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Abstract

In this work we solved the nonlinear one-dimensional short pulse equa-
tion using lattice-Boltzmann method and a d1q3 velocity scheme. Also,
we apply the Tanh solitary wave method, so that, we find several fami-
lies of solutions.
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1 Introduction

The short pulse equation (SPEq) is a nonlinear theory describes electromag-
netic ultra short pulses in optical linear and nonlinear media[1]-[3]. The so-
lution of many differential equations has been skillfully addressed, e.g., using
lattice-Boltzmann, [4]-[9], and also the so-called solitary wave methods, among
them one of the most popular, the so-called Tanh [8].
We present the paper as follows. In section (2), we presents the lattice-
Boltzmann model applied to the SPEq. In addition, section (3) gives the
moments of the particle distribution. Also, in section (5), we provide the equi-
librium distribution function. Besides, in Section (6), we use the Tanh method,
[10], working to accomplish solitary wave solutions of the SPEq. Lastly, in sec-
tion (7), we give results and conclusions.
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2 The lattice Boltzmann model

The lattice-Boltzmann equation, [5]-[6], is:

fi(x+ vxδt, t+ δt)− fi(x, t) = −1

τ
[fi(x, t)− f eqi (x, vx)] + Ξi(x, t) (1)

Which is given in the B.G.K. approximation, [9], and Ξ(x, t) is the source
term [7]-[8]. Expanding in a Taylor series at second order the left-hand side of
eq.(1), and doing a perturbative expansion in the spatial and time derivatives,
and the particle distribution function, as:

∂

∂x
= ε

∂

∂x1
,

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
, fi = f 0

i + εf 1
i + ε2f 2

i (2)

Using eqs. (2) in eq. (1), and assuming the source term as Ξi(x, t) = ε2φi, [7],
we have:

−1
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(f 0
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The terms at order ε in eq. (3) and assuming f 0
i = f eq, we have:
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[
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]
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The terms at order ε2 in eq (3), we get:
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Using eq. (4) and eq. (5), we have
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Figure 1: The lattice velocity scheme d1q3.

3 Moments of the distribution function

The moments of the distributions are defined as:

−∂ρ
∂x

=
∑
i

(
f 0
i

)
,

1

6

∂ρ3

∂x
=
∑
i

(
vx,if

0
i

)
(7)

Π0
α,β =

∑
i

vi,αvi,βf
0
i = δα,βλρ (8)

∑
i

(
fki
)

= 0, k > 0;
∑
i

(
vx,if

k
i

)
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4 The Short Pulse equation

Summing on i in eq. (6) and using eq. (7) and assuming
(
∂
∂x
vx,i

)
= 0, and

ε
∑
i φi = (b + 1)λρ = ΛΦ, [8]. Where b is the dimension of the discretized

velocity space. Then, we get:

∂2ρ

∂x∂t
=

1

6

∂2(ρ3)

∂x2
+ ΛΦ (10)

If we consider

ΛΦ = ρ (11)

Therefore, eq. (12) is

∂2ρ

∂x∂t
=

1

6

∂2(ρ)3

∂x2
+ ρ (12)
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5 Distribution function d1q3

We use the d1q3 velocity scheme considering eα = c{0, 1,−1} [5]-[6], as:

f
(eq)
i,α,β =


− λ
c2
ρ− ∂ρ

∂x
→ i = 0

1
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− 1
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 (13)

The derivative ∂ρ
∂x

is taken with the backward difference discretization scheme

∂ρ(x, t)3

∂x
→ 3ρ(x, t)2

ρ(x, t)− ρ(x−∆x, t)

∆x
(14)

6 The tanh method

We start using the next trasformation:

u = x− kt (15)

∂
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= −k d
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;
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Then, eq. (??)

k
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6
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Now, we balance the highest-order linear derivative with the highest order
nonlinear terms in eq. (26). We get:

∂2(ρ)3

∂u2
→ ρ→ 3m+ 2 = m→ m = −1 (18)

Then, we do the next transformation:

ρ = (v)−1 (19)
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Replacing in eq. (17), and multiplying by v5, we get

8(kv2 + 1)(
dv

du
)2 − (4kv3 + v)

d2v

du2
+ 4v4 = 0 (22)

Now, we introduce a new independent variable [10]:

Y (x, t) = tanh (u) (23)

Then, the first and second derivatives of u, are:

d
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d

dY
;

d2
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= −2Y (1− Y 2)

d
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The solutions are postulated as:

v(ξ) =
q∑
i=1

aiY
i (25)

Then, replacing in eq. (22)
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Now, we balance the highest-order linear derivative with the highest order
nonlinear terms in eq. (26). We get:

Y 4(
dv

dY
)2 → v4 → 2m+ 2 = 4m→ m = 1 (27)

v = a0 + a1Y,→
dv

dY
= a1,→

d2v

dY 2
= 0 (28)

we have in eq. (26):

8(k(a0 + a1Y )2 + 1)((1− Y 2)a1)
2 + 4(a0 + a1Y )4 (29)

−(4k(a0 + a1Y )3 + (a0 + a1Y ))(−2Y (1− Y 2)a1) = 0



20 F. Fonseca

Figure 2: The spatiotemporal, LB, evolution of ρ(x, t) using a d1q3 lattice velocity,
for two initial profiles given by eq. (32).

Doing some algebra

a0 = 0, a11,2 = ±
√

5

4− 2k
, a13,4 = ±i

√
1

8− 4k
(30)

a15,6 = ±
√

7

4k
, a17,8 = ±i

√
1

8k
(31)

Then, we find 8 families of solutions.

7 Conclusions

This work presents the LB and tanh methods applied to the one-dimensional
short pulse equation. In fig. (2), we show the temporal evolution of two initial
profile given by eq. (32). The solution is:

ρi = tanh−1 (a1,i tanh (x− kt)) (32)

We find 8 families of solutions for the SPEq using tanh method [10]. The
extension to higher dimensions is straighforward.
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