

Contemporary Engineering Sciences, Vol. 10, 2017, no. 15, 739 - 750

HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/ces.2017.7876

A Data Structure to Represent Data Sets with

More Than One Order Relation like Polygons

Edgardo Samuel Barraza Verdesoto

Corporación Unificada Nacional (CUN), Colombia

Edwin Rivas Trujillo

Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

Duván Cardona Sánchez

Pontificia Universidad Javeriana, Colombia

 Copyright © 2017 Edgardo Samuel Barraza Verdesoto, Edwin Rivas Trujillo and Duván Cardona

Sánchez. This article is distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Abstract

This paper introduces a new data structure useful to represent objects or data sets

with several order relations between their elements. A specific case is the polygons

that will be analyzed in this paper. Polygons are objects often used in Computer

Graphics and their operations have a high computational cost; this data structure

was implemented in Java language with a performance O(n*log(n)) corresponding

to building and O(log(n)) to searching. The complexity analysis for insertion and

searching routines are explained.

Keywords: Data Structure, Order Relation, Polygon, Complexity Time

1 Introduction

There are data sets with elements that can establish several order relations between

them. Some of these objects are the intervals. This paper introduces a new data

structure that models this kind of sets from the point of view of their order relations

by reducing the computational cost in their basic operations.

740 Edgardo Samuel Barraza Verdesoto et al.

The paper will be organized as follows: first, the motivations and the context where

the main ideas arise from will be described. Second, some definitions will be

provided and some data structures comparable with the proposal will be described.

Third, the data structure and their implementation will be specified. Finally, a

complexity analysis will be done and the conclusions will be drawn.

2 Motivation

This proposal arises from a project of image processing where it was required to

continuously determine if a point was inside a polygon or not. The most popular

algorithm for this proposal is based on the Jordan curve theorem through a

complexity time O(n) [3].

Currently, the polygons are represented computationally by a point succession

saved in a vector where each element is the next vertex. Any search would always

require a complexity O(n) because this data structure has no order criterion.

Fig. 1. Projection of a polygon on the X-axis.

The polygons can be decomposed into a couple of set of intervals which are the

projection on each coordinate axis. Fig. 1 shows a polygon projected on the x-axis

making intervals, where both R1x and R7x are displaced both with regard to R6x

and R1x is included in R7x. Now, if a set of data is ordered, it is easy to find a key

on the inside, but ordering is a preprocessing. Space partitioning is a method used

in Computer Graphics for preprocessing the Euclidean space by dividing it in small

pieces like rectangles stored in a searching tree. This technique has played an key

role to improve the performance in operations like ray tracing, and it have generated

several proposals of data structures very powerful [4].

The next idea was to build a data structure with an insertion procedure like the

insertion sorting algorithm. Implementing a structure sorted under two orders is a

complex task because it is necessary to build and to dynamically link structures and

no nodes as commonly is accustomed. These tasks will be explained further on. The

great advantage of this strategy is to avoid the preprocessing and to extend the

A data structure to represent data sets 741

abstraction of a polygon. The complexity time to build these sort of data structures

is O(n*log(n)), and O(log(n)) for searching.

3 Definitions

A. Order relation

If the elements of a set could be compared according to common properties that

identify their magnitude between them, it is said that the set is ordered, and the

specification on how to compare among themselves is named Order Relation [5].

Order relations could be classified into Partial, Total, and Quasi-Order. The first

two meet the properties reflexive, antisymmetric, and transitive; the difference is

that the second satisfies xRy or yRx. The last are attributable to the irreflexive and

transitive properties [5].

B. Double order relation

When comparing two elements of a data set and it is possible to establish two

different kinds of order relations, it is said that the data set has a Double Order

Relation. For example, the intervals are attributable to two order relations: Partial

order (Inclusion) and Quasi-order (Displacement).

4 Double Order Structure, Description and Composition

A data structure is a way to organize the information in a computer to be used

efficiently. They can be used to arrange elements under an order criterion, but it

must be only one because the conventional data structures are not able to classify

elements with intrinsic several orders like the intervals. Segment trees and interval

trees are tries to represent intervals through data structures, but they don’t respect

their implicit order relations [7].

Before describing how a data structure with two orders would be, a sort of list called

skiplist will be explored; it has some characteristics advisable in a structure ordered

under two different criteria.

A. Linked List with Skips (Skiplist)

It is a variant of the linked list composed of several lists organized in layers which

have forward skips defined randomly. Each subsequent layer points elements from

the last layer with a probability p. The last (or first) layer points all the elements. A

search begins in the highest (or lowest) level passing through the next levels until

it finds the key. If the list has a moderated number of levels, the search could be

done in))((nLogO [8]. Fig. Nº 2 shows a Skiplist in which novel items are added.

742 Edgardo Samuel Barraza Verdesoto et al.

Fig. 2. A skiplist with three levels; each node has a pointer towards the next node

in accordance with the skip determined in the level.

B. Double Order Structure (DOS)

It is a structure that organizes the elements contained in it under two different

orders. Fig. 3 shows two of these structures corresponding to the intervals projected

on the coordinated axes by the polygon in Fig. 1. The horizontal nodes are ordered

by Displacement and the vertical ones by Inclusion. Like the Skiplist, these

structures grow in levels but by nodes which can contain zero or multiple levels.

The top level is called the root-level.

Fig. 3. Two Double Order Structures representing the intervals projected by the

polygon in Fig 1 for each coordinated axis: X (left image) and Y (right image).

Both have two views, horizontally with Quasi-order and vertically with Partial

Order.

5 Implementation

A Double Order Structure (DOS) is composed of three elements: a flag, a Node-

Array and a DOSPointer-Array (see Fig. 4). The first element detemines the kind

of order relation in the level, the second contains a list of keys ordered under the

relation specified by flag, and the third is a pointer towards an array of DOS’s.

A data structure to represent data sets 743

Fig. 4. Anatomy of a Double Order Structure.

The ADT in Fig. 5 shows the flag modelled by boolOrder, the Node-Array by the

arrayR array, and the Pointer-Array by the dosinner array. The implementation

introduces the variable AB which is the scope of the keys in arrayR and is

interpreted as the level scope. Each dosinner[I] represents a set of levels under

Node-Array[I] with an order criterion opposite to its instance. Note that each

dosinner[I] is a linked list of structures ordered by inclusion. Other variables that

appear were used for the specific purposes.

Fig. 5. Abstract Data Type (ADT) of the Double Order Structure implementation.

The DOS implementation included insertion and searching operations, except for

remove because it was not necessary for the application; however, it can be

demostrated that this operation could be implemented with good performance. The

core of the implementation was the search, for which a couple of variations of the

binary search were built adequate for intervals.

744 Edgardo Samuel Barraza Verdesoto et al.

A. Adding a New Interval

Suppose there is a DOS where every arrayR are under Displacement (horizontal

order), and all nodes of dosinner are under Inclusion (vertical order). Each time one

key is inserted, the method addNewLine is invoked; that, in turn, calls

binarySrchLFO which is the implemetation of binary search algorithm for intervals

ordered under Displacement. The search returns a pair <code-op, index>

determining one of the following possibilities:

¶ <0-insertion, index>: No interval includes the interval processed.

¶ <1-included, index>: One interval includes the interval processed.

¶ <2-inclusion, index>: There is one or more intervals included by the interval

processed.

<0-insertion, index>. It occurs when the index indicates where the new element

should be inserted. Fig. 6 (steps 4 and 5) shows the insertion process of a new key

into the DOS-Y structure where the index results are equal to -1, then R5 will be

inserted as a new header of the top level.

Fig. 6. Inserting keys into the DOS-Y structure. This operation is based on the

polygon in Fig. 1.

<1-included, index>. Supposing this possibility happens, a key in the current level

will include the interval to insert. Let I be the index resulting, then the key located

in arrayR[I] includes the new interval, and dossinner[I] would be a pointer to a

structure with levels ordered by Inclusion. In this state, the new element is moved

to dosinner[I] and the routine binarySrchLSO, associated with this structure, is

executed. binarySrchLSO is the implementation of binary search algorithm for

intervals ordered under Inclusion.

 binarySrchLSO routine determines the level where the new interval should be

inserted. It is important to mention that dosinner[I] is ordered from the greatest to

lowest domain, thus, dosinner[I][K] includes all the keys belonging to levels

greater than K. If there is any level that includes the item, the result will be an index

J which corresponds to the top level that includes that item, then this will be inserted

into the structure dosinner[I][J] . The next step consists in moving the new element

A data structure to represent data sets 745

to the structure pointed by dosinner[I][J] with another called to addNewLine in this

context (see Fig. 6, steps 3 and 4).

If the result of binarySrchLSO is an index greater than dosinner[I] size, then a new

level will be created at its tail by calling addNewLine in this context.

binarySrchLSO checks two special cases before carrying out its process. The first

verifies if the scope of the head (AB variable) is included in the new element; then

a new level is created at the top of dosinner[I], that is, it will be the new head. The

second case verifies if the new element is displaced with regard to the scope of the

head (AB variable); then the new element is inserted in the head (dosinner[I][0])

(see Fig. 6, steps 5 and 6).

Note. If any structure pointed by a dosinner[I][J] runs an addNewLine operation,

this will rebuild the keys under Displacement (see Fig. 6, steps 3 and 4).

Fig. 7. Inserting keys into the DOS-X structure. This operation is based on the

polygon in Fig. 1.

<2-inclusion, index>. This special case occurs when the new key includes one or

more intervals of the current level. The operation requires two steps. The first is to

replace all intervals included by the new key and then move them to a new level

created under the new key. Fig. 7 (steps 5 and 6) shows an example where R6

interval is added into the root structure but the R4 and R5 intervals are included

inside it.

B. Verifying if a point is inside a polygon (ray tracing method).

The ray casting algorithm [1] states that if a line traced from a point intersects an

even number of sides of a polygon, then the point is outside it. The implementation

was performed following these concepts, but it was not necessary to make the

intersections with all sides of the polygon, not even in the worst case.

The routine searchLinesAbovePoint finds all the intervals intersected by an

“imaginary” vertical line (using DOS-X structure) or a horizontal line (using DOS-

Y structure). searchLinesAbovePoint results in an index I on the root level as a

746 Edgardo Samuel Barraza Verdesoto et al.

starting point to search nodes forwards and backwards, in arrayR, that include the

point. For example in Fig. 1, if the point is in middle of b and c, the result will be 0

which is the index of R7 in arrayR; then an expansion operation that includes R2

will be executed. For each key found, their levels will be explored for searching

new intervals which could include the point.

During the process, the intervals above the point (or to the right, with DOS-Y) are

counted, according to the ray casting algorithm [1]. It is known that this method has

several problems with the vertex, but this implementation overcomes them.

C. Verifying if a point is inside a polygon (novelty method)

This method requires taking into account the sense used to create the polygon. Fig.

1 shows that the polygon is created clockwise. According to this, whatever point

located on the right of any side will be inside the polygon. Thus, it is enough to find

the nearest line to the point and verify if the point is located on the right side or on

the left side.

The routine searchNearestPoint was built to find the two nearest lines to the point:

below and above (left and right hand using DOS-Y), but it would be enough with

one of them. The program looks for keys using binary searching like

searchLinesAbovePoint. The expansion process is also executed but the process is

less intensive because searchNearestPoint only calculates the distance from the

point to the line, discarding or replacing the current.

6 Complexity Analysis

A temporal analysis on the operations described before was done. These operations

are: addNewline, searchAboveLinesPoint, and searcNearestLinePoint. The former

is, technically, an insertion operation and the two latter are used to look for keys.

A. Insertion process (addNewline)

Fig. 7 shows step by step how the structure DOS-X is built. Initially, it is empty,

then R1 is inserted in the root and the subsequent insertions looks for keys included

in the new element or vice versa; this process is executed by binary searching. If

the novel item contains some intervals of the structure, an expansion process is

executed (see last section) to determine what additional adjacent intervals are

included in this item. The worst case can occur only one time: when all the intervals

are ordered by displacement and the new key contains all of them, usually in convex

polygons.

More formally, it will imply that each structure by level is under Displacement

order and the levels under Inclusion, there are k keys (lines) in each level and b

levels for each key with a total number of keys N= k*b*k*bé; then a new key

would be inserted by searching the correct level.

A data structure to represent data sets 747

The procedure for knowing if a key could be inserted in some intervals over any

level is executed in O(log(k)). If any interval includes the new key, then the control

should be moved to the structure which is attached to this node; the node can have

several levels by inclusion order. The process to locate the level where the key

could be inserted is done in O(log(b)) time. This process continues over other

structures selected until the key is inserted. Supposing that the process is

homogenous, the time will be:

O(log(k))+O(log(b))+O(log(k))+O(log(b))é.< O(log(N))

The “less than” inequality is because this procedure does not examine all levels. If

the number of keys to insert is N and the procedure, in general, is as described, the

complexity time will be less than O(N*log(N)).

Fig. 8. Complexity time comparison between the insertion procedure

addNewLine, applied over several polygons, and O(n*log(n)) time.

Fig. 8 shows the complexity time of the insertion procedure calculated for 684

polygons. The left graph is presented with the samples grouped by their sides. The

O(n*log(n)) time was chosen as the ceiling for this algorithm because it is the

common limit in preprocessing polygons [2][3][6]. It is important to explain that,

although the curve is soft, it is not true completely because the algorithm in the

expansion procedure can have an O(k) or O(1) time. The curve without ranges can

be observed in the right graph of the Fig. 8, that shows the peaks created by this

behavior.

To summarize, the structure has two important characteristics: an ordered insertion

very ideal for searching before insertion, and a good distribution of the keys over

all the structure guaranteeing a superior performance in the expansion procedure.

748 Edgardo Samuel Barraza Verdesoto et al.

B. Searching process (searchLineshAbovePoint and searchLinesNearestPoint)

Fig. 9. Complexity time comparison between the searching procedure

searchLineshAbovePoint, applied over several polygons, and O(log(n)) time.

There are algorithms which are used commonly to search points in polygons that

require preprocessing. Those usually take O(n*log(n)) time for preprocessing and

O(log(n)) for searching [2][3][6]. The methods proposed here do not need

preprocessing because the intervals that compose the polygon are sorted

immediately are inserted. As searchLineshAbovePoint and

searchLinesNearestPoint routines are carried out, they function like the common

binary search but applied to intervals, the process has the following complexity:

O(log(k))+O(log(b))+O(log(k))+O(log(b))é.< O(log(N))

Two classes of experiments were performed by sort of search; for positive and

negative answers. The tests to verify searchLineshAbovePoint were done over

2,419 cases where a point was inside a polygon (P-case), while the negative case

(N-case) took place over 369,077. Fig. 9 show the results, The P-case behavior is

in middle of two logarithmic curves: Log2 and Log1.5. The N-case is under Log2.

The left graphs of the Fig. 9 reveal the experimentation by grouping ranges of

polygon sides and the mark is the average of this range. On the other hand, the right

graphs of the Fig. 9 show this testing in terms of the polygon sides where it is

possible to observe the peaks because the expansion behavior.

The experiments to verify searchLineshNearestPoint is like the one before. It was

performed over 1,483 cases where a point was inside a polygon (P-case) and over

323,909 cases for N-case. It revealed that the method requires fewer steps in its

performance for both cases. Fig. 10 shows the results grouped by range of sides

(left graphs) and by sides number (right graphs).

A data structure to represent data sets 749

Fig. 10. Complexity time comparison between the searching procedure

searchLineshNearestPoint, applied over several polygons, and O(log(n)) time.

7 Conclusions

This paper explained a data structure which is a powerful tool to model the order

relations embedded in several kinds of complex data. For example, polygons whose

projection over the X or Y axes generate intervals that can be organized with two

intrinsic order relations: Inclusion (partial order) and Displacement (quasi-order).

If the order properties of a data set are implemented in a computational model, their

basic operations improve their efficiency. Proof of this are the insertion and

searching algorithms, explained in the last sections, for which a structure was built

(Double Order Structure) to store their elements under the two intrinsic order

relations at the same time.

The Double Order Structure was used to store the sides of polygons projected over

the axes keeping their order properties: Inclusion and Displacement. Although a

polygon has two projections, only one of this is enough to know if a point is inside

a polygon, as proved here. The data structure was implemented in Java and their

complexity analysis is exposed in terms of size of the samples. Such proofs

demonstrate superior performance with regard to other techniques, especially in

searching.

Finally, the document introduces a new way to know if a point is inside a polygon

which adapts perfectly to the order concept underlying in the structure and with

superior performance.

750 Edgardo Samuel Barraza Verdesoto et al.

References

[1] A.S. Glassner, An Introduction to Ray Tracing, Academic Press, 1989.

[2] D.G. Kirkpatrick, M.M. Klawe, R.E. Tarjan, Polygon triangulation in

O(n log log n) time with simple data structures, Discrete and Computational

Geometry, 7 (1992), 329–346. https://doi.org/10.1007/bf02187846

[3] E. Haines, Point in polygon strategies, Chapter in Graphics Gems IV,

Academic Press, 1994, 24-46.

https://doi.org/10.1016/b978-0-12-336156-1.50013-6

[4] G. Zachmann, E. Langetepe, Geometric Data Structures for Computer

Graphics, Proceedings of Eurographics 2002 Tutorials, The Eurographics

Association, (2002).

[5] K. Ross, C.H. Wright, Discrete Mathematics, Prentice Hall, 1990.

[6] R.E. Tarjan, Ch.J. Van Wyk., An O(n log log n)-time algorithm for

triangulating a simple polygon, SIAM Journal on Computing, 17 (1988), 143–

178. https://doi.org/10.1137/0217010

[7] T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to

Algorithms, MIT Press, 2009.

[8] W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees,

Communications of the ACM, 33 (1990), 668-676.

https://doi.org/10.1145/78973.78977

Received: August 18, 2017; Published: September 28, 2017

https://en.wikipedia.org/wiki/David_G._Kirkpatrick
https://en.wikipedia.org/wiki/Maria_Klawe
https://en.wikipedia.org/wiki/Discrete_and_Computational_Geometry
https://en.wikipedia.org/wiki/Discrete_and_Computational_Geometry
https://doi.org/10.1007/bf02187846
https://doi.org/10.1016/b978-0-12-336156-1.50013-6
https://en.wikipedia.org/wiki/Robert_Tarjan
https://en.wikipedia.org/wiki/SIAM_Journal_on_Computing
https://doi.org/10.1137/0217010
https://doi.org/10.1145/78973.78977

