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Abstract

Recently, computer-aided drug design is developing rapidly. The first step of
computer-aided drug design is to find a protein - ligand binding site, which is a
pocket or cleft on the surface of the protein being used to bind a ligand (drug). In
this study, the binding site is defined as a binary classification problem to differ
the location which can bind or cannot bind the ligand. Classification method used
in this research is Extreme Learning Machine (ELM), because this method has
fast learning process. In the real case, the dataset usually has imbalanced data.
One of them is to predict binding site. Imbalanced data can be solved in several
ways. In this study we carried out the integration of data selection and
classification to overcome the inconsistency problem. The performance of
integrating between data selection and Extreme Learning Machine to predict
protein-ligand binding site is measured by using recall, specificity, G-mean and
CPU time. The average of recall, specificity, G-mean and CPU time in this
research are respectively, those are 91.8472%, 97.071%, 94.2647%, and 2.79
second.
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1 Introduction

Bioinformatics is a multidisciplinary science that involves many discipline
science, such as molecular biology, mathematics, computational science,
molecular chemistry, physics, and several other discipline science [1]. Actually,
bioinformatics can be widely applied in various problems, such as to identify the
host of SARS epidemics [2], and to gain drug design. The drug design concept on
the bioinformatics based on the functionality of the protein.

Actually, there were many computation approaches that based on structure and
sequence that have been developed to predict the binding site [3-9]. The
prediction of the binding site can be formulated as a binary classification problem,
that differ the location of the binding sites and non-binding site. Extreme Learning
Machine (ELM) is an algorithm for pattern recognition and classification with a
good performance [10-11]. ELM has been relatively computation faster than other
neural networks. In addition according to [12] ELM has great accuracy and it is
almost the same as Support Vector Machine (SVM) for balanced data.

As other bioinformatics data, protein-ligand binding site data has the
imbalanced character. Imbalanced data is a considerable problem on machine
learning, because it influent the performance of machine learning. There are many
ways to overcome the problem of imbalanced data, one of them is undersampling.
Undersampling is how to solve the problem of imbalanced data by reducing the
majority data, so we can obtain the right proportion data and even the balanced
data. According to Imah [13], a pattern recognition system has disadvantages like
the condition of inconsistencies between data selection and classification while
both steps are carried out separately, it is necessary to do the integration of the
two steps.

Based on information above, in this study we use integrating data selection and
ELM. The purpose of data seection is that it needs no big-size memory and long
computation time. The integration is to overcome the problem of inconsistencies
between data selection and classification process, because they are in the system
[14].

2 Predicting Protein-Ligand Binding Site

LIGSITE is a geometry-based method to find a binding site [6]. An
improvement of the LIGSITE algorithm developed by Levitt and Banaszak
namely POCKET program. The program begins with a regular Cartesian grid.
Secondly, the examination applied to the grid spacing to ensure protein atoms do
not overlap with grid points. All grid points, which do not overlap with protein
atoms, labeled as a solvent. If the grid points outside of the protein that is covered
by surface proteins, that is grid points flanked by a pair of atoms in the protein.
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It is called protein-solvent-protein (PSP) event. All residues in the protein are not
necessarily always important. Some things are necessary for a vital protein
structure and function of proteins, whereas others can be substituted. Analysis
conservation is one of many methods used to predict functionally important
residues of the protein sequence [5].

Table 1 Dataset of Protein

Number Protein Protein ID Size of Data
1 4TPI 3042
2 2ZAL 5286
3 2V8L 2060
4 Hydrolase IWYw 9616
5 1RN8 2233
6 1C1P 4797
7 1YBU 5909
8 3D4P 6204
9 Oxidoreductase 1A4U 4663
10 2WLA 2444
11 2GGA 4146
12 1SQF 4365
13 Transferase 1026 9272
14 1G6C 4504
15 1BJ4 4205
16 Ligase 1U7z7 6144
17 1ADE 9072

3 Extreme Learning Machine (ELM)

ELM algorithm is derived from the minimum norm least square solution
SLFNs. The main concept of the ELM as presented in the paper Huang [11] is as
follows, given a training set R = {(x;t;)|x; € R"*™ t; € R", j € [1,N]},
activation function g(x), and hidden node number N.

Step 1: Randomly assign input weight wi and bias by, i=1,..., N

Step 2 : Calculate the hidden layer output matrix H.

Step 3 : Calculate the output weight

B =H'T 1)
g(Wl'X1+b1) Q(WN--X1+bN) B1 ty

: . . B=1:|adT=]:

By ty

where, H -

g(w.xy +b) - g(WN.xN +bN)

According to Liang [15], training process is done sequentially can affect the
weight of update process. So that the weight of the output [10].
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ﬂn+1 = ﬂn + Pn+1Hr.:-+1 (Tn+l - Hn+1ﬂn) (2)

Where I:)nJrl = Pn - PnHrLl(I + Hn+1PnHr-1r+1)7lHn+1Pn (3)
T -1

P, =(Hy'H,) . @

where g, ,is g for (n+1) data, £, is g for ndata, H is hidden layer matrix

4  Results and Discussion

4.1 Experimental Setting and Dataset

The proteins data are used to predict protein-ligand binding site can be seen in
Table 1. In this study, the used data are experimental data proteins. That published
in the RCSB Protein Data Bank web, it is also an open source data. We use the 17
proteins data, then we compare IDELM with ELM, BP (Backpropagation), and
SVM (Support Vector Machine). The training and the testing process are done in
every kids of protein, one protein for testing and the other one’s for training. So the
training process is done as many as the rest of data in each kind of proteins.

4.2 Experimental Result

Recall is the portion of the data samples correctly predicted by the algorithm.
Then, specificity is accuracy of negative sample. From Table 2, we can see that
the integration of data selection and classification recall is better than ELM recall
in the issue of imbalanced data. The average of recall for IDELM is 0.918472,
mean while the average value for a recall on a regular ELM is only 0.2944. It
means 91.8472% of the data can be recognized correctly by IDELM. The average
of recall from SVM and BP better than IDELM, these are 95.105% and 93.311%.
Then, from this table also can be seen the best average of specivicity is IDELM, it
is 0,97071

Table 2 recall and specificity of predicting protein-ligand binding site

Protein ID Recall Specificity
IDELM | SVM | ELM BP IDELM | SVM | ELM BP
ATPI 0.963 | 0.982 | 0.222 | 0.989 | 0.981 | 0.613 | 0.795 | 0.732
2ZAL 0.918 | 0.961 | 0.484 | 0.973 | 0.999 | 1.000 | 0.500 | 0.998
2V8L 0.960 | 0.980 | 0.120 | 0.983 | 0.985 | 0.958 | 0.936 | 0.978
IWYW 0.870 | 0.989 | 0.000 | 0.990 | 0.923 | 0.399 | 1.000 | 0.292
1RN8 0.970 | 0.972 | 0.241 | 0.981 | 0.981 | 0.981 | 0.787 | 0.978
1C1P 0.930 | 0.961 | 0.622 | 0.939 | 0.990 | 0.984 | 0.408 | 0.971
1YBU 0.919 | 0.964 | 0.166 | 0.976 | 0.934 | 0.939 | 0.837 | 0.897
3D4P 0.957 | 0.872 | 0.500 | 0.932 | 0.999 | 1.000 | 0.500 | 1.000
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Table 2 (Continued): Accuracy and recall of predicting protein-ligand binding site

1A4U 0.864 | 0.876 | 0.171 | 0.899 | 0.990 | 0.974 | 0.507 | 0.983
2WLA 0.842 | 0.977 | 0.500 | 0.972 | 0.997 | 1.000 | 0.500 | 1.000
2GGA 0.981 | 0.968 | 0.250 | 0.966 | 0.998 | 0.991 | 0.750 | 0.999
1SQF 0.931 | 0.813 | 0.520 | 0.981 | 0.995 | 0.977 | 0.595 | 0.990
1026 0943 | 0.935| 0.361 | 0.980 | 0.870 | 0.782 | 0.573 | 0.604
1G6C 0.939 | 0.966 | 0.750 | 0.972 | 1.000 | 0.998 | 0.250 | 0.996
1BJ4 0.925 | 0.813 | 0.099 | 0.941 | 0.856 | 0.545 | 0.903 | 0.770
1U7Z 0.761 | 0.975 | 0.000 | 0.979 | 1.000 | 1.000 | 1.000 | 1.000
1ADE 0.942 | 0.859 | 0.000 | 0.721 | 1.000 | 0.931 | 1.000 | 0.083

G-mean and CPU time of IDELM, ELM, Backpropagation, and SVM for

predicting protein-ligand binding site are shown in the Table 3.

G-mean

(Geometric mean) is a performance measurement tool for the evaluation of the
imbalance data characteristics. From Table 3 can be seen that the G-mean average
of ELM, IDELM, BP and SVM from 17 the data are 0.3546, 0.9426, 0.8777, and

0.9032.

From Table 3 also can be seen that the ELM is the algorithm has a fast CPU
Time. In this study, the fastest average of CPU Time is ELM, it is 0.069283
seconds. Whereas the most CPU time is at BP, it is 22.18663 seconds, while CPU
time of IDELM and SVM are 2.786071 and 2.4443 seconds.

Table 3 G-mean and CPU Time of predicting protein-ligand binding site

Protein G-mean CPU Time(s)

D IDELM | SVM ELM BP IDELM | SVM ELM BP
4TPI 0.972 | 0.690| 0.084 | 0.804 | 2.475 1.076 | 0.039 | 11.019
2ZAL 0.957 | 0.980 | 0.000 | 0.985| 2.506 1.277 | 0.044 | 13.268
2V8L 0972 | 0967 | 0.111| 0.980| 2.774 1.113| 0.023 | 10.798

IWYW 0.895| 0.474| 0.000 | 0.361| 1.986 1.261 | 0.070 | 23.158
1RNS8 0.975| 0976 | 0.094 | 0.980| 2.691 1.105| 0.016 | 13.632
1C1P 0.959 | 0.972| 0.095| 0.953| 2.582 1.082 | 0.036 | 16.352
1YBU 0.924 | 0.948 | 0.028 | 0.934 | 2.431 0.991 | 0.042 | 7.592
3D4P 0.978 | 0.933| 0.000 | 0.965| 1.989 5.866 | 0.226 | 16.918
1A4U 0.924 | 0.923 | 0.034| 0.939| 2.395 1.209 | 0.062 | 11.411
2WLA 0.916 | 0.988 | 0.000 | 0.986| 2.613 1.295 | 0.047 | 59.780
2GGA 0.989 | 0.979| 0.000 | 0.982 | 2.441 1.907 | 0.062 | 12.059
1SQF 0.962 | 0.882 | 0.221| 0.986| 3.050 1.342 | 0.042 | 15.002
1026 0.905| 0.852 | 0.119| 0.663| 2.363 1.845| 0.101 | 13.135
1G6C 0.969 | 0.982 | 0.000 | 0.984 | 3.015 1.888 | 0.055 | 23.665
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Table 3 (Continued): G-mean and CPU Time of predicting protein-ligand binding
site

1BJ4 0.886 | 0.637 | 0.198 | 0.841 | 3.908 1.903 | 0.047 | 25.019

1U7Z 0.872 | 0.988 | 0.000| 0.990 | 4.852 1.794 | 0.062 | 9.142

1ADE 0970 | 0.895| 0.000 | 0.245| 3.292 | 14.601 | 0.203 | 75.223

5 Conclusions

ELM has a good average of CPU time in almost all the data is 0.006348
second. CPU Time of SVM, IDELM, and BP are 0.078306, 0.0637, and 0.169536
second respectively. From the result of some methods, IDELM has the best
average recall, specificity, and G-mean. Recall is 97.0471%, specificity is
97.071%, and G-mean is 94.2647%..
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