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Abstract

Giving computers and machines the ability to recognize and classify
patterns is an important task in engineering systems with numerous
applications in many aspects of life. The field of pattern classification
has become very popular in the past decade and although numerous
techniques have been proposed, there is still much room for improvement.
In this paper, we propose a novel pattern classification algorithm which
we term “Hybrid Partial Least Squares Quadratic Discriminant Classifier’
that outperforms several state-of-the-art classifiers. Evaluating on three
publicly available challenging datasets demonstrates the effectiveness of
our proposed approach.
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1 Introduction

Pattern classification is a crucial sub-area under Machine Learning that has far-
reaching uses in fields such as Computer Vision, Natural Language Processing
and Speech Processing. Given an unseen or novel pattern, the goal is to classify
or categorize it to one of the pre-defined list of categories or classes.

The main challenge behind pattern classification is building up of a function
that can generalize well to any unseen future input data. Normally, rather
than attempting to manually handcraft rules by humans, the most successful
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approach has been found to be adopting a Machine Learning approach whereby
input-output pairs of data are gathered, a model with a certain set of latent
(or hidden) parameters is constructed and then a learning algorithm is used to
optimize the parameters of the model with respect to the data. Although this
still requires effort from humans (in the form of gathering sufficient quantity
and quality of data), this is still relatively easier than having to manually write
rules.

A successful pattern classification algorithm can be used in many appli-
cations such as face detection [1, 2, 3|, voice recognition [4], pedestrian de-
tection [5, 6, 7], sound classification [8], text localization [9] and human pose
estimation [10, 11].

There have been many classifiers proposed in the literature. Some of the
most widely used state-of-the-art ones are Support Vector Machines (SVMs) [12,
13] with both linear kernel and non-linear kernels, Random Forests [14] and
variations of AdaBoost [15] such as the Discrete AdaBoost [16] and the Real
AdaBoost [17].

SVMs with linear kernels [12] have the limitation of not being able to
model non-linear decision boundaries. This was overcome with the invention of
non-linear kernels [13]; however, they are often slow to train and inefficient at
test time due to the majority of the training data points ending up at support
vectors, especially when the input feature vectors are high dimensional. In
contrast, our proposed method is very efficient both at training and test time
while at the same time having the ability to model a subset of non-linear
decision boundaries, namely quadratic surfaces.

Random Forest [14], proposed by Breiman, is a widely used state-of-the-art
algorithm that integrates the concepts of bagging [18] and random subspace [19]
to decision trees. However, similar to other ensemble methods, it has the
disadvantage of having to train multiple classifiers (i.e. trees in this case) which
makes the overall classifier to be highly redundant, to require a large storage
space and to be inefficient at training and test times. AdaBoost and most of
the its variants [16, 17] share similar limitations and are also known for their
overfitting on many datasets. In contrast, our proposed approach results in a
very compact set of projections which minimizes the aforementioned problems.

Unlike non-linear SVMs, Random Forests and AdaBoost which are meant to
model arbitrary non-linear decision boundaries, our proposed classifier restricts
the set of learnable decision boundaries to quadratic surfaces which are highly
useful in many datasets especially high dimensional ones. In addition, for many
problems (especially in high dimensional spaces), a quadratic surface in the
feature space is usually sufficiently non-linear to separate the given classes.

Our proposed approach is termed as “Hybrid Partial Least Squares Quadratic
Discriminant Classifier” (PLSQuad) which integrates and extends Partial Least
Squares (PLS) Regression [20] and Quadratic Discriminant Analysis [21]. Al-
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though the proposed method can be used for multi-class classification, we focus
on binary classification to simplify the formulation and for improved clarity.
The formulation can easily be extended to multi-class problems by using the
algorithm in this paper.

2 Method

Assume that the training dataset is given by:

D={(x"y"),....,x"y")} (1)

where x* € R is the d-dimensional input feature vector corresponding to the i-
th training data point, and y* € {1,0} the corresponding output label which can
take either the values 1 or 0 for the first class and the second class respectively
(since we are only considering binary classification in the formulation).

The goal of the training process is to learn a mapping function f such that
y = f(x,0) where f is the classifier (i.e. the classification function) and © is
the set of latent parameters that characterize f and that need to be optimized
during the training process. The goal of the training process then can be
thought of as finding the optimal values for © that makes f perform well on the
training data D, with the ultimate objective of f being able to generalize well to
x that it has never seen before (i.e. not a member of D). This never-seen-before
data is often called the test data.

The algorithm for training the classifier f is given in Algorithm 1. The
inputs to the algorithm are the training dataset D and the number of projections
z which is a hyper-parameter of the training algorithm and its optimal value
can be automatically found using cross-validation. We describe the algorithm
in detail below.

Firstly, we form the matrix A which contains the input feature vectors
x' € D as rows. Furthermore, a vector b is constructed from [y!,¢?%, ..., yV].
We then initialize Ay to A, i.e. Ag < A.

We also initialize wq and ¢y as follows:

wo < ATb/||ATD|| (2)

ty < AU)Q (3)

We then enter a loop k£ which is processed for £k = 1 to k = z iterations. In
each of the iterations, we update t, pr and ¢, as follows:

h < tlt (4)
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Algorithm 1 The proposed classifier training algorithm

Input: Training dataset D, number of projections z
Output: Classifier f
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: end for
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from A that correspond to b; =n

fy=1 <— mean of vectors from s(A, 1)
fy—o <— mean of vectors from s(A, 0)
¥,—1  covariance of vectors from s(A,0)
¥,—o  covariance of vectors from s(A,0)

Let © = {ﬂy:l: Eyzb Hy=0, Zy=0}

P S
f(x,0) = 9%, py=1, Xy=1) < thresh
g(Xa /'Ly:()a EyZO)

return f
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If g = 0, we set z to k and break out of the loop prematurely. Otherwise,
we update the A, w and ¢ as:

Ak+1 < Ak — htkpg (8)
W1 < A;‘Cﬂb 9)
i Ak+1wk+1 (10)

After all the iterations of the loop have been completed or the loop
has been prematurely stopped as described previously, we form a matrix
W whose columns are given by the vectors wg,wy,..., W, 1, i.e. W <
[wo, Wi, ... ,Wz,l].

The matrix W represents the latent linear projection which can also be
understood as a form of supervised dimensionality reduction. The matrix A
(i.e. the input feature vectors of the training dataset D) are now projected onto
this latent space greatly reducing the dimensionality to z. This projection can
be written as A «+— AW.

Let a multivariate gaussian distribution function g be defined as:

1 1 Ty—1
o1 ) = e (-3 xew)

where p and X are parameters of the gaussian distribution, namely the mean
vector and the covariance matrix. Moreover, let s(A,n) be the function to
generate a new matrix by selecting rows from A that correspond to b; = n.

We now compute the mean vector and covariance matrix of feature vectors
from each class as follows: f1,—1 <— mean of vectors from s(A, 1), p1,—¢ < mean
of vectors from s(A,0), ¥,—; < covariance of vectors from s(A, 1), and ¥, <
covariance of vectors from s(A,0).

Now the classifier function f can be written as:

g(X, Hy=1; Ey:l)
x,0) = <r 12
A ) 9(x, Hy=0, Eyzﬂ) (12)
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where © = {1y—1, X1, fly—0, Ly—o} is the set of parameters that characterize
f, and r is the threshold value for binary classification. Now, the classifier f
has been successfully learnt from the training data D.

The proposed classifier training process can be intuitively understood as
learning a set of linear projections in a supervised way and then projecting
the input feature vectors onto this linear space and then fitting a quadratic
surface in this space. At test time, given an unseen feature vector x, we use
Equation 12 to compute the classification output.

3 Experiments and Results

3.1 Datasets

We use the following three publicly available datasets from the UCI Machine
Learning Repository [22] to evaluate our proposed algorithm:

e german-number-scale: German credit data dataset where the input
features correspond to attributes such as credit history, existing account
status, amount of credit, number of employed years and personal status,
and the output is a binary label denoting a good or bad customer. There
are 24 features and 1,000 data points. The features are scaled to be
within [—1,1].

e heart-scale: A dataset to predict the absence or presence of heart
disease using features such as age, sex, type of chest pain, serum cholestoral
level, fasting blood sugar level and maximum heart rate that can be
achieved. The number of features is 13 and the features are scaled to be
in the range [—1,1].

e ionosphere-scale: A dataset to classify radar returns (to “good” or
“bad”) collected from the ionosphere using features derived from pulse
numbers of the radar system. There are 34 features and they are scaled
as with the other datasets.

From each dataset, the corresponding training and test datasets are gener-
ated by randomly splitting the dataset with the 70% and 30% ratio. During
the training process, the classifier is trained with the training dataset and at
test time, the test dataset is used to evaluate the performance of the classifier.

3.2 Evaluation Criteria

The performance criteria used is the Receiver Operating Characteristic (ROC)
curve which plots the true positive rate (TPR) versus the false positive rate
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Classifier | credit | ionosphere | heart | AUC mean
PLSQuad | 0.7846 0.9823 0.9216 0.8962
RForest | 0.7735 0.9772 0.9309 0.8939
RBF-SVM | 0.7687 0.9764 0.8994 0.8815
SVM 0.7702 0.8492 0.9117 0.8437
Boost | 0.7245 0.9658 0.8944 0.8616

Table 1: The AUCs obtained by the classifiers on each dataset
(german-number-scale, ionosphere-scale and heart-scale respectively).

(FPR), at varying classifier output thresholds. The TPR and FPR can be
defined as follows:

# true positives

TPR = (13)

# false negatives 4+ # true positives

FPR — 1 — # true negatives

# false positives + # true negatives (14)

In addition to ROC curves, we also use a performance measure that summa-
rizes an entire ROC curve which is the area under the given ROC curve (AUC).
The reason for adopting the AUC and the ROC curve as the performance
measures is due to the fact that they are not sensitive to class imbalance (i.e.
the difference in the number of data in each class), and in addition, they show
the overall performance of the classifier at different classifier score thresholds.

3.3 Experimental Settings

Our proposed method is compared with the state-of-the-art classification meth-
ods discussed in Section 1, namely: (1) SVM: Support Vector Machine with
linear kernel, (2) RBF-SVM: Support Vector Machine with (non-linear) RBF
kernel, (3) Boost: Real AdaBoost and (4) RForest: Random Forest.

3.4 Results and Discussion

The ROC curves and the corresponding AUC values are shown in Figures 1a,
1b and lc. The AUC values and the mean AUC value across all the datasets
for each classifier can found in Table 1. A bar chart visualizing the AUCs is
given in Figure 1d.

As can be seen from these figures, the bar graph and the table, our proposed
PLSQuad obtains the first place ahead of all the state-of-the-art classifiers in all
the datasets except the heart-scale dataset where it places the second place,
while having very close AUC measure (0.9216) to RForest which got first place
(0.9309).
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Figure 1: Evaluation on the test datasets

In all the datasets, Boost got either last or second last place, consolidating
the independent findings by other researchers that AdaBoost tends to overfit
in many datasets.

Our proposed approach PLSQuad performs better than RForest in two of
the three datasets and the results are significant because RForest has been
shown to be one of the top state-of-the-art classifiers in the literature and
PLSQuad is superior to RForest in the majority of the datasets, and very close
to RForest in the other. Moreover, PLSQuad is significantly better than SVM
and Boost is all the datasets. PLSQuad also has the highest mean AUC across
all the datasets and therefore outperforms all the state-of-the-art classifiers on
average.
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4 Conclusion and Future Work

In this paper, we have proposed a novel classification algorithm called Hybrid
Partial Least Squares Quadratic Discriminant that outperforms state-of-the-
art classifiers such as the Random Forest, AdaBoost, linear SVM and non-
linear RBF SVM. Our proposed algorithm automatically learns a set of linear
projections using the supervised labels and then fits a quadratic surface in
the space spanned by the basis of the linear projections. We evaluated the
proposed method on three challenging datasets containing real world data and
obtained promising results.

There are several potential future research directions that can make use of
the method presented in this paper. Firstly, the mathematical formulation be
extended to directly work with multi-class classification problems. Secondly,
there is a potential to modify the proposed algorithm to learn other kinds of
non-linear surfaces other than quadratic ones in the linear projection space.
Thirdly, it would be interesting to apply the proposed classification algorithm
to problems in various fields of Machine Learning such as computer vision,
natural language processing and speech processing.
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