
Contemporary Engineering Sciences, Vol. 11, 2018, no. 4, 173 - 181
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/ces.2018.8110

On Elastic Rod Equation with Forcing Term:

Traveling Wave Solutions

Cesar A. Gómez
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Abstract

The improved tanh-coth method is employed to construct exact trav-
eling wave solutions for a generalized elastic rod equation which include
a forcing term. Periodic and soliton solutions are formally derived, from
which, solutions for particular cases of the model can be obtained. Two
particular cases, derived from the used method here, are formally ana-
lyzed. We can show that the obtained solutions have several interesting
structures.
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174 Cesar A. Gómez, Hernán Garzón G. and Juan C. Hernández

1 Introduction

Zhuang et al. [1], have obtained the following rod equation

utt − c20uxx − c20ann(ux)
n−1uxx −

ν2Jp
s
uttxx = 0, (1)

where s is the cross-section area of the rod, Jp is the polar moment of inertia,
ν the Poisson ratio, c20 = E

ρ
is the square of the linear elastic longitudinal

wave velocity, E is the modulus of elasticity, ρ is the density of the rod, an
material constants of the rod, n is an integer. The case an < 0 is associated
with soft-nonlinear materials (as the majority of metals) while the case an > 0
correspond to hard-nonlinear materials such as rubbers polymers and some
metals [1]. The existence and other studies relative to solitary wave solutions
of (1) have been considered in the case n = 2 and n = 3 by the authors in the
references [1],[2],[3]. More recently, traveling waves solutions for (1) have been
considered in [4],[5].

In this paper, we will use the improved tanh-coth method [6] for construct
traveling wave solutions for the following nonlinear partial differential equation

utt − c20uxx − c20ann(ux)
n−1uxx −

ν2Jp
s
uttxx = F (t), (2)

where F (t) is a forcing term. Clearly, when F (t) = 0 the model reduce to (1),
so that, from the results obtained here we can obtain new exact solutions for
(1). Moreover, as can be seen in [1], when an = 0, under adequate assumptions
(1) can be converted to classical wave equation in a elastic thin rod

utt − c20uxx = 0.

Note that, in this last case, a forcing term can be considered again, so that,
(2) is a good new model to be studied. By simplicity, we consider only the
case n = 2 and n = 3, values derived from the used method here. The general
case in not easy to handle by the technique used by us. Finally, we mentioned
that, the relevance of the study of (2) is associated with the following facts:
First, is a generalized model as we mentioned early, mathematically speaking
this a very important; second, due to the use of a forcing term (depending on
the variable t) we can obtain solutions with several structures, which, from
the physical point of view, can help us to understand in a better way the
phenomena described by the model (1). Finally, el use of a forcing term, as
well as variable coefficients (as in [7][8][9]) allow us to have to a new line of
investigation about of nonlinear models.

2 Traveling wave solutions for Eq. (2)

Assume that (2) has solutions as follows
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{
u(x, t) = v(ξ) +

∫ ∫
F (t)dt,

ξ = x+ λt+ ξ0.
(3)

Here, ξ0 arbitrary constant and λ in known as the wave speed, and ′ is the or-
dinary differentiation. Now, substituting (3) into (2) we obtain the differential
equation

(λ2 − c20)v′′(ξ)− c20an[(v′(ξ))n]′ − ν2Jp
s
v′′′′(ξ) = 0. (4)

Integrating (4) with respect to variable ξ, we have

(λ2 − c20)v′(ξ)− c20an(v′(ξ))n − ν2Jp
s
v′′′(ξ) + k = 0, (5)

being k the integration constant. Now, setting

w(ξ) = v′(ξ), (6)

then (5) reduces to

(λ2 − c20)w(ξ)− c20an(w(ξ))n − ν2Jp
s
w′′(ξ) + k = 0. (7)

Then, taking into account the improved tanh-coth method [6], we seek solu-
tions to (7) by using the expansion

w(ξ) =
M∑
i=0

aiφ(ξ)i +
2M∑

i=M+1

aiφ(ξ)M−i, (8)

where M is a positive integer to be determinate, ai constants and φ(ξ) satis-
fying the Riccati equation

φ′(ξ) = α + βφ(ξ) + γφ(ξ)2, (9)

with solution [10]:

φ(ξ) =


1
γ
(− 1

ξ+ξ0
− β

2
), β2 − 4αγ = 0,

−
√
β2−4αγ tanh[ 1

2

√
β2−4αγξ]−β

2γ
, β2 − 4αγ 6= 0.

(10)

Substituting (8) into (7) and balancing w′′(ξ) with (w(ξ))n we have M + 2 =
nM , or in equivalent form M(n − 1) = 2, so that, the method allow us to
consider only the cases n = 2 or n = 3. If n = 2, we have M = 2 and if n = 3
then M = 1.
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2.1 First case

We consider the first case

n = 2, M = 2.

With this values, (8) reduces to

w(ξ) = a0 + a1φ(ξ) + a2φ(ξ)2 + a3φ(ξ)−1 + a4φ(ξ)−2. (11)

Now, substituting (11) into (7) (with n = 2) leads us to an algebraic system
in the unknowns ai, (i = 0, . . . , 4), α, β, γ, λ and k. Using the Mathematica
software, we obtain a lot of solutions of the resultant system, however, for sake
of simplicity we consider only the following (the most general of alls):



a0 =
±
√
−4c20ank+16α2γ2(

ν2Jp
s

)2−8αβ2γ(
ν2Jp
s

)2+β4(
ν2Jp
s

)2−8αγ( ν
2Jp
s

)−( ν
2Jp
s

)β2

2c20an
,

a1 = −6βγ(
ν2Jp
s

)

c20an
, a2 = −6γ2(

ν2Jp
s

)

c20an
,

a3 = a4 = 0,

λ =

√
c20 ±

√
−4c20ank + 16α2γ2(ν

2Jp
s

)2 − 8αβ2γ(ν
2Jp
s

)2 + β4(ν
2Jp
s

)2

(12)



a0 =
±
√
−4c20ank+16α2γ2(

ν2Jp
s

)2−8αβ2γ(
ν2Jp
s

)2+β4(
ν2Jp
s

)2−8αγ( ν
2Jp
s

)−( ν
2Jp
s

)β2

2c20an
,

a1 = −6βγ(
ν2Jp
s

)

c20an
, a2 = −6γ2(

ν2Jp
s

)

c20an
,

a3 = a4 = 0,

λ = −
√
c20 ±

√
−4c20ank + 16α2γ2(ν

2Jp
s

)2 − 8αβ2γ(ν
2Jp
s

)2 + β4(ν
2Jp
s

)2

(13)



a0 =
±
√
−4c20ank+16α2γ2(

ν2Jp
s

)2−8αβ2γ(
ν2Jp
s

)2+β4(
ν2Jp
s

)2−8αγ( ν
2Jp
s

)−( ν
2Jp
s

)β2

2c20an
,

a1 = a2 = 0,

a3 = −6αβ(
ν2Jp
s

)

c20an
, a4 = −6α2(

ν2Jp
s

)

c20an
,

λ =

√
c20 ±

√
−4c20ank + 16α2γ2(ν

2Jp
s

)2 − 8αβ2γ(ν
2Jp
s

)2 + β4(ν
2Jp
s

)2

(14)
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

a0 =
±
√
−4c20ank+16α2γ2(

ν2Jp
s

)2−8αβ2γ(
ν2Jp
s

)2+β4(
ν2Jp
s

)2−8αγ( ν
2Jp
s

)−( ν
2Jp
s

)β2

2c20an
,

a1 = a2 = 0,

a3 = −6αβ(
ν2Jp
s

)

c20an
, a4 = −6α2(

ν2Jp
s

)

c20an
,

λ = −
√
c20 ±

√
−4c20ank + 16α2γ2(ν

2Jp
s

)2 − 8αβ2γ(ν
2Jp
s

)2 + β4(ν
2Jp
s

)2

(15)
With respect to (12) the solution for (9) is then given by (10), with α, β and γ
arbitrary constants. So that, taking into account (11) the respective solution
to (7) reduces to

w(x, t) = a0 + a1φ(ξ) + a2φ(ξ)2, (16)

where φ(ξ) is given by (10), a0, a1 and a2 the values given by (12). Finally, by
(6) and (3) the solution for (2) have the form

u(x, t) =

∫
w(ξ)dξ +

∫ ∫
F (t)dt, (17)

where

ξ = x+(

√
c20 ±

√
−4c20ank + 16α2γ2(

ν2Jp
s

)2 − 8αβ2γ(
ν2Jp
s

)2 + β4(
ν2Jp
s

)2)t+ξ0,

with ξ0 arbitrary constant. A similar solutions can be obtained for (2) by
using the values given in (13). Now, following the same steps used with (12)
we obtain the following solution for (2) using the values in (14)

u(x, t) =

∫
w(ξ)dξ +

∫ ∫
F (t)dt, (18)

where

w(x, t) = a0 + a3φ(ξ)−1 + a4φ(ξ)−2,

and a0, a3 and a4 given by (14), φ(ξ) the solution of (7) (the same of the
previous case) and

ξ = x+(

√
c20 ±

√
−4c20ank + 16α2γ2(

ν2Jp
s

)2 − 8αβ2γ(
ν2Jp
s

)2 + β4(
ν2Jp
s

)2t+ξ0.

As before, similar solution is obtained using (15).
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2.2 Second Case

We consider the case

n = 3, M = 1.

With this values, (8) reduces to

w(ξ) = a0 + a1φ(ξ) + a2φ(ξ)−1. (19)

We substitute (19) into (7) (with n = 3). As in the previous case, we obtain
an algebraic system in the unknowns ai, (i = 0, . . . , 2), α, β, γ, λ and k. Using
the Mathematica software, we obtain a lot of solutions of the resultant system,
however, we consider only the following


a0 = k

2a1a2c20an
, α = − ia2

√
c20
√
an

√
2

√
(
ν2Jp
s

)
, β = − ik

√
2a1a2
√
c20
√
an

√
(
ν2Jp
s

)
,

γ = − ia1
√
c20
√
an

√
2

√
(
ν2Jp
s

)
, λ = ±

√
8a31a

3
2c

2
0a

2
n+4a21a

2
2c

2
0an+k

2

2a1a2
√
c20
√
an

.

(20)

Other solution of the algebraic system is obtained, changing the sign of α, β
and γ. The other values are the same, so that, for sake of simplicity, we omit
here.

With the values given in (20), (10) reduces to (for β2 − 4αγ 6= 0)


φ(ξ) =

−
k+ia1a2

√
c20
√
an

√
(
ν2Jp
s

)

√
4a1a2c

2
0an

(
ν2Jp
s )

− k2

a21a
2
2c

2
0an(

ν2Jp
s )

tanh

 1
2
x

√
2a1a2c

2
0an

(
ν2Jp
s )

− k2

2a21a
2
2c

2
0an(

ν2Jp
s )


2a21a2c

2
0an

.

(21)
In this order of ideas (19) reduces to

w(ξ) =
k

2a1a2c20an
+ a1φ(ξ) + a2φ(ξ)−1, (22)

where φ(ξ) is given by (21), a1 and a2 arbitrary constants, and ξ = x +

(±
√

8a31a
3
2c

2
0a

2
n+4a21a

2
2c

2
0an+k

2

2a1a2
√
c20
√
an

)t + ξ0. Therefore, as in the first case, taking into

account (6) and (3), the solution for (2) take the form

u(x, t) =

∫
w(ξ)dξ +

∫ ∫
F (t)dt, (23)

being w(ξ) as in (22).
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3 Results and Discussion

We have considered solutions for (2) of the type soliton. However, it is clear
that varying the sign of β2(t) − 4α(t)γ(t) and the value of ξ0, we can obtain
other type of solutions, particulary, periodic solutions. It can be see in a
better way, seeing the reference [10]. In the reduction made to obtain (5),
some authors (as in [5]) taken the integration constant as zero from which,
the solution obtained by them loss generality [11]. This is not the case in this
work.

(a) u1 (b) u2

Figure 1: u(x, t)

The figure u1 is the solution (17) for the values: c20 = 9, an = 1, k = −1,
ξ0 = 0, β = 3, γ = 1, α = 1, F (t) = 0, and (x, t) ∈ [−10, 10]× [−10, 10]. The
Figure u2 correspond to same values, but now F (t) = sin t.

4 Conclusion

The improved tanh-coth have been used to solve an elastic rod equation with
forcing term. Periodic and soliton solutions was formally derived, from which,
solutions for the homogeneous case are obtain (see fig. u1). The solutions
here derived are new, and several structures for them can be considered using
the forcing term. It clear that the model considered here can be used in
applications of physics and engineering, and it can be compared with non-
homogeneous models studied in classical books of differential equations. The
use of a forcing term in nonlinear models such as the studied here, open us a
new line of investigation in the nonlinear analysis.
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