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Abstract

The model of the heat diffusion equation by various means shows the
behavior of the variation of the temperature in a material (in principle
uniform) due to the dynamics of this with respect to the time and the
length of the material. This paper presents the development of the finite
element method for the one-dimensional problem in order to apply it to
the heat equation with a variant source over time, whose solution is a
linear combination of linear test interpolation functions and a function
that It depends on time. Finally, some operations of the application
problem section are demonstrated to simplify the calculations of the
model used in the results section and to attack a problem that includes
the dynamics of the temperature variable with respect to time in a steel
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block of finite dimensions, such as a one-dimensional problem to be
solved by means of the finite element method.

Keywords: Galerkin method, finite elements, heat equation, transfer by
conviction

1 Introduction

The finite element method is a numerical method used to solve problems in
the areas of engineering, mathematics and physics. The typical problems that
have been solved in these areas of interest by means of the finite element
method include structural analysis, heat transfer, fluid flow, mass transport
and electromagnetic potential. For problems involving complex geometries,
loads and non-isotropic properties of the materials, it is usually not possi-
ble to obtain an analytical solution. These mathematical expressions allow
knowing the value of an unknown quantity at any point in the domain [1].
Computational techniques such as interpolation of linear bases and domain
discretization, are known as the finite element method, which allows finding
an approximation of an ordinary or partial differential equation in one, two
or three dimensions. To solve the differential equations by means of the finite
element method it is necessary to discretize the domain into uniformly spaced
fragments depending on the domain, that is, linear elements in one dimension,
triangles or quadrilaterals in two dimensions or tetrahedral elements of 5 or 8
nodes depending on the precision that is desired in three dimensions, conse-
quently to the partition of the domain into fragments arises the need to find
a set of linear equations that allow to build from the bases described above, a
global function that characterizes the solution of the differential equation and
this implies a directly proportional relationship between the precision and the
quantity of linear coefficients. On the other hand, the finite element method
is proposed as a tool, which is described in the following sections as an al-
ternative to numerically solve ordinary and partial differential equations that
model physics and engineering phenomena. The advantage of this method over
others is the ability to adapt the finite elements in the form of the domain of
interest even though there are discontinuities [2].

2 Application of finite elements

Consider the differential equation for a dimension that describes the flow of
heat due to conduction, convection, or mass transfer of a fluid:

∂

∂x

(
λ
∂T

∂x

)
+Q =

ṁc

A

∂T

∂x
+
hP

A
(T − T∞) + ρc

∂T

∂t
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where, ṁc
A

∂T
∂x

refers to the transport of mass and the variable ṁ is the rate of
change of the mass flow; hP

A
(T − T∞) relates the interaction of the temper-

ature of the medium with the study material [3]. Here, the dynamics of the
temperature of the material, the interaction with medium (or means) and the
source are modeled with ρc∂T

∂t
.

Once the differential equation modeling heat transfer with mass transfer
is obtained, the equations will be formulated by means of the Galerkin resid-
ual representation to obtain the finite elements in a general way to arrive at
the numerical solution of the partial differential equation. It is based on the
following assumptions [4]:

- Q = 0

- Stable condition conditions, i.e., ∂T
∂t

= 0

The residual representation of Galerkin is given by:

R (T ) = − ∂
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Then, we obtain∫ L
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After integrating by parts, the following expression is obtained:

u = Ni

du =
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dx
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dv = − d
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Now, if Ω ∈ [0, L] and are calculated for two elements, assume the answer
as T (x) = N1T1 +N2T2, with N1 = 1− x

L
and N2 = x

L
, therefore, the term ∂T

∂x

can be approximated as dT
dx

= T2

L
− T1

L
.

After setting Ni = N1 = 1 − x
L

and substituting all the approximations and
solving the integrals, we have to:∫ L
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Analyzing each one of the resulting terms of the previously mentioned integral
one has to [5]:
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− ṁc

2A
+
hP (L)

3A

)
T1 +

(
−λ
L

+
ṁc
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For the second element, a procedure similar to the one done with the first
element is followed, like this:

Ni = N2 =
x

L
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The terms Tx1 is the temperature defined in element 1 and the term Tx2
is the temperature defined in element 2, matrix rewriting the results obtained
previously, it must:
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]
Consider a particular type of problem with time dependence, where the

values at the boundary are an oscillating source around a value. For example,
the heating power per unit volume can vary with respect to time according to
the equation h (t) = h0Re (eiωt) = h0 cos (ωt), where h0 is the amplitude and
Re (eiωt) is the real component of the quantity (eiωt). The partial differential
equation that models a problem with variation in time (periodicity) involves
the time variable implicitly, and for the heat conduction equation we have
(f = −λ∇T ). Now, the simplified model adopts the form
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Rewritten from the point of view of the Laplacian operator, we have:

∂

∂x

(
−λ∂T

∂x

)
+ ρC

∂T

∂t
=
hP

A
(T − T∞)

We seek to find a solution that involves the complex amplitude as expressed
in the solution (variant test function in time) [6]:

T = T0 (r) eiωt = [T0r (r) + iT0i (r)] [cos(ωt) + isen(ωt)]

Therefore,
Tr = T0r cos (ωt)− Toisen(ωt)

Ti = T0rsen(ωt) + Toi cos (ωt)

Their respective partial derivatives with respect to time are:

∂Tr
∂t

= −ω [T0rsen(ωt) + Toi cos (ωt)] = −ωTi

∂Ti
∂t

= ω [T0r cos (ωt)− Toisen(ωt)] = ωTr,

where,
T = Tr + iTi

Substituting T = Tr + iTi and ∂T
∂t

= −ωTi + iωTrin the partial differential
equation gives a system of two partial differential equations, one equation
refers to the real terms and the other equation relates the imaginary part as
shown below:

∇ · (−λ∇Tr)− ωρCpTi = h0

∇ · (−λ∇Ti) + ωρCpTr = 0

∂
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)
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Finally, we get
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√
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(
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Tr

)
180

π

)
We assume that the properties of the materials are independent of the

variable T (isotropic materials), the parameters used to calculate the numerical
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solution of the system of differential equations previously raised are: length
of the steel bar Lx = 0.5u, insulation temperature h0 = 0, specific chloric
capacity Cp, angular frequency ω = 0.025r/s, thermal conductivity λ = 45,
material mass density ρ, with ρCp = 3 · 106. Although the properties can vary
with the spatial coordinate even with small deformations or discontinuities, for
small temperature oscillations, the equation T (x, t) is a valid approximation,
therefore, the system of partial differential equations is linear [7].

Figure 1: Real component Tr, numerical solution.

Figure 2: Real component Ti, numerical solution.
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3 Numerical results

The problem arises with an isolated steel block, except on the front face, where
the temperature oscillates around 300K. There are two dependent variables,
the real and imaginary components of the temperature T , for each one of
the variables contour conditions are established. An oscillating temperature
source is imposed on the left side as the real part of T (numerical solution
figure 1). Therefore, oscillations at any point of the steel block (imaginary
part of the temperature variable, graph of Figure 2) refer to variations with
angular deviation due to the nature of the proposed solution, ie the part real
and imaginary generate an angular deviation as a function of the location
(domain), since the attenuation of the temperature wave is extremely strong,
we need logarithmic diagrams to present the variation.

4 Conclusion

Temperature waves are a natural phenomenon that can be modeled as was
done in this document. From the climatic point of view, the phenomenon oc-
curs as the sun heats up more intensely at some times of the year compared to
colder times, that is, the sun heats more intensely in summer than in winter
and as a result of these changes a temperature wave is presented. Comparing
this phenomenon with the obtained results it is possible to deduce that the
temperature variations in the surface of the earth are attenuated as the wave
enters more and more the materials that make up the layers of the earth as
shown in the figure 1.

The results obtained in this document allow to know the value of the tem-
perature in a steel block with isotropic properties at any point of the domain
of this and at any time, being able to appreciate the attenuation of the tem-
perature variable as a relation of complex variables and inversely proportional
to the distance where you want to analyze the variable, that is, if the point
of interest is further away from the source variant in time then this point will
have a lower temperature associated with other points that are located closest
to the source.
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