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Abstract 

 

This paper presents the size optimization of trusses structures using the recently 

developed Improved Modified Simulated Annealing Algorithm (I-MSAA). I-

MSAA was recently introduced for solving global optimization problems and is a 

newly improved version of the Modified Simulated Annealing Algorithm (MSAA) 

with two modifications: i) reduction of probability of accepting worse solutions; ii) 

the starting point is chosen randomly. I-MSAA was evaluated in five benchmark 

problems of truss size optimization. The results were compared by those reported 

by other metaheuristic algorithms and indicated that I-MSAA is stable and efficient 

to optimize this type of problems. 

 

Keywords: Improved Simulated Annealing Algorithm, size optimization, truss 

structure, metaheuristics 

 

1 Introduction 
 

The design of trusses structures involves a set of design variables that must comply 

with certain design restrictions. In practice, the designs are based on the engineer's 

experience and no efforts are made to obtain optimized designs that allow a balance 

between safety and economy. In practice, optimization processes are performed 

through trial and error. This process requires a lot of time because the designer must 

evaluate many possible designs to find the one that satisfies the conditions of 

services and the design restrictions and it does not ensure that the design found is 

optimal. 
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In general, these design problems are highly nonlinear with complex constraints, 

and highly multimodal. These design constraints come from design requirements 

and security measures such as stresses on the members due to external loading, 

displacements in the nodes, among others. Because of this, deterministic 

approaches that require gradient information are not convenient to obtain optimized 

designs. Thus, metaheuristics techniques can serve as appropriate alternatives of 

conventional methods because they do not require the gradient and they use 

probabilistic transition rules, not deterministic rules. Furthermore, they do not even 

require an explicit relationship between the objective function and the constraints. 

Instead they are based on stochastic search strategies that make them quite effective 

and versatile to counter the combinatorial explosion of the possibilities. 

 

Several metaheuristics have implemented for size optimization of trusses structures, 

for example, Genetic algorithms (GA) [1]; Simulated Annealing (SA) [2]; Particle 

Swarm Optimization (PSO) [3]; Harmony Search (HS) [4,5]; Mine Blast Algorithm 

(MBA) [6]; Artificial Bee Colony (ABC) [7]; Adaptive Dimensional Search (ADS) 

[8]; Symbiotic Organisms Search (SOS) [9]; Colliding Bodies Optimization (CBO) 

[10]; Teaching Learning Based Optimization (TLBO) [11,12] and several improved 

and hybridized versions of the algorithms [13–16]. 

 

Recently, the metaheuristic called Improved Modified Simulated Annealing 

Algorithm (I-MSAA) [17] was introduced to solve global optimization. I-MSAA is 

a newly improved version of the Modified Simulated Annealing Algorithm 

(MSAA) [18] with two modifications. Firstly, the starting point is chosen randomly. 

Secondly, the range of probability of accepting a worse solution is reduced. In this 

study, the I-MSAA is proposed for size optimization in trusses structures, with the 

objective of finding lightweight structures that meet the requested requirements and 

comply with design restrictions. 

 

This study is structured as follows: Section 2 presents the methodology and the I-

MSAA. Section 3 shows the results obtained with I-MSAA in the five benchmark 

designs. Section 4 presents the conclusions of this study. 

 

2 Methodology 
 

The algorithm I-MSAA was coded in MATLAB R2017a, and Windows platform 

using Intel(R) Core(TM) i5-3230M CPU@ 2.60 GHz processor speed with 8.00 

GB RAM. The structures were analyzed using the finite element (direct stiffness) 

method. I-MSAA was evaluated in 5 benchmark designs. Table 1 shows the 

geometry and properties for each problem. Every problem was solved 100 times 

and the best design, weights and standard deviation are reported in the tables. 
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Table 1. Geometry and properties of trusses structures. 

 

Planar 10-bar Truss Structure Planar 17-bar Truss Structure 

 

ρ=0.10 lb/in3 

 

E=10000 ksi 

MAS=±25 ksi 

DN=±2 in 

P1=150 kips 

P2=50 kips 

 ρ=0.268 lb/in3 MAS=±50 ksi 
 

E=30000 ksi DN=±2 in 

Planar 18-bar Truss Structure Planar 15-bar Truss Structure 

 
 

ρ=7800 kg/m3 

E=200 GPa 

MAS=±120 MPa 

DN=±10 mm 

P1=35 kN 

P2=35 kN 

P3=35 kN 

ρ=0.10 lb/in3 MAS=±20 ksi 
  

E=10000 ksi P=20 kips 

Planar 52-bar Truss Structure 
ρ=7860 kg/m3  

 

E=207 GPa 

MAS=±180 MPa 

PX=100 kN 

PY=200 kN 

 

ρ – material density 

E – modulus of elasticity 
MAS – maximum allowable stress for all members 

DN – displacements for all free nodes  

 

2.1 Improved Modified Simulated Annealing Algorithm (I-MSAA) 

 

I-MSAA is based on the SA. SA is a method developed from the statistical 

thermodynamics to simulate the behavior of atomic arrangements in liquid or solid 

materials during the annealing process.  I-MSAA was introduced by Suarez et al. 

[17] for global optimization and has the following characteristics: i) reduction of 

probability of accepting worse solutions; ii) the starting point is chosen randomly 

and not by means of the preliminary exploration. The probability of acceptance of 

a worse solution is between 0 and 1/3 and is calculated by: 

 

P =
1

1+2exp(Δf T⁄ )
                                                                       (1) 

 

The Pseudo code of I-MSAA is as follow: 
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Setting initial temperature (Ti)  

Setting final temperature (Tf) 

Setting maximum number of perturbations at the same temperature (npmax) 

Generate Initial State (S) randomly 

T=Ti 

While (T> Tf) do //Temperature Cycle  

For np=1 to npmax //Metropolis Cycle  

Generate S' by search step 

Obtain difference (Δf) between S' and S 

If (Δf ≤ 0) then  

Accept S' 

else 

Boltzmann Probability = 1/(1+2exp(Δf /T))  

If (Boltzmann Probability > random(0, 1/3)) then  

Accept S' 

end if  

end if 

end while  

Decrease T by cooling function Tk+1=αTk 

end while  

Shown best solution (Sbest) 

 

2.2 Formulation of the optimization problem 

 

The main objective is to optimize the cross-sections of the members in order to 

minimize the total weight of the structure, satisfying the restrictions that the 

optimization problem imposes. The structural optimization problem for a truss 

structure maybe expressed as: 

 

minimize W(x) = ∑ ρixiLi
nm
i=1

subject to {
δL ≤ δi ≤ δU; i = 1, … , m

σL ≤ σi ≤ σU; i = 1, … , nm
                                               (2) 

 

where x is the is the vector containing the design variables (discrete or continuous); 

W(x) is the weight of the structure; m is the number of nodes; nm is the number of 

members forming the structure; ρi is the material density of member i; Li is the 

length of member i; δi is the nodal displacement/deflection at node i; σi is the stress 

developed in the element i; and L and U represent the lower and upper bounds, 

respectively. 

 

3 Results 
 

Table 2 shows the results obtained with I-MSAA in the five design problems and 

they are compared with others reported in the literature. For the planar 10-bar truss 

structure, the minimum and maximum area for the cross section of the members 

were 0.1 ≤ Ai (in
2) ≤ 35 (continuous variables). 
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Table 2. Optimal design comparison for the five benchmark design problems 

 
Planar 10-bar Truss Structure 

Algorithm 
Variables (in2) Weight 

(lb) 

Mean 

(lb) 

SD 

(lb) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

TLBO 

[11] 
23.5 0.1 25.4 14.5 0.1 2.0 12.3 12.7 20.4 0.1 4678.3 4680.1 1.0 

PSO [3] 22.9 0.1 25.4 14.4 0.1 2.0 12.3 12.9 20.7 0.1 4679.5 - - 

HS [5] 23.2 0.1 25.8 14.5 0.1 2.0 12.2 12.6 20.4 0.1 4668.8 - - 

I-MSAA 23.5 0.1 25.3 14.2 0.1 2.0 12.4 12.9 20.4 0.1 4677.0 4678.9 1.4 

Planar 17-bar Truss Structure 

Algorithm Variables (in2) 
Weight 

(lb) 

Mean 

(lb) 
SD (lb) 

PSO [3] 

A1 A2 A3 A4 A5 A6 A7 A8 A9 

2724.4 - - 
15.8 2.3 13.9 0.1 11.4 3.9 8.1 01 5.9 

A10 A11 A12 A13 A14 A15 A16 A17 

2.3 6.3 3.4 5.4 3.9 3.5 2.3 3.5 

HS [5] 

A1 A2 A3 A4 A5 A6 A7 A8 A9 

2580.8 - - 
15.8 0.1 12.0 0.1 8.2 5.5 11.8 0.1 7.9 

A10 A11 A12 A13 A14 A15 A16 A17 

0.1 4.1 0.1 6.7 4.1 5.7 0.1 5.6 

I-MSAA 

A1 A2 A3 A4 A5 A6 A7 A8 A9 

2582.0 2582.9 0.68 
15.9 0.1 12.2 0.1 8.0 5.5 11.9 0.1 8.0 

A10 A11 A12 A13 A14 A15 A16 A17 

0.1 4.0 0.1 5.7 4.0 5.6 0.1 5.6 

Planar 18-bar Truss Structure 

Algorithm 
Variables (in2) Weight 

(lb) 

Mean 

(lb) 
SD (lb) 

G1 G2 G3 G4 

HS [5] 9.98 21.63 12.49 7.06 6421.88 - - 

ABC [7] 10.00 21.65 12.50 7.07 6430.53 - - 

I-MSAA 10.00 21.65 12.50 7.07 6430.53 6430.53 0.00 

Planar 15-bar Truss Structure 

Algorithm Variables (mm2) 
Weight 

(kg) 

Mean 

(kg) 
SD (kg) 

ICA [16] 

A1 A2 A3 A4 A5 A6 A7 A8 

105.7 105.7 0.0 
113.2 113.2 113.2 113.2 736.7 113.2 113.2 736.7 

A9 A10 A11 A12 A13 A14 A15 

113.2 113.2 113.2 113.2 113.2 334.3 334.3 

TLBO 

[12] 

A1 A2 A3 A4 A5 A6 A7 A8 

105.7 - - 
113.2 113.2 113.2 113.2 736.7 113.2 113.2 736.7 

A9 A10 A11 A12 A13 A14 A15 

113.2 113.2 113.2 113.2 113.2 334.3 334.3 

I-MSAA 

A1 A2 A3 A4 A5 A6 A7 A8 

105.7 105.7 0.0 
113.2 113.2 113.2 113.2 736.7 113.2 113.2 736.7 

A9 A10 A11 A12 A13 A14 A15 

113.2 113.2 113.2 113.2 113.2 334.3 334.3 

Planar 52-bar Truss Structure 

Algorithm Variables (mm2) 
Weight 

(kg) 

Mean 

(kg) 
SD (kg) 

CBO [10] 

G1 G2 G3 G4 G5 G6 

1899.35 1963.12 106.01 
4658.06 1161.29 388.39 3303.22 940.00 506.45 

G7 G8 G9 G10 G11 G12 

2238.71 1008.39 506.45 1283.87 1161.29 506.45 

TLBO 
[12] 

G1 G2 G3 G4 G5 G6 

1902.61 - - 
4658.06 1161.29 494.19 3303.22 940.00 494.19 

G7 G8 G9 G10 G11 G12 

2238.71 1008.39 494.19 1283.87 1161.29 494.19 

I-MSAA 

G1 G2 G3 G4 G5 G6 

1902.61 1910.68 21.38 
4658.06 1161.29 494.19 3303.22 940.00 494.19 

G7 G8 G9 G10 G11 G12 

2238.71 1008.39 494.19 1283.87 1161.29 494.19 
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The problem has 32 non-linear constraints (10 tension constraints, 10 compression 

constraints and 12 displacements constraints). For this problem, it can be seen that 

the optimal weight acquired by the I-MSAA (4677.0 lb) is better than the reported by other 

algorithms (4678.3 lb for TLBO and 4679.5 lb for PSO). In addition, the SD (1.4 

lb) obtained by I-MSAA shows the stability of the algorithm. 

 

The planar17-bar truss structure has 17 independent variables and 52 non-linear 

constraints. As seen, for this problem the I-MSAA obtained a structure with a 

weight of 2582.0 lb with a SD of 0.68 lb. It is important to mention that the weights 

reported with HS (2580.8 lb) and PSO (2724.4 lb) are lower than those of I-MSAA, 

this is because these designs violate some restrictions. 

 

For the planar18-bar truss structure, the number of variables was reduced to four 

groups in the following manner: (G1) elements 1, 4, 8, 12, 16; (G2) elements 2, 6, 

10, 14, 18; (G3) elements 3.7, 11, 15; (G4) elements 5,9, 13, 17. The minimum area 

was 0.10 in2 and the maximum 50 in2. The problem has 36 non-linear restrictions. 

From Table 2, it can be seen that the optimal weight acquired by the I-MSAA 

(6430.53 lb) agrees well with those given by the ABC [7]. In addition, the SD 

obtained with I-MSAA was 0.0 lb evidencing the capability of the algorithm for 

reach the optimal. 

The planar15-bar truss structure includes 15 discrete design variables that can be 

selected from the following discrete set: L={113,2; 143,2; 145,9; 174,9; 185,9; 

235,9; 265,9; 297,1; 308,6; 334,3; 338,2; 497,8; 507,6; 736,7; 791,2;1063,7} 

(mm2). In the 100 runs of this algorithm, the average weight of the truss designs 

was 105.7 kg with an SD of 0.0 kg. These values were equal to those reported by 

ICA and TLBO. 

 

For the planar 52-bar truss structure the members of the structure were divided into 

12 groups: (G1) A1-A4, (G2) A5-A10, (G3) A11-A13, (G4) A14-A17, (G5) A18-

A23, (G6) A24-A26, (G7) A27-A30, (G8) A31-A36, (G9) A37-A39, (G10) A40-

A43, (G11) A44-A49 and (G12) A50-A52. Discrete values of cross-sectional areas 

can be selected from the AISC design code. The best weight found by I-MSAA 

(1902.61 kg) was equal to that reported by TLBO. Although the CBO (1899.35 kg) 

obtained a lower weight than I-MSAA, I-MSAA obtained an SD (21.38 lb), five 

times less than that reported by CBO (106.01 lb). 

 

4 Conclusions 

 
In this work the Improved Modified Simulated Annealing Algorithm (I-MSAA) 

was introduced, for the first time, in the sizing optimization of truss structure. The 

performance of I-MSAA was evaluated in 5 benchmark designs and the results were 

compared with those reported in the literature. The comparison showed that I-

MSAA outperformed other algorithms, in some cases noticeably, both in terms of 

solution qualitity and standard deviation value. Finally, the I-MSAA is 

distinguished by its ability to fluently escape the traps of the local minima. 
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