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Abstract

In this work a fast and numerical computational method for the
calculation of determinant of a polynomial matrix is proposed. The
method modifies the Evaluation-Interpolation technique for the calcu-
lation of determinant and reduces the number of fixed required points
to half with the use of complex basis. The performance of the proposed
numerical computational method is evaluated through a comparative
analysis with the simple computational method and built-in function of
Matlab in software Matlab.
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1 Introduction

The purpose of this paper is the development of numerical computational
methods for solving problems of Control Theory [1], [2], [4]. The compu-
tational method evaluation-interpolation enables us to solve several Control
Theory problems[5], [6]. The advantage of this method is the use of numerical
analysis against analytical solutions of the corresponding problems.
In many Control Theory problems the solution is one or more one-variable
polynomials (e.g. calculation of the determinant, calculation of the inverse o
a polynomial matrix, etc.) With the method evaluation-interpolation we can
compute the specific polynomials rather than just an approximate solution.
In this paper, using polynomial interpolation with Newton’s method, we present
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a method for calculating the determinant of one-variable polynomial matrices
and we propose a new method using complex basis.
More specifically, in the first section the basic concepts of a polynomial ma-
trix and the polynomial interpolation are introduced. In the second section,
we present the calculation of the determinant of polynomial matrix using the
method evaluation-interpolation with Newton’s interpolation. In the next sec-
tion, we describe the same method with the use of complex basis. In the
fourth section, execution times of the methods, with the use of Matlab Soft-
ware, are presented and finally the comparison of computational methods and
their execution times are presented.

1.1 Definitions for the degree of a Polynomial Matrix

Definition 1.1 (Corresponding Degree Matrix). Let the polynomial matrix
A ∈ R[s]n×n

A(s) =

a11(s) . . . a1n(s)
...

. . .
...

an1(s) . . . ann(s)


Corresponding Degree Matrix of Polynomial Matrix A is a numerical matrix
D ∈ Nn×n which defined by D = [dij] where dij = deg(aij(s)) is the degree of
each element (polynomial) of polynomial matrix A.

Definition 1.2 (Degree of a Polynomial Matrix). Let the polynomial matrix
A ∈ R[s]n×n. Degree of a one-variable polynomial matrix is d = min{dc, dr}
where dc and dr are the sum of the maximum degrees per column and per row
of the Corresponding Degree Matrix D, respectively.

For example the polynomial matrix

A(s) =

 s2 2s s + 3
s− 1 s3 9
−1 s s + 8


has Corresponding Degree Matrix

D =

2 1 1
1 3 0
0 1 1


The maximum degrees per column and per row of the Corresponding Degree
Matrix D are

dr1 = 2
dr2 = 3
dr3 = 1

⇒ dr = 2 + 3 + 1 = 6, and
dc1 = 2
dc2 = 3
dc3 = 1

⇒ dc = 2 + 3 + 1 = 6

Thus, we have the Degree of a Polynomial Matrix d = min{dr, dc} = 6.
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1.2 Evaluation-Interpolation technique

The Evaluation-Interpolation technique is used in control theory problems
to minimize the computational complexity of the calculation-solution specific
problems such as: a) calculation of greatest common divisor of two polynomials
of one, two or more variables, b) calculation of the determinant of a polynomial
matrix of one, two or more variables [6], [7], [8], [9] and c) calculation of the
inverse matrix of a polynomial matrix of one, two or more variables [3], [5].
The Evaluation-Interpolation technique has 2 parts:

1. the computation of fixed points (evaluation part) and

2. the interpolation at these points (interpolation part).

The advantages of this technique are: a) the calculation of the determinant
using arithmetic operations and not symbolic and b) the finding of the unique
polynomial that verifies the initial values derived from a polynomial which is
the unique solution.

2 Calculation of Determinant with Evaluation-

Interpolation technique

A Control Theory problem in which can applied the Evaluation-Interpolation
technique is the computation of the determinant of a one variable polynomial
matrix. The steps of the computational method are the follows:

1. We calculate the degree d = min{dr, dc} of the polynomial matrix. The
number of required points is n = d + 1.

2. We determine n random fixed points.

3. We evaluate the constant matrices for each point. For each constant
matrix the corresponding determinant is calculated.

4. The set of the interpolation points is the values of fixed points and cor-
responding determinants

5. We apply the interpolation in the above set to calculate the Newton
polynomial which is the determinant of the polynomial matrix

The above computational method is entitled DCEI (Determinant Calculation
with Evaluation-Interpolation technique)

Example 1. Let the matrix A ∈ R3×3[s]

A(s) =

 s 2s 1
3 s + 1 s
6s 4 s + 1


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Step 1: The Corresponding Degree matrix is

D =

1 1 0
0 1 1
1 0 1


We compute

dc1 = 1
dc2 = 1
dc3 = 1

⇒ dc = 1 + 1 + 1 = 3 and
dr1 = 1
dr2 = 1
dr3 = 1

⇒ dr = 1 + 1 + 1 = 3

Then, d = min{dc, dr} = 3. Therefore, the number of required fixed points is
n = d + 1 = 4.
Step 2: We determine 4 random fixed points, xi = −1, 0, 1, 2.
Step 3: For each point we have

A(−1) =

−1 −2 1
3 0 −1
−6 4 0

 , A(0) =

0 0 1
3 1 1
0 4 1


A(1) =

1 2 1
3 2 1
6 4 2

 , A(2) =

 2 4 1
3 3 2
12 4 3


and det(A(−1)) = −4, det(A(0)) = 12, det(A(1)) = 0 and det(A(2)) = 38,
respectively.
Step 4: The interpolation set is

xi −1 0 1 2
det(A(xi) −4 12 0 38

Step 5: We calculate the Newton interpolation polynomial in above set

P (s) = 13s3 − 14s2 − 11s + 12

which is the determinant of polynomial matrix A.

3 Calculation of Determinant with Evaluation-

Interpolation technique in Complex basis

In this case we follow the same steps with the above technique (DCEI). The
only difference is that due to the conjugate of the complex points it is not
necessary to calculate all the constant determinants for the fixed points to be
selected. Thus, in the first part of the technique we reduce the number of
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computational operations, so the total computation time of the technique is
reduced.
Specifically, we know that zn = zn. Let the polynomial

P (s) = ans
n + an−1s

n−1 + . . . + a2s
2 + a1s + a0

If z ∈ C we have

P (z) = anzn + an−1zn−1 + . . . + a2z2 + a1z + a0

= anzn + an−1zn−1 + . . . + a2z2 + a1z + a0

= anzn + an−1zn−1 + . . . + a2z2 + a1z + a0

= anz
n + an−1z

n−1 + . . . + a2z
2 + a1z + a0

= P (z)

Then, in step 2 of the above computational method (DCEI), we determine⌈n
2

⌉
random fixed complex points. The points are given by

xi = k · i, where k ∈ N

For each point xi we evaluate the values of the determinant det(A(xi)) and
we know the value of det(A(xi)) = det(A(xi)). This computational method is
entitled DCEIC (Determinant Calculation with Evaluation-Interpolation tech-
nique in Complex basis)

Example 2. Let the matrix A ∈ R3×3[s]

A(s) =

 s 2s 1
3 s + 1 s
6s 4 s + 1


From Example 1 the number of required fixed points is n = d + 1 = 4.

Step 2: We determine
⌈n

2

⌉
=

⌈
4

2

⌉
= 2 random fixed complex points, xi = i, 3i.

Step 3: For each complex point and the corresponding conjugate point, we have

A(i) =

 i 2i 1
3 i + 1 i
6i 4 i + 1

 , A(3i) =

 3i 6i 1
3 3i + 1 3i

18i 4 3i + 1


and det(A(i)) = 26− 24i and det(A(3i)) = 138− 384i, respectively.
Step 4: The interpolation set is

xi i 3i i = −i 3i = −3i

det(A(xi) 26− 24i 138− 384i 26− 24i = 26 + 24i 138− 384i = 138 + 384i

Step 5: We calculate the Newton interpolation polynomial in above set

P (s) = 13s3 − 14s2 − 11s + 12

which is the determinant of polynomial matrix A.
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4 Performance Tests and Results

In this section we present the performance tests and the results of the compu-
tational methods which are presented in previous sections. The computational
methods are a) Evaluation-Interpolation for the numerical computation of the
determinant of a one-variable polynomial matrix (DCEI) and b) Evaluation-
Interpolation in complex basis for the numerical computation of the determi-
nant of a one-variable polynomial matrix (DCEIC).
The performance tests are implemented with the following conditions: a) re-
spect to Degree of a Polynomial Matrix d, b) respect to Dimensions of polyno-
mial matrix and c) each element of polynomial matrix is a random polynomial
with specific degree .
The performance tests are implemented in software Matlab which support sym-
bolic operations. In following tables are presented the execution times of each
computational method and the execution time of build-in function of Matlab
which he is work with symbolic operations.
In Table 1 the execution times for d = 1, 2, 3, 5, 8 and dimensions from 2 × 2
until 10× 10 are illustrated

From Table 1 we conclude that

1. The execution times of computational method DCEIC are better from
DCEI.

2. While dimensions of matrix increase, the execution time of DCEIC in
relation to DCEI go to half according the number of required points of
each computational method.

3. The Matlab function works satisfactorily only in combination of small d
and small dimensions.

5 Conclusion

A novel computational method for the calculation of the determinant of an one-
variable polynomial matrix has been proposed, entitled DCEIC. The computa-
tional method is based to Evaluation-Interpolation technique and the existing
computational method DCEI. The novel element in method is the different
determination of the number of required fixed points with the help of complex
basis. The use of complex basis reduce the number of required fixed points to
half. The results of performance tests implies that the execution times reduce
accordingly to the number of required fixed points of each method.
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Table 1: Execution times respect to d and Dimensions

d Dimensions DCEI DCEIC Matlab

1 2× 2 0.48392 0.36012 0.009630

3× 3 0.97595 0.077477 0.045187

4× 4 0.168504 0.137114 0.216778

5× 5 0.241597 0.190110 1.269331

6× 6 0.313872 0.239553 4.975834

7× 7 0.527195 0.423166 43.950977

2 2× 2 0.43590 0.034067 0.005155

3× 3 0.119101 0.082586 0.027394

4× 4 0.267719 0.178970 0.139848

5× 5 0.494341 0.320852 0.879766

6× 6 0.876761 0.617175 6.734698

7× 7 1.232907 0.765439 40.417281

3 2× 2 0.044119 0.034433 0.010315

3× 3 0.260651 0.180485 0.057168

4× 4 0.431606 0.304279 0.335720

5× 5 0.697449 0.543164 1.337663

6× 6 1.289666 0.780189 4.227212

5 10× 10 15.395493 8.199356 ≥ 180

8 8× 8 13.568474 7.093312 ≥ 180

(former Technological Education Institute of Central Macedonia), under grant
SAT/IC/07022018-31/14.
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