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Abstract

In this work we solved the nonlinear one-dimensional short pulse equa-
tion using lattice-Boltzmann method and a d1¢3 velocity scheme. Also,
we apply the Tanh solitary wave method, so that, we find several fami-
lies of solutions.
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1 Introduction

The short pulse equation (SPEq) is a nonlinear theory describes electromag-
netic ultra short pulses in optical linear and nonlinear media[l]-[3]. The so-
lution of many differential equations has been skillfully addressed, e.g., using
lattice-Boltzmann, [4]-[9], and also the so-called solitary wave methods, among
them one of the most popular, the so-called Tanh [8].

We present the paper as follows. In section (2), we presents the lattice-
Boltzmann model applied to the SPEq. In addition, section (3) gives the
moments of the particle distribution. Also, in section (5), we provide the equi-
librium distribution function. Besides, in Section (6), we use the Tanh method,
[10], working to accomplish solitary wave solutions of the SPEq. Lastly, in sec-
tion (7), we give results and conclusions.
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2 The lattice Boltzmann model

The lattice-Boltzmann equation, [5]-[6], is:

filx + v, 0t,t + 0t) — fi(x,t) = —— [fl(x t) — fi%(x,v,)] + Zi(z, t) (1)

Which is given in the B.G.K. approximation, [9], and =(z,t) is the source
term [7]-[8]. Expanding in a Taylor series at second order the left-hand side of
eq.(1), and doing a perturbative expansion in the spatial and time derivatives,
and the particle distribution function, as:
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Using egs. (2) in eq. (1), and assuming the source term as Z;(z,t) = €*¢;, [7],
we have:
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The terms at order € in eq. (3) and assuming f? = f°¢, we have:
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The terms at order €2 in eq (3), we get:
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Using eq. (4) and eq. (5), we have
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Figure 1: The lattice velocity scheme d1g3.

3 Moments of the distribution function

The moments of the distributions are defined as:
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Z(ff) =0,k > 0; Z(vmff) =0,k>0 (9)

4 The Short Pulse equation

Summing on ¢ in eq. (6) and using eq. (7) and assuming ((%vm) = 0, and
> = (b+ 1) p = A®, [8]. Where b is the dimension of the discretized

velocity space. Then, we get:

Pp _ 10°(p%)
dxot 6 Ox2

+ AD (10)
If we consider

AD =p (11)
Therefore, eq. (12) is

Pp _ 19°(p)°
drot 6 Ox2

+p (12)
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5 Distribution function dlq3

We use the d1¢3 velocity scheme considering e, = ¢{0,1, —1} [5]-[6], as:
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The derivative % is taken with the backward difference discretization scheme
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6 The tanh method
We start using the next trasformation:
u=ux—kt (15)
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Then, eq. (?77?)
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Now, we balance the highest-order linear derivative with the highest order
nonlinear terms in eq. (26). We get:
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Then, we do the next transformation:

—p—=3m+2=m—>m=—1 (18)

p= ()" (19)
Then
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Replacing in eq. (17), and multiplying by v°, we get

2

dv d“v
8(kv® + 1)(@)2 — (4kv® + ’U)w + 40t =0 (22)

Now, we introduce a new independent variable [10]:

Y (x,t) = tanh (u) (23)

Then, the first and second derivatives of u, are:
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The solutions are postulated as:
q .
v(€) = aY’ (25)
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Then, replacing in eq. (22)
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Now, we balance the highest-order linear derivative with the highest order
nonlinear terms in eq. (26). We get:

dv
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we have in eq. (26):
8(k(ag + a1 Y)* + 1)((1 — Y*)ay)? + 4(ag + a,Y)* (29)

—(4k(aop + a1Y)? + (ag + a,Y))(—2Y (1 — Y?)a;) = 0
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Figure 2: The spatiotemporal, LB, evolution of p(z,t) using a d1¢3 lattice velocity,
for two initial profiles given by eq. (32).

Doing some algebra

) . 1
CLOIO, a11,2::|: m, CL13’4::|:’Z S — 4k (30)

7 1
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Then, we find 8 families of solutions.

CL1576 = :|:

7 Conclusions

This work presents the LB and tanh methods applied to the one-dimensional
short pulse equation. In fig. (2), we show the temporal evolution of two initial
profile given by eq. (32). The solution is:

pi = tanh™" (a;; tanh (z — kt)) (32)
We find 8 families of solutions for the SPEq using tanh method [10]. The

extension to higher dimensions is straighforward.
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