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Abstract

The purpose of this paper is to present the capabilities of the conju-
gate gradient methods based on the theoretical analysis of the gradient
method, the precursor of the descent methods. It indicates the geomet-
ric differences of these and the improvements made in the search for
the optimal value of an objective function. Different test systems are
proposed to solve, in order to obtain a solution that can determine the
speed of convergence of the conjugate address proposed by Liu-Storey
and Dai-Yuan [1].
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1 Introduction

Optimization is an area of applied mathematics that allows modeling and solv-
ing real-life problems; its principles and methods are used to solve quantitative
problems in disciplines such as physics, biology, engineering and economics.
The main objective of optimization is the best use of available resources to
accomplish a certain task [2]. It includes the study of optimality criteria for
problems, the determination of algorithmic methods of solution, the study of
the structure of such methods, and computer experimentation with methods
both in test conditions and in real-life problems.

Within the algorithms of unrestricted optimization is the gradient method
(or the most pronounced descent method), which seeks to minimize quadratic
objective functions, from geometrically descendant search directions, this method
is of theoretical interest and has been the pillar for the construction of the
methods of the descent as it is the method of the conjugate gradient, which
possesses a high convergence and is used for the minimization of objective
functions with many associated dimensions.

2 Quadratic forms

The squared function is defined as the scalar functions defined on a vector
space of dimension n in the following way:

f(x̄) = 1
2

(
a11x

2
1 + a12x1x2 + a21x2x1 + · · ·+ annx

2
n

)
−(b1x1 + b2x2 + · · ·+ bnxn)+c

f(x̄) = x̄T


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

 x̄− [b1 b2 · · · bn]T x̄+ c

f(x̄) = 1
2
x̄TAx̄− b̄T x̄+ c, (1)

where c is a constant value and x̄ = [x1 x2 · · · xn]T .

We have that the eigenvalues of the square symmetric matrix A, hessian
of f , define the location of the optimal point and the classification of the
quadratic function, that is: Let λi (with i = 1, 2, . . . , n) be the eigenvalues of
the matrix A associated with the quadratic function. The classification of a
quadratic form and its optimal is:
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i) Positive definite quadratic form if λi > 0 with i = 1, . . . , n. It has a global
minimum.

ii) Negative definite quadratic form if λi < 0 with i = 1, . . . , n. It has a global
maximum.

iii) Positive semi-definite quadratic form if λi ≥ 0 with i = 1, . . . , n. It has
infinite minimum points.

iv) Positive semi-definite quadratic form if λi ≤ 0 with i = 1, . . . , n. It has
infinite maximum points.

v) Quadratic form indefinite if ∃i, j : λi > 0. It has a saddle point.

Figure 1: Graphic definition of a quadratic form in R3.

3 Gradient method

The gradient method is a descent method in which you begin to iterate at an
arbitrary point and continue following the line of maximum descent, obtaining
a succession of points until you get a point close enough to the solution [3].
This method is used to solve optimization problems without restrictions of
type:

min
x∈Rn

f(x̄), (2)

where f : Rn → R is a quadratic, continuous and differentiable function, its
associated matrix A is positive definite. The method starts from an initial
position x̄0 generating a sequence of points x̄k according to the equation:

x̄k+1 = x̄k − αkḡk, (3)
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where αk is the descent parameter, which indicates the step length and is
obtained from the minimization:

f(x̄k − αkḡk) = min
α∈R

f(x̄k − αkc)

d

dα
f(x̄k − αkḡk) = 0

αk =
(b̄− Ax̄k)T ḡk

(ḡk)T ḡk
,

(4)

and ḡk is the gradient, direction of maximum descent in x̄k of the quadratic
function f

ḡk = ∇f(x̄k) = −(b̄− Ax̄k) (5)

The algorithm of the method is as follows:

i) Enter the quadratic function f(x̄).

ii) Consider a point x̄0. Do k = 0.

iii) Choose the direction of maximum descent (gradient):

ḡk = ∇f(x̄k)

iv) Calculate the descent parameter:

αk =
(b̄− Ax̄k)T ḡk

(ḡk)T ḡk

v) Do x̄k+1 = x̄k − αkḡk

vi) Check convergence. If → ||ḡk|| < ε the method is stopped and x̄k it is the
solution. Otherwise, do k = k + 1 and repeat from 4.

4 Conjugate Gradient Method

The conjugate gradient method is a particular case of descent method, the lat-
ter is especially indicated for the resolution of dispersed systems (linear systems
whose coefficient matrix has a significant number of zeros), such systems fre-
quently arise when the equations are solved numerically in partial derivatives.
This method in general manages to save memory and operations by operat-
ing only on non-zero elements. The basic idea behind the conjugate gradient
method is to construct a base of orthogonal vectors and use it to search the
solution more efficiently. Such a procedure generally would not be advisable
because the construction of an orthogonal base using the Gramm-Schmidt
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procedure requires, in selecting each new element of the base, to ensure its
orthogonality with respect to each of the vectors previously constructed. The
great advantage of the conjugate gradient method is that when using this pro-
cedure, it is enough to ensure the orthogonality of a new member with respect
to the last one that has been built, so that this condition is automatically
fulfilled with respect to all the previous ones [4].

The conjugate gradient method can also be used to solve unrestricted opti-
mization problems such as energy minimization, among others, in addition to
exceeding the most pronounced descent method, as can be seen in Figure 2.

Figure 2: Comparison of descent directions, steepest descent method (green),
conjugate gradient (red).

5 Conjugated Gradient Liu-Storey

The conjugate gradient method is a useful and powerful approach to solve
large scale minimization problems. Liu and Storey developed a conjugate gra-
dient method, which has good numerical performance but not a result of global
convergence in traditional line searches such as Armijo, Wolfe and Goldstein
line searches. The algorithm of the present method is the same as the one
proposed above, highlighting only the conjugate gradient parameter formu-
lated in (6) containing the parameters of conjugate direction, gradient of the
quadratic function, present and previous and the difference of these parameters
previously proposed in the algorithm of the conjugate gradient [5].

βk = −(ȳk)T ḡk+1

(ḡk)T d̄k
(6)
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6 Conjugated Gradient Dai-Yuan

This method produces a descent search direction in each iteration and con-
verges globally whenever the line search satisfies Wolfe’s inaccurate conditions.
Dai and Yuan performed numerical experiments for two combinations of the
new method and the Hestenes-Stiefel conjugate gradient method, obtaining
similar convergence capabilities. The algorithm of the present method is equal
to the one proposed above, highlighting only the conjugate gradient param-
eter formulated in (7) containing the gradient of the quadratic function, the
difference of gradients and the difference of positions, parameters previously
proposed in the conjugate gradient algorithm [6].

βk = −(ḡk+1)T ḡk+1

(ȳk)T s̄k
(7)

7 Test Systems

To check the effectiveness of the method, 4 systems of 2 and 3 variables are
selected, each of them described by their associated matrices A and b according
to the quadratic form proposed in equation (1). For the stop criterion, ‖ḡk‖ <
ε = 10−3 is used and as starting point x̄0, which is a column vector with n
rows and all its components equal to 1. Now, the proposed system for n = 2
is

A =

(
1 −2
−2 2

)
, B =

(
4
8

)
Therefore, the results (n = 2) obtained are X = [X1 X2]

x1 = [1.0000 1.0000; −62.5714 − 100.7143; −12.0000 − 8.0000];

d = 1.0e+ 03 ∗ [0.0050 0.0080; 1.2860 2.3576; 0.0000 − 0.0000; ];

Gradient

g = [5.0000 8.0000; −134.8571 84.2857; 0.0000 − 0.0000];

Constants
alpha1 = [−12.7143; 0.0393; ];

beta1 = [−22.3499; 0.0000; ];

s = [−63.5714 − 101.7143; 50.5714 92.7143; ];

The graphs of figures 3 and 4 show the descent directions of the two opti-
mization methods for spaces in 2 and 3 dimensions respectively. In the graphs
it can be seen that the method proposed by Liu-Storey calculates more di-
rections and points of solution in comparison with the method proposed by
Dai-Yuan. In figures 4 and 5, the norm Rn was plotted for being n = 2 and
n = 3 dimensions respectively, and it can be concluded that the Dai-Yuan
method converges rapidly compared to the method proposed by Liu-Storey.
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Figure 3: Test system for n = 2. Directions Red Dai-Yuan, Blue Liu-Storey.

Figure 4: Gradient norm vs. Iterations. Red Dai-Yuan, Blue Liu-Storey.

Figure 5: Gradient norm vs. Iterations: Difference
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8 Conclusion

Due to its use of conjugate search addresses the Liu-Storey method should con-
verge on N interactions or less for the case of a poorly conditioned quadratic
function (those whose contours are highly eccentric or distorted) the method
may need more interactions to converge . The reason for this is the cumu-
lative effect of rounding errors. To avoid these problems, it is recommended
to reinitialize the method periodically after a certain number of steps, taking
the steep descent direction as the new search direction. Despite their limita-
tions, the methods proposed by Dai-Yuan and Liu-Storey are far superior to
the steepest descent method and to pattern search methods.
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