𝛿 are the problem inputs, while 𝑋∗ = ((𝑀2)∗, (
𝜌2

𝜌1
)

∗

, (
𝑝2

𝑝1
)

∗

, 𝜎∗) 

constitutes the obtained oblique shock solution, and 𝑋0 denote the selected initial guess. 

The normalized distance between the selected initial guess 𝑋0 and the obtained solution 

𝑋∗ is |𝑋∗ − 𝑋0| = max
𝑖

(|
(𝑋∗−𝑋0)𝑖

𝑈𝐵𝑖−𝐿𝐵𝑖
|), where 𝐿𝐵𝑖 and 𝑈𝐵𝑖 are the lower bound and upper 

bound of the output variable (𝑀2,
𝜌2

𝜌1
,

𝑝2

𝑝1
, 𝜎), respectively (𝐿𝐵𝑖 = (0.25,1,1,0) and 

𝑈𝐵𝑖 = (3.5,12,12,90°)). The residue 𝑟 = max
𝑖

(|𝑓𝑖(𝑋∗)|) is computed using Eqs. (1)--

(4) and the numerical solver output flag is 𝑓. The selected nleqslv approach for the 

considered point is 𝑎 while the number of function evaluations, Jacobian matrix calls, 

and iterations are stored in 𝑛𝑓, 𝑛𝑗 , and 𝑛𝑖𝑡, respectively. The CPU time and the analysis 

start time are stored in ∆𝑡 and 𝑡𝑠, respectively. Information about the different 

attempted nleqslv approaches and their results is stored in the array 𝐴 with the 

following format, 

𝑎 𝑛𝑓 𝑛𝑗  𝑛𝑖𝑡 𝑓 𝑀1̂ (𝑀2)∗ (
𝜌2

𝜌1
)

∗

 (
𝑝2

𝑝1
)

∗

 𝜎∗ 𝛿 𝑡𝑠 

 
                       

                        Figure 5. Proposed self-learning concept 
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Three methods are employed for collecting and processing information from the 

database: The Delaunay triangulation, cubic interpolation, and artificial neural 

network, and their performance is compared. The proposed self-learning concept is 

shown in Figure 5. It should be noted that the database initialization step is mainly used 

to form an initial comparison dataset for the different nleqslv approaches that will be 

employed. In the case where no comparisons are required (e.g., only one nleqslv 

approach is used), the initialization database can be, then, limited to a very low number 

of points, depending on the employed machine learning technique. For example, with 

the Delaunay triangulation, only three points are needed, whereas 10 points are needed 

for the cubic interpolations and the artificial neural network methods. 

 

1. Delaunay Triangulation 

 

The Fortran 2003 VT Delaunay triangulation code by Chang et al. [10] has been 

wrapped in Python and employed in this work. Unlike the traditional Delaunay 

triangulation, this new Delaunay triangulation interpolation can be applied to high 

dimensional problems. For this method, the starting database is required to have a 

minimum of three points. The proposed algorithm, described in Figure 6, is as follows. 

 

1. Read input 𝑃 = (𝑀̂1, 𝛿 ). 

2. Search for Delaunay triangle in the database input space containing 𝑃 by means 

of the Delaunay triangulation code [10]. The obtained triangle vertices have 

weight values 𝑤𝑖 (generated also by the Delaunay triangulation code [10]) in 

addition to the analysis history of these points from the database. 

3. Use a convex combination to compute the initial guess based on the results of 

the vertices of the selected triangle. In other words, our initial guess X0 =

((𝑀2)0, (
𝜌2

𝜌1
)

0
, (

𝑝2

𝑝1
)

0
, 𝜎0) is computed through the equation (𝑋0)𝑖 =

∑ 𝑤𝑗
𝑗=𝑛
𝑗=1 (X∗(𝑗))

𝑖
, where (X∗(𝑗))

𝑖
 is the solution component 𝑖 (1 ≤ 𝑖 ≤ 4) of the 

triangle’s vertex X∗(𝑗), and 𝑛 is the number of vertices that have a solution (1 ≤
𝑛 ≤ 3). For example, in Figure 6, the three neighboring points that form the 

obtained Delaunay triangle of the point (𝑀̂1, 𝛿 ) are shown in red in Figure 6-a 

while their weak shock solution (𝑋∗)(𝑤) and strong shock solution (𝑋∗)(𝑠) are 

shown in Figure 6-b in blue and green, respectively.  

4. Figure 6-b also shows how the obtained initial guess (colored black), in both 

oblique shock cases, is close to the converged solution (shown in pink). 

5. Select also the best nleqslv approach to use based on the stored information of 

the same vertices. 
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(a) Determining the Delaunay triangle        (b) Determining the weak and strong 

solutions 

 

Figure 6. Learning approach based on Delaunay triangulation 

 

 

2. Cubic Interpolation 

As its name states, this method creates a surrogate function using cubic 

interpolation1 on a subset of points surrounding the point of interest. The proposed 

algorithm, described in Figure 7, is as follows: 

 

1. Read input 𝑃 = (𝑀̂1, 𝛿 ). 

2. Search for the nearest surrounding points in the database input space, using the 

Euclidian distance, as shown in Figure 7-a. The minimum number of points is 

defined by the number of unknowns required to construct the cubic 

interpolation. In our case, we select ten points. Note that polynomial 

interpolation in dimension greater than one is ill-posed, meaning that in the 

general case, ten distinct points may not determine the ten cubic coefficients. 

3. Apply piecewise cubic interpolation to approximate the four objective 

functions. Compute the initial guesses for both shocks. Figure 7-b shows how 

the computed initial guess (black dot) is very close to the solution (pink dot) for 

both shock cases. 

4. Select also the best nleqslv approach to use based on the information stored for 

the same vertices. 

 

 

                                                 
1 Note that the interpolation in dimensions greater than 1 is ill-posed, meaning that 10 distinct points 

need not determine the 10 coefficients of a cubic polynomial in two variables.  
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         (a) Determining the set of nearest points    (b) Determining the weak and 

strong solutions 

 

Figure 7. Learning approach based on cubic interpolations 

 

3. Artificial Neural Network 

Artificial neural networks (ANN) based on the logistic sigmoid activation function 

are also employed in this framework. The MLPRegressor of the Sklearn library [2] is 

employed using LBFGS solver and a constant learning rate. This regressor implements 

a multi-layer perceptron (MLP) that is trained using back propagation. The method 

trains a small neural network using a subset of points surrounding the point of interest 

to find an appropriate initial guess. Note that this approach requires several points 

already existing in the database (for example: Ten points computed with continuation 

method, Delaunay triangulation, or cubic interpolations). A traditional neural network 

is trained using a training dataset to generate the ANN’s final weights. Once this 

training dataset is updated, the neural network has to be regenerated from scratch to 

account for the changes, which is computationally expensive, especially if it has to be 

repeated every time a new point is added to the database. The proposed neural network 

implementation, however, trains a one-time use network at a local region of interest 

and generates weights that are tied to it. This process takes less computational time due 

to the small size of the locally selected training set and allows for continuous growth 

of the global input database. The proposed algorithm, described in Figure 8, is as 

follows 

 

1. Read input 𝑃 = (𝑀̂1, 𝛿 ). 

2. Search for the ten nearest points in the database input space using the Euclidian 

distance (Figure 8-a). 

3. Train a neural network for each of the four objective functions (𝑀2,
𝜌2

𝜌1
,

𝑝2

𝑝1
, 𝜎) 

using the information from the ten points. Compute the initial guesses for both  
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shocks. Figure 8-b shows how the computed initial guess (black dot) is very 

close to the solution (pink dot) for both the shock cases. The number of hidden 

layers can be based on a parametric study. However, in this work, we have 

chosen 5 layers. 

4. Select also the best approach to use based on the information stored for the 

same vertices. 

 

  (a) Determining the set of nearest points    (b) Determining the weak and 

strong solutions 

 

Figure 8. Learning approach based on artificial neural networks 

 

 

4. Initializing the Database and Collecting Information on the Different Solvers:  

It is required to have a minimum number of solution points using a regular method, 

the continuation method, for example, before starting to use the self-learning approach. 

It is also possible to use a few points from the Mach wave and normal shock curves, 

since they are already available. As shown in Figure 9, the five points selected in this 

case are shown in black for the Mach wave and normal shock solutions and in red for 

the continuation method. The set of three points using a continuation method are 

selected quasi-randomly, as described below.  

To collect some preliminary information about the different nleqslv approaches 

(Approaches 1, 7, and 11 defined above), the fresh database D is initialized using the 

following algorithm: 

1. Statistical sampling: create a set of 20 points 𝛤 = {(𝑀1, 𝛿)} using the Latin 

hypercube (1.0 ≤ 𝑀1 ≤3.5   and   0 ≤ 𝛿 ≤ 45°). Sort the points along 

ascending 𝛿. 
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2. Solve for the normal shock and Mach wave: Add two points from the normal 

shock/Mach wave curves to the empty database, the solutions X for (𝑀1, 𝛿) =
(1,0) and (3.5,0). 

Calculate the solution for following three quasi-randomly selected points using 

the continuation method and add them to the database D: 

 𝑀̂1 = max
𝑃∈𝛤

(𝑀1),       𝛿 = (max
𝑃∈𝛤

(𝛿) + median
𝑃∈𝛤

(𝛿))/2,  

 𝑀̂1= max
𝑃∈𝛤

(𝑀1),       𝛿 = (min
𝑃∈𝛤

(𝛿) + median
𝑃∈𝛤

(𝛿))/2,  

 𝑀̂1= median
𝑃∈𝛤

(𝑀1),  𝛿 = (min
𝑃∈𝛤

(𝛿) + median
𝑃∈𝛤

(𝛿))/2. 

Once these five initial points have been added to the fresh database D, the 

oblique shock solution is computed for all the points in 𝛤 as described in the 

remaining steps below. A typical sample set 𝛤 is shown in Figure 9. Note that 

only the points that have an oblique shock solution are shown in the figure.  

 

 
Figure 9. Initialization points (Mach wave and normal shock in black, 

continuation method in red) and feasible solutions space (orange points). A 

small number of points is recommended for this problem (n<20). The high 

number of points shown in the picture is only for a better visualization. 

 

3. Consider a new point 𝑃 = (𝑀̂1, 𝛿)  in 𝛤. The remaining steps of the algorithm 

will be applied for both oblique shocks (starting with the weak shock case). 

a. Use the Delaunay Triangulation to find the enclosing triangle ( 

b. Figure 6-a). The objective of this step is to know the number of solutions 

for this case by looking into the neighboring points in the inputs space, 

and then compute an appropriate initial guess.  

i. If no solution exists at all the triangle vertices: This input point 

(𝑀̂1, 𝛿) has no physical solution either, based on the assumption 

that the set of all solutions to the governing equations (1)--(4) is 
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a convex set. If it is not the case, the continuation method can be 

applied here. The user has to specify which option to use before 

running the software. 

ii.  If at least one of the vertices has a solution: Apply one of the 

two interpolation techniques (Delaunay or cubic interpolation) 

to compute the initial guess X0 = ((𝑀2)0, (
𝜌2

𝜌1
)

0
, (

𝑝2

𝑝1
)

0
, 𝜎0).  

c. Attempt the solution with the three approaches (1, 7, and 11) and 

determine the one that has the lowest number of function evaluations. 

d. For the weak shock case, if the algorithm by chance converges to a 

strong shock solution, or does not converge at all, save the result and 

continue to Step 3-d. Otherwise, go to Step 3-e.   

For the strong shock case, if the algorithm does not converge, go to Step 

3-d, otherwise, go to Step 3-f. 

e. Determine the solution using the continuation method 

f. Go to Step 3-a and redo these steps using the strong shocks sub 

database. 

g. After getting both weak and strong shocks, save the result into the 

database and go to Step 3-a with the next point P. 

Note that Latin hypercube statistical sampling is performed. However, any other 

method that serves the same purpose can also be used. It is important to have a set of 

points that covers the input space evenly. While quasi random methods can be a good 

fit for this case, purely random methods can provide poor distribution of uncorrelated 

random points, which can form clusters in some areas and leave large gaps in other 

areas. The Latin hypercube is employed in this work in the database initialization and 

self-learning method testing. Note also that the continuation method in Step 3-d will 

only be used if there is not enough information in the region surrounding the point of 

interest such that the initial guess predicted by the algorithm fails to converge to the 

desired solution. 

 

5. The Learning Approach Algorithm 

 

After obtaining an initialized database with some preliminary comparison of the 

three nleqslv approaches (1, 7, and 11), the following self-learning algorithm is applied 

to any input point P. 

 

1. Read input 𝑃 = (𝑀̂1, 𝛿). 

2. The remaining steps of the algorithm will be applied individually for both 

oblique shocks (starting with the weak shock case): 
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a. Use the Delaunay Triangulation to find the enclosing triangle Figure 6-

a). The objective of this step (a- and b-) is to determine the number of 

solutions and the best nleqslv approach to use for this case by 

investigating the neighboring points in the input space, and then 

compute an appropriate initial guess.  

i. If no solution exists at all the vertices: This input point (𝑀̂1, 𝛿) 

has no physical solution either, based on the assumption that the 

set of all solutions to the governing equations (1)--(4) is a 

convex set. If it is not the case, the continuation method can be 

applied here. The user has to specify which option to use before 

running the software. 

ii. If at least one of the vertices has a solution: Apply one of the 

three learning techniques (Delaunay, cubic interpolation, or 

ANN) to compute the initial guess (X)0 =

((𝑀2)0, (
𝜌2

𝜌1
)

0
, (

𝑝2

𝑝1
)

0
, 𝜎0). 

b. Select also the best nleqslv approach to use based on the information 

of the same vertices. 

c. For the weak shock case, if the algorithm converged to the strong 

shock, or did not converge, save the result and continue to Step 2-d. 

Otherwise, go to Step 2-e. 

For the strong shock case, if the algorithm did not converge, go to Step 

2-d, otherwise, go to Step 2-f. 

d. Determine the solution using the continuation method 

e. Go to Step 2-a and redo these steps using the strong shock solutions 

sub database. 

f. After getting both weak and strong shocks, insert the result into its 

position in the database such that it remains always sorted along 

ascending 𝛿. Keeping the database sorted enables the use of the 

bisection method and results, therefore, in much faster search 

operations.   

 

 

Note that the continuation method (Step 2-d) will only be used if there is not enough 

information in the region surrounding the point of interest such that the algorithm fails 

to converge from the initial guess to the desired solution. Note also that the minimum 

length of the database depends on the employed method (Delaunay, cubic interpolation, 

or ANN). 
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Top view 

 
Side view 

 

 

Figure 10. Initialized database with the continuation method. Comparison of the 3 

nleqslv approaches. 

 

 

 

 

VII. Implementation and Evaluation 
 

1. Database Initialization using Continuation Method 
In this case, the fresh database is initialized using only the continuation method. In 

other words, every point is simulated independently, and the database is not storing the 

results. The obtained results (shock angle 𝜎∗) are shown in  

 

Figure 10. The 3 nleqslv approaches are also compared here and different colors 

are used to represent the best approach obtained for each point. Results show that 

Approaches 1 (Newton with cubic line search) and 7 (Broyden with cubic line search) 

are better than 11 (Broyden with Powell dogleg) when initial guesses are far from the 

solution. Moreover, while the maximum number of function calls reached 296 in this 

case for the feasible points ( 

Figure 11), it did not exceed 56 for the self-learning case (Figure 13) as will be 

shown later. In other words, disabling the learning feature leads the number of function 

evaluations and consequently the CPU time to rise significantly. 
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Figure 11. Initialized database with the continuation method. Comparison of the 

number of function calls.

 
Top View 

 
Side View

 

Figure 12. Initialized database with Delaunay triangulation. Comparison of the 3 nleqslv 

approaches. 

 

 

2. Database Initialization using Delaunay Triangulation 

 
In this case, starting from a fresh database, we start by initializing it as described in 

the previous section. First, three points are simulated using the continuation method 

and two more points are imported from the Mach wave and normal shock curves. Then, 

another twenty points are simulated using the self-learning algorithm based on the 

Delaunay triangulation. The obtained results (shock angle 𝜎∗) are shown in Figure 12. 

The points that did not have a solution are assigned with zero response functions 

(𝑀2,
𝜌2

𝜌1
,

𝑝2

𝑝1
, 𝜎). The Approaches 1, 7, and 11 are compared and different colors are used 

to represent the best approach obtained for each point. The figure shows that Approach  
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11 (Broyden with Powell dogleg) is dominant since the initial guess is always close to 

the solution due to the self-learning method. Figure 13 shows the number of function 

evaluations for each point. Most of the weak shock solutions required less than 34 

function calls (except for the continuation method points where it reached 137 function 

calls) while the strong shock solutions required less than 56 function calls. Therefore, 

employing the proposed learning feature reduces the number of function evaluations 

(and consequently the CPU time) significantly.

 
Top View 

 
Side View

Figure 13. Initialized database with Delaunay triangulation. Comparison of the 

number of function calls. 

 

3. Comparison of Delaunay Triangulation, Cubic Interpolation, and ANN 
After initializing a fresh database with 40 points, we perform the test case with 

another statistical sampling of another 500 points using each of the three methods 

(Delaunay triangulation, cubic interpolation, and artificial neural networks). These test 

points are shuffled to simulate a more realistic case of user input points for the software 

over time. About half of these points have an oblique shock solution.  

Figure 14 shows a comparison of the evolution of the number of function 

evaluations as the database grows for the three methods. In this figure, all the points 

are shown (feasible and non-feasible points). It can be seen clearly that while the 

Delaunay triangulation and ANN have similar trends, the cubic interpolation gave a 

better performance. The implication of this result is that the shock solutions are very 

smooth functions of (𝑀1, 𝛿), and hence  

the higher order cubic interpolation is more accurate than the first order Delaunay and 

ANN interpolation. 

The software performance can also be assessed by evaluating the distance between 

the predicted initial guess and the computed solution 𝑑𝑖𝑠𝑡 = max
𝑖

(|
(𝑋∗−𝑋0)𝑖

𝑈𝐵𝑖−𝐿𝐵𝑖
|), where  

𝑋0 is the initial guess,  𝑋∗ is the obtained solution, and 𝐿𝐵𝑖 and 𝑈𝐵𝑖 are the lower bound  
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and upper bound of the output variable 𝑖 (𝑀2,
𝜌2

𝜌1
,

𝑝2

𝑝1
, 𝜎), respectively (𝐿𝐵𝑖 =

{0.25,1,1,0} and 𝑈𝐵𝑖 = {3.5,12,12,90°}). Figure 15 shows also that the three methods 

have similar trend and that the cubic interpolation method has the least variability. 

 

 

 

 
(a) Weak shock solutions 

 
(b) Strong shock solutions 

 

\ 

Figure 14. Comparison of the software performance for the three methods as the 

database grows. 

 

 

 

Figure 16 shows the evolution  of the CPU time for the three methods as the 500 

points are being solved.  The points that have a CPU time over 0.6s are non feasible 

points. Even though about half of the 500 points do not have a solution, only a few of 

them were attempted using the continuation method and they required a high CPU time, 

while the others were found faster to have no solution due to the self-learning process. 

Note also here that the cubic interpolation cases have a better CPU time and clearer 

pattern while the Delaunay triangulation and ANN behave similarly.  It can also be 

noted that there is a slight increase in the CPU time for solving a given problem, which 

can be explained as an outcome of a growing database. The bigger database makes 

search operations slightly more time expensive. However, this increase would not even 

be noticeable for other problems that require much more time for function evaluations, 

such as computational fluid dynamics or multi disciplinary problems. 
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(a) Delaunay triangulation                              (b) Cubic 

 

 

 

 

 
              (c) Neural Network 

 

 

Figure 15. Improved precision in initial guess predictions as the database grows. 
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Figure 16. CPU time comparison for weak shock solutions with the three 

methods 

 

VIII. Conclusion 
 

A new approach for computationally solving engineering problems using the 

emerging area of machine learning has been proposed and tested to significantly 

reduce the computational time as the software solves an increasing number of 

similar problems. As it solves a large number of problems, the software develops 

an ability to make effective decisions towards improving its performance when 

solving complex/nonlinear problems. The method consists of employing the 

previously collected analysis information when solving a set of similar problems to 

make better decisions (e.g., which numerical method to employ and which initial 

guess to use for solving a set of nonlinear equations) and ensure faster convergence. 

One key idea of the proposed self-learning concept consists of constructing local 

representations of a function that help determine a good approximation for the 

expected solution, and use it as the initial guess. To efficiently construct the local 

surrogate functions, three different approaches (Delaunay triangulation, cubic 

interpolation, and artificial neural network) have been implemented and compared. 

An implementation of the new high-dimensional Delaunay triangulation in a 

machine learning application was demonstrated in this effort. Moreover, unlike the 

traditional use of the neural network, the concept of locally trained neural network 

with moving weights was presented in this work as a way to allow a continuous 

growth of the constructed database used in the training. Different numerical 

techniques are compared in each region of the input space to help collect some 

useful information that serves in determining which numerical solver to consider 

when solving a new problem.  

The oblique shock solution of a supersonic flow over a turn or wedge was 

considered as a test case. The problem consists of a set of four coupled nonlinear 

equations with six variables (two user-preselected and four unknowns). The 

nonlinear solver nleqslv has been employed to implement and to compare different 

numerical techniques and line search methods. Results show that Broyden method  
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with the Powell dogleg method performs better when the initial guess is close to the 

solution; the Newton method with cubic line search and the Broyden method with 

cubic line search are better when using initial guesses that are somewhat far from 

the solution. A self-learning algorithm has been proposed such that it finds the 

number of solutions a priori, makes a proper decision on which nleqslv method to 

use, and comes up with an appropriate initial guess for the new problem. The 

approach has been shown to be very efficient, especially since it reduces the 

difficulty of identifying appropriate initial guesses when solving the problem 

numerically. It has been shown that the proposed self-learning approach reduces 

the number of function evaluations significantly as compared to a reference method, 

the continuation approach. For example, in the presented case study, while the 

maximum number of function calls reached 296 using the continuation method, it 

did not exceed 56 with the self-learning approach. The self-learning method was 

also shown to have an improved performance as the database grows. Furthermore, 

it has been shown that the cubic interpolations method performs better than the 

Delaunay triangulation and artificial neural network for this problem. 
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