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Abstract 

 

This paper introduces a new data structure useful to represent objects or data sets 

with several order relations between their elements. A specific case is the polygons 

that will be analyzed in this paper. Polygons are objects often used in Computer 

Graphics and their operations have a high computational cost; this data structure 

was implemented in Java language with a performance O(n*log(n)) corresponding 

to building and O(log(n)) to searching. The complexity analysis for insertion and 

searching routines are explained. 
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1 Introduction  

 

There are data sets with elements that can establish several order relations between 

them. Some of these objects are the intervals. This paper introduces a new data 

structure that models this kind of sets from the point of view of their order relations 

by reducing the computational cost in their basic operations.  
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The paper will be organized as follows: first, the motivations and the context where 

the main ideas arise from will be described. Second, some definitions will be 

provided and some data structures comparable with the proposal will be described. 

Third, the data structure and their implementation will be specified. Finally, a 

complexity analysis will be done and the conclusions will be drawn. 

 

2 Motivation  
 

This proposal arises from a project of image processing where it was required to 

continuously determine if a point was inside a polygon or not. The most popular 

algorithm for this proposal is based on the Jordan curve theorem through a 

complexity time O(n) [3]. 

 

Currently, the polygons are represented computationally by a point succession 

saved in a vector where each element is the next vertex. Any search would always 

require a complexity O(n) because this data structure has no order criterion. 

 

Fig. 1.  Projection of a polygon on the X-axis. 

 

The polygons can be decomposed into a couple of set of intervals which are the 

projection on each coordinate axis. Fig. 1 shows a polygon projected on the x-axis 

making intervals, where both R1x and R7x are displaced both with regard to R6x 

and R1x is included in R7x. Now, if a set of data is ordered, it is easy to find a key 

on the inside, but ordering is a preprocessing. Space partitioning is a method used 

in Computer Graphics for preprocessing the Euclidean space by dividing it in small 

pieces like rectangles stored in a searching tree. This technique has played an key 

role to improve the performance in operations like ray tracing, and it have generated 

several proposals of data structures very powerful [4].   

 

The next idea was to build a data structure with an insertion procedure like the 

insertion sorting algorithm. Implementing a structure sorted under two orders is a 

complex task because it is necessary to build and to dynamically link structures and 

no nodes as commonly is accustomed. These tasks will be explained further on. The 

great advantage of this strategy is to avoid the preprocessing and to extend the  
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abstraction of a polygon. The complexity time to build these sort of data structures 

is O(n*log(n)), and O(log(n)) for searching. 

 

3 Definitions 
 

A.  Order relation 

 

If the elements of a set could be compared according to common properties that 

identify their magnitude between them, it is said that the set is ordered, and the 

specification on how to compare among themselves is named Order Relation [5]. 

Order relations could be classified into Partial, Total, and Quasi-Order. The first 

two meet the properties reflexive, antisymmetric, and transitive; the difference is 

that the second satisfies xRy or yRx. The last are attributable to the irreflexive and 

transitive properties [5]. 

 

B.  Double order relation 

 

When comparing two elements of a data set and it is possible to establish two 

different kinds of order relations, it is said that the data set has a Double Order 

Relation. For example, the intervals are attributable to two order relations: Partial 

order (Inclusion) and Quasi-order (Displacement). 

 

4 Double Order Structure, Description and Composition 
 

A data structure is a way to organize the information in a computer to be used 

efficiently. They can be used to arrange elements under an order criterion, but it 

must be only one because the conventional data structures are not able to classify 

elements with intrinsic several orders like the intervals. Segment trees and interval 

trees are tries to represent intervals through data structures, but they don’t respect 

their implicit order relations [7].  

 

Before describing how a data structure with two orders would be, a sort of list called 

skiplist will be explored; it has some characteristics advisable in a structure ordered 

under two different criteria. 

 

A.  Linked List with Skips (Skiplist) 

 

It is a variant of the linked list composed of several lists organized in layers which 

have forward skips defined randomly. Each subsequent layer points elements from 

the last layer with a probability p. The last (or first) layer points all the elements. A 

search begins in the highest (or lowest) level passing through the next levels until 

it finds the key.  If the list has a moderated number of levels, the search could be 

done in ))(( nLogO [8]. Fig. Nº 2 shows a Skiplist in which novel items are added. 
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Fig. 2.  A skiplist with three levels; each node has a pointer towards the next node 

in accordance with the skip determined in the level. 

 

B.  Double Order Structure (DOS) 

 

It is a structure that organizes the elements contained in it under two different 

orders. Fig. 3 shows two of these structures corresponding to the intervals projected 

on the coordinated axes by the polygon in Fig. 1. The horizontal nodes are ordered 

by Displacement and the vertical ones by Inclusion. Like the Skiplist, these 

structures grow in levels but by nodes which can contain zero or multiple levels. 

The top level is called the root-level. 

 

 

 

 

Fig. 3. Two Double Order Structures representing the intervals projected by the 

polygon in Fig 1 for each coordinated axis: X (left image) and Y (right image). 

Both have two views, horizontally with Quasi-order and vertically with Partial 

Order. 

 

 

5 Implementation 
 

A Double Order Structure (DOS) is composed of three elements: a flag, a Node-

Array and a DOSPointer-Array (see Fig. 4). The first element detemines the kind 

of order relation in the level, the second contains a list of keys ordered under the 

relation specified by flag, and the third is a pointer towards an array of  DOS’s. 
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Fig. 4. Anatomy of a Double Order Structure. 

 

 

The ADT in Fig. 5 shows the flag modelled by boolOrder, the  Node-Array by the 

arrayR array, and the Pointer-Array by the dosinner array. The implementation 

introduces the variable AB which is the scope of the keys in arrayR and is 

interpreted as the level scope. Each dosinner[I] represents a set of levels under 

Node-Array[I]  with an order criterion opposite to its instance.  Note that each 

dosinner[I] is a linked list of structures ordered by inclusion. Other variables that 

appear were used for the specific purposes. 

 

Fig. 5.  Abstract Data Type (ADT) of the Double Order Structure implementation. 

 

 

The DOS implementation included insertion and searching operations, except for 

remove because it was not necessary for the application; however, it can be 

demostrated that this operation could be implemented with  good performance. The 

core of the implementation was the search, for which a couple of variations of the 

binary search were built adequate for intervals. 
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A.  Adding a New Interval 

 

Suppose there is a DOS where every arrayR are under Displacement (horizontal 

order), and all nodes of dosinner are under Inclusion (vertical order). Each time one  

key is inserted, the method addNewLine is invoked; that, in turn, calls 

binarySrchLFO which is the implemetation of binary search algorithm for intervals 

ordered under Displacement. The search returns a pair <code-op, index> 

determining one of the following possibilities: 

 

¶ <0-insertion, index>: No interval includes the interval processed. 

¶ <1-included, index>: One interval includes the interval processed. 

¶ <2-inclusion, index>: There is one or more intervals included by the interval 

processed. 

 

<0-insertion, index>. It occurs when the index indicates where the new element 

should be inserted. Fig. 6 (steps 4 and 5) shows the insertion process of a new key 

into the DOS-Y structure where the index results are equal to -1, then R5 will be 

inserted as a new header of the top level. 

 

Fig. 6.  Inserting keys into the DOS-Y structure. This operation is based on the 

polygon in Fig. 1. 

 

 

<1-included, index>. Supposing this possibility happens, a key in the current level 

will include the interval to insert. Let I be the index resulting, then the key located 

in arrayR[I]  includes the new interval, and dossinner[I] would be a pointer to a 

structure with levels ordered by Inclusion. In this state, the new element is moved 

to dosinner[I] and the routine binarySrchLSO, associated with this structure, is 

executed. binarySrchLSO is the implementation of binary search algorithm for 

intervals ordered under Inclusion. 

 binarySrchLSO routine determines the level where the new interval should be 

inserted. It is important to mention that dosinner[I] is ordered from the greatest to 

lowest domain, thus, dosinner[I][K]  includes all the keys belonging to levels 

greater than K. If there is any level that includes the item, the result will be an index 

J which corresponds to the top level that includes that item, then this will be inserted 

into the structure dosinner[I][J] . The next step consists in moving the new element  
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to the structure pointed by dosinner[I][J]  with another called to addNewLine in this 

context  (see Fig. 6, steps 3 and 4). 

 

If the result of binarySrchLSO is an index greater than dosinner[I] size, then a new 

level will be created at its tail by calling addNewLine in this context. 

binarySrchLSO checks two special cases before carrying out its process. The first 

verifies if the scope of  the head (AB variable) is included in the new element; then 

a new level is created at the top of dosinner[I], that is, it will be the new head. The 

second case verifies if the new element is displaced with regard to the scope of the 

head (AB variable); then the new element is inserted in the head (dosinner[I][0] ) 

(see Fig. 6, steps 5 and 6). 

 

Note.  If any structure pointed by a dosinner[I][J]  runs an addNewLine operation, 

this will rebuild the keys under Displacement (see Fig. 6, steps 3 and 4). 

 

Fig. 7.  Inserting keys into the DOS-X structure. This operation is based on the 

polygon in Fig. 1. 

 

<2-inclusion, index>. This special case occurs when the new key includes one or 

more intervals of the current  level. The operation requires two steps. The first is to 

replace all intervals included by the new key and then move them to a new level 

created under the new key. Fig. 7 (steps 5 and 6) shows an example where R6 

interval is added into the root structure but the R4 and R5 intervals are included 

inside it. 

 

B.  Verifying if a point is inside a polygon (ray tracing method). 

 

The ray casting algorithm [1] states that if a line traced from a point intersects an 

even number of sides of a polygon, then the point is outside it. The implementation 

was performed following these concepts, but it was not necessary to make the 

intersections with all sides of the polygon, not even in the worst case. 

 

The routine searchLinesAbovePoint finds all the intervals intersected by an 

“imaginary” vertical line (using  DOS-X structure) or a horizontal line (using DOS-

Y structure).  searchLinesAbovePoint results in an index I on the root level as a  
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starting point to search nodes forwards and backwards, in arrayR, that include the 

point. For example in Fig. 1, if the point is in middle of b and c, the result will be 0 

which is the index of R7 in arrayR; then an expansion operation that includes R2 

will be executed. For each key found, their levels will be explored for searching 

new intervals which could include the point.  

 

During the process, the intervals above the point (or to the right, with DOS-Y)  are 

counted, according to the ray casting algorithm [1]. It is known that this method has 

several problems with the vertex, but this implementation overcomes them. 

 

C.  Verifying if a point is inside a polygon (novelty method) 

 

This method requires taking into account the sense used to create the polygon. Fig. 

1 shows that the polygon is created clockwise. According to this, whatever point 

located on the right of any side will be inside the polygon. Thus, it is enough to find 

the nearest line to the point and verify if the point is located on the right side or on 

the left side. 

 

The routine searchNearestPoint was built to find the two nearest lines to the point: 

below and above (left and right hand using DOS-Y), but it would be enough with 

one of them. The program looks for keys using binary searching like 

searchLinesAbovePoint. The expansion process is also executed but the process is 

less intensive because searchNearestPoint only calculates the distance from the 

point to the line, discarding or replacing the current. 

 

6 Complexity Analysis 
 

A temporal analysis on the operations described before was done. These operations 

are: addNewline, searchAboveLinesPoint, and searcNearestLinePoint. The former 

is, technically, an insertion operation and the two latter are used to look for keys. 

 

A.  Insertion process (addNewline) 

 

Fig. 7 shows step by step how the structure DOS-X is built. Initially, it is empty, 

then R1 is inserted in the root and the subsequent insertions looks for keys included 

in the new element or vice versa; this process is executed by binary searching. If 

the novel item contains some intervals of the structure, an expansion process is 

executed (see last section) to determine what additional adjacent intervals are 

included in this item. The worst case can occur only one time: when all the intervals 

are ordered by displacement and the new key contains all of them, usually in convex 

polygons. 

More formally, it will imply that each structure by level is under Displacement 

order and the levels under Inclusion, there are k keys (lines) in each level and b 

levels for each key with a total number of keys N= k*b*k*bé; then a new key 

would be inserted by searching the correct level.  
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The procedure for knowing if a key could be inserted in some intervals over any 

level is executed in O(log(k)). If any interval includes the new key, then the control 

should be moved to the structure which is attached to this node; the node can have 

several levels by inclusion order. The process to locate the level where the key 

could be inserted is done in O(log(b)) time. This process continues over other 

structures selected until the key is inserted. Supposing that the process is 

homogenous, the time will be: 

 

O(log(k))+O(log(b))+O(log(k))+O(log(b))é.< O(log(N)) 

 

The “less than” inequality is because this procedure does not examine all levels. If 

the number of keys to insert is N and the procedure, in general, is as described, the 

complexity time will be less than O(N*log(N)). 

 

Fig. 8. Complexity time comparison between the insertion procedure 

addNewLine, applied over several polygons, and O(n*log(n)) time. 

 

 

Fig. 8 shows the complexity time of the insertion procedure calculated for 684 

polygons. The left graph is presented with the samples grouped by their sides. The 

O(n*log(n)) time was chosen as the ceiling for this algorithm because it is the 

common limit in preprocessing polygons [2][3][6]. It is important to explain that, 

although the curve is soft, it is not true completely because the algorithm in the 

expansion procedure can have an O(k) or O(1) time. The curve without ranges can 

be observed in the right graph of the Fig. 8, that shows the peaks created by this 

behavior. 

 

 

To summarize, the structure has two important characteristics: an ordered insertion 

very ideal for searching before insertion, and a good distribution of the keys over 

all the structure guaranteeing a superior performance in the expansion procedure. 
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B.  Searching process (searchLineshAbovePoint and searchLinesNearestPoint) 

 

 

Fig. 9. Complexity time comparison between the searching procedure 

searchLineshAbovePoint, applied over several polygons, and O(log(n)) time. 

 

There are algorithms which are used commonly to search points in polygons that 

require preprocessing. Those usually take O(n*log(n)) time for preprocessing and 

O(log(n)) for searching [2][3][6]. The methods proposed here do not need 

preprocessing because the intervals that compose the polygon are sorted 

immediately are inserted. As searchLineshAbovePoint and 

searchLinesNearestPoint routines are carried out, they function like the common 

binary search but applied to intervals, the process has the following complexity: 

 

O(log(k))+O(log(b))+O(log(k))+O(log(b))é.< O(log(N)) 

 

Two classes of experiments were performed by sort of search; for positive and 

negative answers. The tests to verify searchLineshAbovePoint were done over 

2,419 cases where a point was inside a polygon (P-case), while the negative case 

(N-case) took place over 369,077. Fig. 9 show the results, The P-case behavior is 

in middle of two logarithmic curves: Log2 and Log1.5. The N-case is under Log2. 

The left graphs of the Fig. 9 reveal the experimentation by grouping ranges of 

polygon sides and the mark is the average of this range. On the other hand, the right 

graphs of the Fig. 9 show this testing in terms of the polygon sides where it is 

possible to observe the peaks because the expansion behavior. 

The experiments to verify searchLineshNearestPoint is like the one before. It was 

performed over 1,483 cases where a point was inside a polygon (P-case) and over 

323,909 cases for N-case. It revealed that the method requires fewer steps in its 

performance for both cases. Fig. 10 shows the results grouped by range of sides 

(left graphs) and by sides number (right graphs). 
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Fig. 10. Complexity time comparison between the searching procedure 

searchLineshNearestPoint, applied over several polygons, and O(log(n)) time. 

 

7 Conclusions 
 

This paper explained a data structure which is a powerful tool to model the order 

relations embedded in several kinds of complex data. For example, polygons whose 

projection over the X or Y axes generate intervals that can be organized with two 

intrinsic order relations: Inclusion (partial order) and Displacement (quasi-order).  

 

If the order properties of a data set are implemented in a computational model, their 

basic operations improve their efficiency. Proof of this are the insertion and 

searching algorithms, explained in the last sections, for which a structure was built 

(Double Order Structure) to store their elements under the two intrinsic order 

relations at the same time. 

 

The Double Order Structure was used to store the sides of polygons projected over 

the axes keeping their order properties: Inclusion and Displacement. Although a 

polygon has two projections, only one of this is enough to know if a point is inside 

a polygon, as proved here. The data structure was implemented in Java and their 

complexity analysis is exposed in terms of size of the samples. Such proofs 

demonstrate superior performance with regard to other techniques, especially in 

searching.  

 

Finally, the document introduces a new way to know if a point is inside a polygon 

which adapts perfectly to the order concept underlying in the structure and with 

superior performance. 
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