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Abstract 

 

The forecast of radioelectric spectrum occupancy is useful in the design of 

wireless systems that profit the opportunities in the spectrum as in the cognitive 

radio. In the current paper, the development of a method is proposed, that through 

the forecast of the reception power, identifies the spectral opportunities in a 

channel of a mobile cellular network for an urban environment. The proposed 

method integrates the COST 231 Walfisch-Ikegami (C231-W-I) large-scale 

propagation model with a wavelet neural model. The method results, obtained 

through simulations, are consistent with the observed behavior in experiments of 

this kind of wireless systems. 
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1 Introduction 
 

   The radioelectric spectrum is perceived as a scarce resource, currently the use 

of a great percentage of the licensed bands is low, and typically, frequency bands 

very congested and other underused bands can be found. The cognitive radio (CR) 

has become in one of the most researched paradigms in the radio communications 

in order to optimize the use of the radioelectric spectrum [1, 2]. A CR is an 

intelligent radio aware of the context, which is able to reconfigure itself in an 

autonomous way to learn and adapt to the radio environment around it [3]. The 

research in CR has been motivated by the results of the spectrum measurement 

campaigns around the world [4-14]. These measurement campaigns show that the 

radioelectric spectrum is underused in terms of frequency, time and geographical 

space [5, 7-9, 11, 14]. 

   The principle for CR performance is based on that the unlicensed users do not 

interfere with the licensed users and one way to deal with this problem is that the 

unlicensed users must detect spectrum occupancy in different locations as a 

function of the considered environment and the propagation conditions, which 

gives a valuable tool for the design, dimensioning and evaluation of the 

performance in CRs networks [15]. 

   The propagation models started being formulated at the end of the 1960s, with 

the aim of estimating with precision the propagation losses in an environment. 

Initially, empirical and statistical propagation models were designed in urban 

areas [16, 17] then with the unfold of mobile communications in the 1980s, 

propagation models were designed to microcells and macrocells scenarios [18-20]. 

From this, several efforts to understand and predict the characteristics of the 

channels in mobile communications have been developed [21]. 

   Time series have been used in some cases as a mechanism for the forecast of 

propagation losses. For example, neural networks have been employed to forecast 

the field strength [22], and the average propagation losses [23, 24]. Besides, fuzzy 

logic has been employed for this same purpose [25]. 

   Hence, in this paper a forecast of the reception power to identify the spectral 

opportunities in a licensed mobile network is developed, which integrates the 

C231-W-I propagation model with the wavelet neural model in an urban 

environment.  

   The paper is structured as follows. In section 2 the proposed method is 

presented. In section 3 the results of the reception power and the duty cycle for the 

developed model are submitted and discussed. Finally, in section 4 conclusions 

are exhibited. 

 

2 Proposed Method 
 

   Firstly, the design of the wavelet neural model is carried out. Secondly, the 

C231-W-I propagation model is adjusted from the sensed measurements around 

the urban environment. Finally, the proposed methodology to forecast the spectral 

opportunities is presented. 
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2.1 Wavelet Neural Model 

 

   For cognitive systems in [26] a backpropagation neural network is used in 

order to predict the state of the spectrum, and in [27, 28] the neural network is 

optimized with a genetic algorithm. Also, in [29] a neural network is used to 

forecast the power in the television and GSM900 bands. The aforementioned and 

presented in [30] show the promising character of the neural networks in the 

reception power forecast in wireless channels, above models such as Markov and 

empirical mode decomposition-support vector regression. Therefore, in this paper 

the use of a theory which combines the wavelets and neural networks subjects is 

proposed [31] to forecast the reception power in a channel of the Global System 

for Mobile Communications (GSM) technology. 

   The input signal to the model, which corresponds to the reception power in a 

GSM channel for the carried out measurements in [32] and analyzed in [30], is 

decomposed using the Discrete Meyer (dmey) mother wavelet, which shows an 

error lower than Daubechies, Coiflets and Symlets mother wavelets [33]. The 

results are two levels that contained in total four coefficients.  

   The coefficients are sent to the input of the wavelet multi-layer neural network 

of backpropagation developed, which is shown in Figure 1 and expressed as:  

𝑓[𝑛]=𝑔∑ [
1

√𝑀
∑ 𝑊𝛷[𝑗0,𝑘]𝛷𝑗𝑜,𝑘[𝑛]+

1

√𝑀
∑ ∑ 𝑊𝜓[𝑗,𝑘]𝜓𝑗,𝑘[𝑛]𝑘
∞
𝑗=𝑗0𝑘 ]𝑛

𝑖=1    (1) 

 

   where g is the activation function of the neural network, which for this case 

contains 2 inputs, 2 outputs, and 2 hidden layers. The network was trained in the 

beginning with about five days of continuous measurements, and the number of 

training pattern was increased until the error diminished and it was relatively 

constant, this was reached for 1000 training patterns. Finally, the output of the 

neural network is rebuilt using a wavelet analysis to obtain the forecasted power, 

whose training time is enough of one day to obtain an acceptable error, as 

indicated in [30]. 

 

 
 

Fig. 1. Wavelet neural network 
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2.2 COST 231 Walfisch-Ikegami Model  

 

Figure 2 presents the surroundings of the base station (BS) used to make 

measurements with the spectrum analyzer in the north of Bogotá-Colombia. The six 

measurement spots correspond to the covering sites of the cell, located at different 

distances of the BS, in order to evaluate and adjust the C231-W-I propagation 

model [20]. The period of the measurement was of one hour approximately. The 

environment is plane and consists mainly of an important concentration of 

buildings; also, green zones and trees are present, as it can be seen in the measure 

spot D. 

 

 
 

Fig. 2. Measurement spots in north Bogotá-Colombia 

    

Table 1 presents the parameters of the transmitter and receiver employed to 

evaluate the C231-W-I propagation model. The model is then adjusted using the 

sensed powers in the spots seen in Figure 2.  

 

Table 1. BS parameters and spectrum analyzer 

 

Parameter Value 

BS Transmission power (PTx) 26 dBm 

BS Height 26 m 

BS Antenna Gain (GBS) 16.5 dBi 

BS Combiner Losses (Lco) 4 dB 

BS Cable Losses (Lc) 4 dB 

Analyzer Antenna Gain (GAn) 3 dBi 

Analyzer Cable Losses (Lca) 0.72 dB 

Low-noise Amplifier Gain (GLNA) 11 dB 

Analyzer Height (AH) 1.5 m 

GSM Channel Transmission Frequency (fc) 828.93 MHz 
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   Through Equation (2) the theoretical average propagation losses (𝐿) are 

obtained of the C231-W-I model for each measuring spot in non-line-of-sight 

conditions, as observed in Table 2, 

𝐿(𝑑𝐵)=32.4+20𝑙𝑜𝑔𝑑+20𝑙𝑜𝑔𝑓𝑐−16.9−10𝑙𝑜𝑔𝑤+10𝑙𝑜𝑔𝑓𝑐+
20𝑙𝑜𝑔∆ℎ𝑚+𝐿𝑜𝑟𝑖+𝐿𝑏𝑠ℎ+𝐾𝑎+𝐾𝑑𝑙𝑜𝑔𝑑+𝐾𝑓𝑙𝑜𝑔𝑓𝑐−

9𝑙𝑜𝑔𝑏                                                              (2) 

 

   where d is the distance between the transmitter and the receiver in km, fc is the 

carrier frequency in MHz, w is the width of the street in m, Δhm is the difference 

between mean height of the buildings (hRoof) and the height of the antenna of the 

mobile device (AH) in m, 𝐿𝑜𝑟𝑖 is a factor of empirical correction that counts the 

losses due to the orientation of the street, and b is the mean separation among 

buildings in m [20]. The rest of factors employed are expressed in Equations (3), 

(4), (5) and (6). 

 

𝐿𝑜𝑟𝑖=−10+0.354𝜑   𝑓𝑜𝑟    0°≤𝜑<35°            (3) 

 

   Here, ϕ is the angle between street orientation and the direction of propagation in 

degrees. 

 

𝐿𝑏𝑠ℎ=−18log(1+∆ℎ𝑏)    𝑓𝑜𝑟    ℎ𝑏>ℎ𝑅𝑜𝑜𝑓              (4) 

 

   Δhb is the difference between antenna height of the base station (hb) and hRoof in 

m. 

𝐾𝑎=54  𝑎𝑛𝑑  𝐾𝑑=18       𝑓𝑜𝑟       ℎ𝑏>ℎ𝑅𝑜𝑜𝑓                                 (5) 

 

𝐾𝑓=−4+1.5(
𝑓𝑐

925
−1)                        (6) 

 

Table 2. Propagation losses of the C231-W-I model for the measurement spots in 

Figure 2 

 

Spot 𝑳 GSM channel (dB) 

F(58m) 82.62 

C(152m) 93.409 

D(226m) 98.841 

B(287m) 102.294 

E(290m) 102.447 

A(328m) 104.27 

 

   The results of Table 2 and parameters in Table 1 give the theoretical average 

reception power (𝑃𝑅𝑋̅̅̅̅ )̅ [34]: 

 

𝑃𝑅𝑋̅̅̅̅ =̅𝑃𝑇𝑋+𝐺𝐵𝑆+𝐺𝐴𝑛+𝐺𝐿𝑁𝐴−𝐿−𝐿𝑐−𝐿𝑐𝑜−𝐿𝑐𝑎        (7) 
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Figure 3 depicts 𝑃𝑅𝑋̅̅̅̅  ̅ found through Equation (7) for the C231-W-I model in 

comparison to the range of the sensed reception power with its respective average 

values. Figure 3 reveals a significant difference between the theoretical data and the 

ones sensed. 

 

 

 
 

 

Fig. 3. Theoretical and sensed reception power for the C231-W-I model of the GSM 

channel. 

 

 

   With the aim of increasing the precision of the model, the least squares method 

is employed [35] to adjust theoretical results to sensed average values. The 

following equation adjusted for the GSM channel is obtained: 

 

𝐿(𝑑𝐵)=47.1435−612.156𝑙𝑜𝑔𝑑+20𝑙𝑜𝑔𝑓𝑐−16.9−10𝑙𝑜𝑔𝑤+
10𝑙𝑜𝑔𝑓𝑐+20𝑙𝑜𝑔∆ℎ𝑚+𝐿𝑜𝑟𝑖+𝐿𝑏𝑠ℎ+𝐾𝑎+𝐾𝑑𝑙𝑜𝑔𝑑+𝐾𝑓𝑙𝑜𝑔𝑓𝑐−9𝑙𝑜𝑔𝑏                       

(8) 

 

   where, 

𝐿𝑜𝑟𝑖=−10+0.0162𝜑    𝑓𝑜𝑟           0°≤𝜑<35°                 (9) 

   and, 

𝐾𝑑= 622.4238  𝑓𝑜𝑟       ℎ𝑏>ℎ𝑅𝑜𝑜𝑓               (10) 

 

   Figure 4 presents the reception power of the model C231-W-I adjusted by 

Equation (8) with respect to the average of the sensed reception power. The Figure 

4 presents the approximation between the sensed values and the adjusted model, 

which has a mean squared error of 1.5456. 
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Fig. 4. Adjusted and sensed reception power for C231-W-I model of the GSM 

channel. 

 

2.3 Methodology Proposed 

 

   In the following we describe the methodology to develop the proposed method 

and the general equation to forecast reception power through the wavelet neural 

model and the C231-W-I propagation model previously adjusted. The general 

procedure to obtain the forecasting method of spectral opportunities in an unknown 

environment is shown below: 

 

1. Sensing 

   In this step the time-variant(s) channel(s) of the radioelectric spectrum are 

sensed during a day, as described in [32]. 

2. Adjusting the propagation model 

   The C231-W-I propagation model is adjusted using, for example, the least 

squares method according to the mean values of the measurements. 

3. Training of the wavelet neural model 

   The measurements developed in a minimum time of 24 hours serve to train the 

wavelet neural model designed. 

4. Integration of models 

   Extrapolate the adjusted C231-W-I propagation model to the wavelet neural 

model, thus integrating average propagation losses with instantaneous losses. 

5. Forecasting reception power 

   Along the analyzed urban environment, reception power is forecast during a 

specified period of time using the compound model in step 4. 

 

   Therefore, the model that takes into consideration both instantaneous and 

average propagation losses can be described as: 

 

𝐿=∆𝐿+𝐿                             (11) 
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   where ∆L=f(f[n])│f[n]=∆PRX represent the instantaneous propagation losses 

according to the reception power obtained using Equation (1), and 𝐿 are the 

average propagation losses obtained from the adjustment of Equation (2) of the 

C231-W-I model. Thus, at combining Equations (1) and (7) the reception power is 

obtained as a function of the C231-W-I model: 

 

𝑃𝑅𝑋=𝑔∑ [
1

√𝑀
∑ 𝑊𝛷[𝑗0,𝑘]𝛷𝑗𝑜,𝑘[𝑛]+

1

√𝑀
∑ ∑ 𝑊𝜓[𝑗,𝑘]𝜓𝑗,𝑘[𝑛]𝑘
∞
𝑗=𝑗0𝑘 ]𝑛

𝑖=1 +𝑃𝑅𝑋̅̅̅̅  ̅        

(12) 

where 𝑃𝑅𝑋̅̅̅̅ =̅𝑓(𝐿). Equation (12) is represented in Figure 5. 

 

 
 

Fig. 5. Scheme of the proposed method to forecast the spectral opportunities 

 

3 Results and Discussion 
 

   In this section we present and discuss the results of the proposed method for 

different occupancy levels of channels. Figure 6 shows the working of the proposed 

method. In this example the CR user perceives the power of a primary BS and may 

move over the cell coverage in the direction of the arrows. The CR user may 

forecast the power level that will be sensed from the primary BS at different 

distances, bearing in mind the environment propagation losses.  

   The results were analyzed using Matlab® software in a dual core 2.4GHz 

computer with a RAM of 4GB. 

   The evaluation of the proposed method covers the forecasting of up to one hour 

of received power, with a maximum distance 328m. The duty cycle over the 

analyzed environment is also presented.  

 
Fig. 6. Application of the proposed method 
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   By applying Equation (12), the equation of the method in the proposed 

environment of the Figure 2 is: 

 

𝑃𝑅𝑋=𝑔∑ [
1

√𝑀
∑ 𝑊𝛷[𝑗0,𝑘]𝛷𝑗𝑜,𝑘[𝑛]+

1

√𝑀
∑ ∑ 𝑊𝜓[𝑗,𝑘]𝜓𝑗,𝑘[𝑛]𝑘
∞
𝑗=𝑗0𝑘 ]𝑛

𝑖=1 +

𝑓[47.1435−612.156𝑙𝑜𝑔𝑑+20𝑙𝑜𝑔𝑓𝑐−16.9−10𝑙𝑜𝑔𝑤+10𝑙𝑜𝑔𝑓𝑐+

20𝑙𝑜𝑔∆ℎ𝑚+𝐿𝑜𝑟𝑖+𝐿𝑏𝑠ℎ+𝐾𝑎+𝐾𝑑𝑙𝑜𝑔𝑑+𝐾𝑓𝑙𝑜𝑔𝑓𝑐−9𝑙𝑜𝑔𝑏]                                

(13) 

   Figure 7 depicts Equation (13): 

 

 
 

Fig. 7. Forecast reception power for the proposed method 

 

   In Figure 7, the spectral opportunities that would be perceived and profited by 

CR users are observable in orange color, though to be more precise would depend 

on the selected threshold. These are obtained from the one-hour power forecast 

based on the historical information of one day. The Figure 7 also shows the 

tendency of the power level to decrease as the distance augments, according to the 

found losses. 

   In the example of Figure 6 the analysis of the proposed method is done by 

developing the power forecast from the CR user, using a similarity with the 

spectrum analyzer in which measurements were made. However, such similarity 

depends on the CR architecture deployed in the environment. Considering that the 

processor and the power consumption are more limited in the device of the CR user, 

it is recommended the use of an architecture with infrastructure that develops the 

forecast since the CR BS. The CR BS is equipped with a better processor than the 

CR user and has no limitations regarding power consumption.  

   Nevertheless, a period of time between the data collection in the environment 

and the processing adds a delay in the response that should not be ignored; the 

forecast helps to reduce the negative impact of the delay in the response. Figure 8 

presents an architecture with infrastructure [3]. 
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Fig. 8. CR architecture with infrastructure 

 

For a CR system, the developed modeling in the channel of the GSM band may 

help improve the use of spectral efficiency, as it allows CR users to share channels 

and to avoid collisions with primary users in the found opportunities. 

 

3.1 Duty Cycle 

 

   The forecast of the duty cycle can be found using Equation (14) [15, 36]: 

 

𝜓=(1−∑ 𝛼𝑘
𝐾
𝑘=1 )𝑃𝑓𝑎+∑ 𝛼𝑘

𝐾
𝑘=1  𝑄(

𝑄−1(𝑃𝑓𝑎)𝜎𝑁−𝛾𝑘

𝜎𝑆𝑘
)         (14) 

 

   where K>0 represents the number of power levels of transmission that can be 

present in the channel. In this case, in the measurements of each spot of Figure 2 

there exists one single transmission power. 0 <αk≤ 1 is the activity factor of the k-th 

power level, which can be obtained from the average value of the use of the 

analyzed GSM channel. Pfa is the target probability of false alarm considered for 

the selection of the energy decision threshold, which in this case is of 1%. 𝛾𝑘=
𝑃𝑅𝑋𝑘−𝑃𝑁 is the signal to noise ratio resulting from the k-th average transmission 

power level. σSk and σN represent the standard deviation in decibels of the k-th 

signal and noise power levels respectively. These values were obtained 

experimentally using the spectrum analyzer and are presented in Table 3. Q(·) is the 

Gaussian Q-function and Q-1(·) is the inverse of Q(·). 

   PRXk is the sensed received power by the user, which has already been found for 

the proposed method, whereas PN represents the CR terminal noise floor created 

from the sum of all the noise sources in the receiver (including thermal noise), and 

can be expressed as: 

𝑃𝑁(𝑑𝐵𝑚)=−174
𝑑𝐵𝑚

𝐻𝑧
+10log𝐵 (𝐻𝑧)+𝑁𝐹 (𝑑𝐵)         (15) 

   where -174 dBm/Hz is the thermal noise power spectral density at 290 °K, B is 

the band width of the sensed channel, and NF is the total noise figure of the 

receiver. The NF of the low noise amplifier is 4dB with a gain of 11dB, cable losses  
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are of 0.72dB. The NF of the analyzer is 16dB for the implemented configuration. 

Thus, total NF can be found by the total noise factor (FT) [37]: 

 

𝐹𝑇=𝐹𝑐𝑎+
𝐹𝐿𝑁𝐴−1

𝐺𝑐𝑎
+
𝐹𝐴𝑛−1

𝐺𝑐𝑎𝐺𝐿𝑁𝐴
=3.266                (16) 

   Fca is the noise factor of the cable, FLNA is the noise factor of the low noise 

amplifier, FAn is the noise factor of the spectrum analyzer, Gca is the gain of the 

cable and GLNA is the gain of the low noise amplifier. Therefore, the total NF is 

5.14dB. 

Table 3. Experimental values of σSk and σN for GSM 

 

Band B(kHz) σSk(dB) σN(dB) 

GSM 200 1.816 0.8785 

 

   The duty cycle resulting from Equation (14) for the proposed method in the 

sector of the BS cell of the external environment in Figure 2 is seen below: 

 

 
 

Fig. 9. Duty cycle for the proposed method in the GSM channel. 

 

   Figure 9 shows that as a result of the approach employed in Equation (14) the 

scenario reveals different occupancy levels, and not only busy or idle. For example, 

the probability of channel occupancy can be low or high, but not equal to zero or 

one. This way the modeling affords a realistic characterization of the spectrum 

occupancy forecast according to the considered propagation scenario, which 

constitutes a major aspect in the design and dimensioning of CR systems for real 

implementations.  

   Figure 9 warns that the maximum occupancy levels fluctuate about 0.3. These 

values correspond to localizations close to the BS and appear in red tones. In 

general, occupancy values decrease and therefore the spectral opportunities for CR 

users increase, as the signal moves away from the BS; such values are represented  
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by the range of blue colors. This is consistent at a practical level and strengthens the 

proposed method. However, some low occupancy levels appear in places close to 

the BS. This is because at these locations the ϕ angle of the Equation (3) is greater 

than 35°, and for this reason there it was necessary to use values predefined by the 

C231-W-I model; this responds to the fact that in the model the only ϕ value 

adjusted was less than 35°, as a consequence of the small ϕ angles formed in the six 

measuring spots in Figure 2. 

 

4. Conclusions  
 

   In this study a method to forecast the spectral opportunities was developed. First, 

from the adjustment of the propagation model C231-W-I with the measurements 

developed in an urban environment. Then, given the approximation of the 

adjustment and the average of the measured data, the integration with a wavelet 

neural model was proposed. 

   The spectral opportunities were set through the forecast the received power in a 

determined time and the duty cycle within an urban environment. These results 

show the consistency with the practical behavior of the mobile communication 

systems. 

The proposed methodology presents a novel and practical approach to 

forecasting the spectrum occupancy that would be perceived by CR users in real 

settings. The forecast of received power through propagation models is relevant as 

it allows CR users to access to benefits like: saving energy in the spectrum sensing 

process, taking advantage of spectral opportunities by increasing the rate of 

successful transmission as well as the transmission opportunities, reducing the time 

to find available channels, and adjust the transmission power levels to protect 

primary users from collisions and interferences.  

   Another advantage and difference is that, whereas most of the forecast 

schemes is based on determining spectrum holes, the proposed methodology in 

this paper is based on an a-priori knowledge of the received power by a channel of 

primary users, which allows to avoid selecting noisy channels and entails a better 

sharing of the spectrum among CR users. This leads to superior quality of service 

parameters involving less radio resources. 
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