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Abstract 

 

The trend towards long-term explosive data growth that has been getting stronger 

in recent years leads to changing requirements for reliable and scalable storage 

systems. Contemporary approaches to reliability based on hardware 

implementations reveal bottlenecks that lead to increasing risk of data loss on 

large and growing volumes of data. Novel approaches already exist which are 

based on software methods to ensure data consistency over time in large data sets, 

but efficiency of these approaches has not been extensively explored in practice 

yet, especially because experimenting with petabyte scale systems in real world 

requires substantial investment of time and resources. Therefore, mathematical 

modeling of new methods becomes an important means to identification of most 

efficient solutions for problems of reliable and scalable data storage.  

 

Keywords: Improving Data Storage Reliability, Finite Field Theory 

 

1. Introduction 
 

According to International Data Corporation (IDC) [1], in 2012, the total 

global volume of digital data was 2837 EB (1 EB (exabyte) = GB (gigabyte)) and 

it is prone to double every two years reaching 40,000 EB or about 5,200 GB per 

each person on the planet by 2020. Relevance of providing the required level of  
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reliability for stored data is increasing as the volume of created, stored, and 

consumed data grows exponentially. 

On the one hand, as the volume of stored data in an organization is rising, the 

costs related to the implementation of scalable and robust data storage system that 

would be able to provide efficient access to information increase but, on the other 

hand, the risks of data loss due to hardware failure are increasing. According to 
research conducted by Google [2], the probability of hard disk drive failure is 5-8% 

per year. This means chances are that in large organizations storing hundreds of 

terabytes to tens of petabytes of data at least one HDD fails every day. These 

conditions render typical approaches like replication or RAIDs increasingly less 

efficient since they are unable to provide a high level of reliability with relatively 

low redundancy. For example, if one of the HDDs in a RAID fails, it may take up 

to several hours to restore data on this drive after its replacement. Bearing this in 

mind, the possibility of another drive failure in this RAID before the restore 

procedure is completed should be taken into account. 

All the aspects listed above make it necessary to search for and apply new 

solutions that would allow for creating data storage systems where a high level of 

reliability and availability is combined with the capability to infinitely scale up the 

solution for future growth. At the same time, they should provide for an affordable 

total cost of ownership for businesses. 

 

 

2. Overview of Major Approaches to Increase Data Storage 

Reliability 
 

Provision of data storage reliability involves both error detection methods 

and methods for error correction and restore in case one or more drives with data 

fail or connection to one or more machines in a distributed system is lost. 

Parity bit is one bit of data that is added to a stream or a set of bits allowing 

you to determine whether the number of 1-bits in a bit set is even or odd. It allows 

you to detect an odd number of errors and correct one error provided the 

remaining bits in the set are known. It is widely used in RAIDs to restore data. 

 Cyclic Redundancy Check (CRC) is a family of non-cryptographic hash 

functions based on the properties of division with a remainder of binary 

polynomials (polynomials over the GF (2) field). Thanks to high performance and 

the possibility of hardware implementation, these are widely used to detect errors 

when transferring and storing data. 

Cryptographic hash functions allow for a more reliable detection of errors 

in data but provide much lower performance compared to CRC sums. 

Replication is the storage of data copies on several drives or machines in a 

distributed system. As a rule, three copies of data are stored in systems with 

replication. On the one hand, it allows you to detect one replica with errors if it is 

different from the two other identical replicas. On the other hand, storing at least  
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three replicas allows you to avoid situations when the drive that is used as a 

source for restoring data after the second replica drives failure breaks down,  

which may cause data loss. Compared to other approaches, significant redundancy 

is the drawback of replication. 

RAID (Redundant Array of Independent Disks) is a hardware way to 

provide for data storage reliability. It is a set of several drives managed by a 

hardware controller and connected to each other by high speed data transfer 

channels. External systems consider this array as a single drive. Depending on the 

array type, it allows you to provide a different degree of failure tolerance. 

There are several levels of RAID specification, with RAID5 and RAID6 

being the most appropriate ones for data storage reliability. In both schemes, data 

is split into blocks that are repeatedly written onto the array drives along with one 

(RAID5) or two (RAID6) blocks of checksums. 

With 𝑛 drives in a RAID5 array, for every (𝑛 − 1) blocks of payload one 

checksum block is calculated as XOR of the remaining blocks. Every n blocks of 

data is written with a shift on one drive in relation to the previous block set 

allowing you to increase the data read speed by means of parallelization. The 

minimum number of drives in RAID5 is three. The larger the number of drives in 

the array is, the higher the data read speed will be. 

In RAID6, two blocks are allocated for checksums that are calculated by 

two different algorithms. This allows you to survive when two drives fail. For 

example, the RAID6 scheme implemented in Red Hat Linux uses checksums 

based on algebraic operations in Galois fields [7]. The minimum number of drives 

in RAID6 is four. Figure 1 shows an example of data and checksum block 

distribution for a RAID6 array of 5 drives. Source data blocks are marked as 𝑑𝑗
𝑖, 

while checksum blocks are marked as 𝑝𝑖, 𝑞𝑖. 
 

 
Figure 1. Example of data and checksum block distribution for a 

RAID6 array of 5 drives. The advantage of RAID5 and RAID6 is the 

possibility to potentially parallelize data writing and reading. For example, in 

theory, a RAID5 array of n drives allows you to accelerate the data reading speed 

by (𝑛 − 1) times provided that the data blocks are intact and a restore is not 

required. 
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The disadvantage of RAID5 and RAID6 is a low number of disk failures 

that can be survived without data loss. This led to the creation of RAID schemes 

including those based on Reed–Solomon codes [8] that would be able to survive a 

larger number of failures. 

Error-correcting coding is data encoding schemes allowing you to split the 

object into 𝑘 fragments of the same length and recode them into 𝑛 fragments so 

that the original object could be restored from any 𝑘 fragments of the resulting 𝑛 

fragments. Cases when fragments could be not only lost but also corrupted require 

a special mechanism based on checksums, for instance to detect corrupted 

fragments. 

Let's consider 𝑤  character long words from the {0,1}  alphabet. (𝑛, 𝑘) 
encoding scheme for each set of 𝑘 𝑤-bit words maps to the set of 𝑛 𝑤-bit words 

where 𝑛 > 𝑘. As a rule, 8 or 16 is selected as 𝑤 to work with 1 or 2 byte long 

words, respectively. To apply error-correcting coding to a file of random length, it 

should be split into sets of 𝑤-bit words and each of these sets must be encoded. 

After that the 𝑛 resulting words for each set are written onto 𝑛 machines in a 

distributed system. 

The 
𝑘

𝑛
 ratio is called a rate of encoding, whereby the size of disk space 

required for storing the object for the 𝑟 rate of encoding increases by 
1

𝑟
 times. 

Approaches like replication and RAID systems that were described above are 

examples of error-correcting codes. Replication with three replicas, for example, 

may be described as (𝑛 = 3, 𝑘 = 1) error-correcting code, RAID5 of three drives 

as (𝑛 = 3, 𝑘 = 2) code and RAID6 of four drives as (𝑛 = 4, 𝑘 = 2) code. 

Consider the dependence of the availability of data on the parameters of 

erasure code (erasure-resilient code, or error-correcting code) [3]. We assume that 

a system consists of a collection of 𝑁 hard drives (𝑁 machines in a distributed 

system), and 𝑀 of these machines (servers) are temporarily unavailable. Consider 

that there is a data block, divided into 𝑛 fragments in such a way that data can be 

reconstructed from any𝑘 fragments. To compute a probability 𝑃0 that a block is 

available, i.e. the data block can be reconstructed from fragments, we sum the 

conditional probabilities of data block availability upon the condition that some 

fragments, from 0 to (𝑛 − 𝑘) fragments, are not available. Given the number of 

unavailable fragments is 𝑖, the probability that the block is available is equal to the 

number of ways in which we can arrange unavailable fragments on unreachable 

servers multiplied by the number of ways 𝑖 in which we can arrange available 

fragments (𝑛 − 𝑖) on reachable servers, divided by the total number of ways in 

which we can arrange all of the fragments on all of the servers. In this case, the 

probability 𝑃0 is equal to: 

 

𝑃0 = ∑
(𝑀
𝑖
)(𝑁−𝑀

𝑛−𝑖
)

(𝑁
𝑛
)

𝑛−𝑘

𝑖=0
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For replication with 𝑛 copies of data block, the availability 𝑃𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 of a 

block can be computed by the formula for 𝑃0 at 𝑘 = 1. 

Schemes of erasure-resilient coding allow you to select suitable (𝑛, 𝑘) 
parameters for the coding scheme such that systems employing these erasure 

codes have a reliability that is considerably higher than replicated systems with 

similar storage redundancy. Example: a distributed system consists of 1,000,000 

machines, and 10% of these machines are not available. When using (32, 16) 

scheme, the availability of a data block is equal to 0.999999998. When employing 

replication with the same redundancy (two copies of each data block), the 

availability of a data block is no better than 0.99. 

With a suitable choice of parameters of erasure-resilient coding, mean time 

to failure (MTTF) of an erasure encoded system can also be shown to be 

significantly higher than that of a replicated system with the same redundancy [3]. 

Hence, erasure-resilient coding enables many orders of magnitude higher 

reliability than that of a replicated system with the same redundancy. 

Geo-replication. This approach uses geo-replication systems that store 

copies of data across geographically distributed data centers. Such an approach 

provides data safety, as well as the continuous running of the system during 

natural disasters (water flood, earthquake or fire situation in a data center) or 

technogenic accidents (global electrical power outage). 

Storing data at geographically distributed data centers necessarily imposes 

some restrictions on distributed data storage design. For example, with a cross-

network delay during data communication between data centers it can be complex 

to implement "read-after-write consistency" (data consistency model, when data 

changes made by a user can be automatically seen by other user). More real model 

for geo-replication is "eventual consistency" (data consistency model, when all of 

data changes will be reliably available for all the users sooner or later). 

 

3. Erasure-Resilient Codes 
 

3.1 Basic concepts 

Consider a finite field (Galois field) 𝐹𝑞, where 𝑞 is a number of elements of 

the field. 𝑢 ∈ 𝐹𝑞
𝑘 is a 𝑘-dimensional vector with vector components from 𝐹𝑞. Code 

𝐶 maps vector 𝑢 ∈ 𝐹𝑞
𝑘 to vector 𝑥 ∈ 𝐹𝑞

𝑛, where 𝑛 > 𝑘, i.e. it maps a 𝑘 element set 

from 𝐹𝑞 to a 𝑛 element set from 𝐹𝑞. 

We will consider only linear codes, when the given mapping can be written 

as the production of original 𝑘-dimensional vector 𝑢 by generator matrix 𝐺: 

𝑢𝐺 = 𝑥 

Vector 𝑢 is a vector of information symbols (or information vector), and 

vector 𝑥 is a code word (code vector). 

There are many of erasure-resilient codes (or error-correcting codes), but we  

will be mostly interested in the systematic codes, when a set of coefficients of 

derived 𝑛-dimensional vector contains 𝑘 coefficients of original 𝑘-dimensional 
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vector. Remaining (𝑛 − 𝑘) coefficients are check symbols. Generator matrix for 

systematic code must contain unity submatrix with an accuracy to the permutation 

of rows (obviously, the properties of code are independent of the permutation of 

rows of the generator matrix), and it can be written as 𝐺 = [𝐼𝑘   𝐴], where 𝐼𝑘 is the 

unity submatrix. Therefore, if data were not corrupted or lost, there is no need to 

perform the complex process of decoding while reading data because it is enough 

to read 𝑘 fragments that match the original words. 

To determine if the vector 𝑥 is a code word (code vector), you use parity-

check matrix 𝐻, that meets the following condition: 𝐻𝑥𝑇 = 0, if and only if the 

vector 𝑥  is a code word (code word). For a systematic code, the parity-check 

matrix  is 

 

 𝐻 = [−𝐴𝑇   𝐼𝑛−𝑘]. 
The number of errors that can be corrected with the help of error-correcting 

code (erasure-resilient code), is tightly linked with a concept of Hamming 

distance. For the two vectors 𝑥  and 𝑦  the Hamming distance between these 

vectors is the number of coefficients in which they differ, which is the size of set 

{𝑖: 𝑥𝑖 ≠ 𝑦𝑖}. For code 𝐶 the Hamming distance is the minimal distance between 

any two different code words. 

Singleton bound is a theoretic bound on the maximum number of code 

words in a code with Hamming distance 𝑑  between dimensional vectors with 

coefficients from the field 𝐹𝑞: 

𝐴𝑞(𝑛, 𝑑) ≤ 𝑞
𝑛−𝑑+1, where 𝐴𝑞(𝑛, 𝑑) is a code size that is the size of the set 

of all the possible code words. 

For the linear code 𝐴𝑞(𝑛, 𝑑) = 𝑞
𝑘 therefore, we have the following formula: 

 

𝑘 ≤ 𝑛 − 𝑑 + 1 

Consequently, linear (𝑛, 𝑘) -code that achieves equality in the Singleton 

bound can correct (𝑛 − 𝑘)  errors. Such a code is called Maximum Distance 

Separable code (MDS code). The maximum distance of the separable codes 

enables you to correct the maximum number of errors in comparison with other 

erasure codes with the same 𝑛 and 𝑘 parameters, so that MDS codes are the most 

effective codes in terms of redundancy. 

Let the code be denoted by generator matrix 𝐺 . Consider a recovery of 

source data from a partially known code word. The following equation is valid for 

any vector of source data: 

 

(
𝐺1
1 … 𝐺𝑘

1

… … …
𝐺1
𝑛 … 𝐺𝑘

𝑛
)(

𝑢1
…
𝑢𝑘
) = (

𝑐1
…
𝑐𝑛
) 

 

It is clear from the matrix multiplication rule that each coefficient of the 

obtained code word corresponds to its row of the generator matrix. 
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Let there be given a code word 𝑥 , for which we have (𝑛 − 𝑘) unknown 

coefficients. In this case, we remove those rows from the generator matrix, which 

corresponds to unknown coefficients, and then we obtain a matrix 𝐺′. To obtain 

the inverse of a matrix 𝐺′, using an additive and multiplicative rules in the given 

finite field. Let 𝑥′ be obtained from the code word 𝑥 via the removal of unknown 

coefficients, then the original vector 𝑢 can be found by the following formula: 

 

(

𝑢1
…
𝑢𝑘
) = 𝐺′

−1
𝑥′ 

Note that data recovery requires that any square submatrix of matrix 𝐺 is 

inversible. 

 

3.2 Characteristics of error-correcting codes 

Error-correcting codes (erasure-resilient codes) can be classified by the 

following parameters. 

 The mean number of errors and guaranteed number of errors that can be 

corrected (disk outage, unavailability of remote machines in distributed system). 

For non-MDS codes, the guaranteed number of errors differs from the mean 

number of errors that can be corrected. 

 A degree of coding and its reciprocal value that characterizes a storage  

redundancy. 

 Theoretical algorithmic complexity of coding, decoding, and updating of 

data. 

 Ability to change the number of coding symbols and to recover the 

individual coding symbols with no need for complete decoding and coding of data 

using error-correcting coding scheme with new parameters. 

 

3.3 Reed-Solomon codes 

3.3.1 Description of Reed-Solomon codes 

Reed-Solomon codes belong to a class of linear maximum distance 

separable codes. These codes exist for any parameters (𝑛, 𝑘) . Reed-Solomon 

codes are defined by generator polynomial over Galois fields with roots in the 

same field. 

Consider a Galois field 𝐺𝐹(𝑁), where 𝑁 is a power of a prime integer. For 

𝑁 , we usually take 28  or 216 . Elements of this field can be represented as 

polynomials of degree equal to or less than (𝑛 − 1) with the coefficients 0 and 1. 

Addition and multiplication in the Galois field is performed modulo some 

irreducible polynomial, i.e. polynomial that may not be factored into the product 

of two non-constant polynomials. The addition of two polynomials is calculated  

as a polynomial with the coefficients equal to the XOR of the corresponding 

coefficients of the two polynomials. Multiplication is a more complex operation 

and requires special tables for the efficient computation. 
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Since Reed-Solomon code is a linear code, it can be specified by a generator 

matrix. Then source data can be decoded according to the aforementioned 

algorithm with the inversion of the submatrix of the generator matrix. 

Vandermonde matrix can be used a generator matrix for the Reed-Solomon codes: 

 

𝑉 = (
1 𝑎1 𝑎1

2 … 𝑎1
𝑘−1

… … … … …
1 𝑎𝑛 𝑎𝑛

2 … 𝑎𝑛
𝑘−1
), where (𝑎1, … , 𝑎𝑛) are the different non- 

zero elements of the given Galois field 𝐺𝐹(𝑁). This approach is based on the fact 

that every 𝑘  vectors like (1, 𝑎𝑖, … , 𝑎𝑖
𝑘−1) , corresponding to the 𝑘  different 

elements of the Galois field, form a basis and any square submatrix of this 

Vandermonde matrix is inversible. 

Theoretical complexity of the basic operations for Reed-Solomon code is 

equal to𝑂(𝑛(𝑛 − 𝑘)) for coding and decoding of data, and 𝑂(𝑛 − 𝑘) for updating 

the code word after the change of one coefficient of the input vector (vector of 

source data). 

Reed-Solomon codes enable you to flexibly increase or decrease the 

dimensionality of code words by adding or removing checking symbols and to 

restore any single symbol in a code word with no need to re-encode the source 

data from scratch. 

Cauchy code represents a more efficient modification of Reed-Solomon 

codes, which uses the Cauchy matrix as a generator matrix, and replaces 

multiplication in the Galois field with XOR. 

 

3.3.2 Advantages and drawbacks of Reed-Solomon codes 

The main advantages of the Reed-Solomon codes are the following: 

existence of the coding algorithm for the any given 𝑛 and 𝑘 parameters, optimal 

number of the errors corrected, and also the ability to increase the number of 

symbols in coding word and to restore any single symbol in coding word without 

the need to re-encode the source data. The drawbacks of Reed-Solomon codes and 

their modifications: relatively low coding and decoding rates, because of the 

computation of each checking symbol requires 𝑛 multiplications, as well as an 

inefficient data recovery, because it requires the complete decoding of the source 

data. The problem of the low performance of the Reed-Solomon codes was partly 

solved in the modifications of the Reed-Solomon codes, such as Cauchy code. 

 

3.4 Parity-array codes 

Parity-array codes are XOR-based codes. Simplicity of the implementation 

of parity-array codes enables its application in RAIDs. In the general case, parity-

array codes are not maximum distance separable codes. Contrary to Reed-

Solomon codes, which are applied to 𝑘 𝑤-bit symbols to obtain 𝑛 𝑤-bit symbols, 

parity-array codes are applied to a set of 𝑘 𝑟-dimensional arrays of 𝑤-bit symbols 

to obtain 𝑛 𝑟-dimensional arrays. 
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Parity-array codes can be divided into vertical codes and horizontal codes. 

Horizontal codes are used for storing either source data or code symbols on each 

hard drive, while vertical codes are used for storing both source data and code 

symbols on each hard drive. 

The best known and widely applied parity-array codes are EVENODD, X-

code, Weaver, HoVer, and Blaum-Roth codes. 

 

3.4.1 Evenodd 

EVENODD [10] is an error-correcting code with the parameters 𝑘 = 𝑝, 𝑛 =
𝑝 + 2 , where 𝑝  is a prime number, 𝑝 > 2 . Let us consider an example of 

EVENODD code for (𝑛 = 7, 𝑘 = 5). Coding/decoding algorithms can be easily 

extended for other values. 

Let us assume that the source data 

(

 
 

𝑑0,0
𝑑1,0
𝑑2,0
𝑑3,0

𝑑0,1 𝑑0,2 𝑑0,3
𝑑1,1 𝑑1,2 𝑑1,3
𝑑2,1
𝑑3,1

𝑑2,2
𝑑3,2

𝑑2,3
𝑑3,2

𝑑0,4
𝑑1,4
𝑑2,4
𝑑3,4)

 
 

 are  

 

placed  across 5 hard drives, where 𝑑𝑖,𝑗 data are placed on one hard drive for any 

specified 𝑗. We want to compute two data arrays for two hard drives with check 

sums based on the source data. 

For the first hard drive with check sums, we compute a vector 𝐶0 , each 

coefficient of which is equal to the result of XOR of the elements in the 

corresponding row in the source data table. For the second hard drive with check 

sums, we compute the coefficients of vector 𝐶1  as XOR of words, which are 

placed on one diagonal of the table. 

EVENODD code can be adapted for any arbitrary 𝑘  by adding "virtual 

drives" with zero data so that the number of drives with real or virtual data was 

the next prime integer greater than 𝑘. 

The advantage of EVENODD code is a capability to adapt this scheme for 

any 𝑘, and high coding rate due to XOR operations. Disadvantages of EVENODD 

code is a low updating and decoding rate in the worst case scenario. 

 

3.4.2 X-code 

X-code is a maximum distance separable code for 𝑛 = 𝑝, 𝑘 = 𝑝 − 2, where 

𝑝 is a prime number. This code provides optimum performance. For this code, the 

arrangement of source data and code symbols in RAID can be represented with a 

table in which two first rows (𝑝 − 2)  contain source data, and two last rows 

contain code symbols. 

Coefficients in each row with code symbols are computed as the XOR of 

words, which are placed on diagonals of the source data table. For one of these 

rows, we take back slash diagonals, and for the other row we take other diagonals. 
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3.4.3 Weaver 

Weaver [11] is a family of vertical parity-array codes that allow you to 

survive up to 12 disk failures. There are two maximum distance separable codes 

with optimal performance for 𝑘 = 2, 𝑛 = 4 и 𝑘 = 3, 𝑛 = 6 cases. One of the key 

features of WEAVER codes is the fact that every data block participates in 

calculating the fixed number of checksum blocks allowing you to limit the top 

overhead for some operations. 

 

3.5 Low Density Parity Check codes 

3.5.1 Description 

Low Density Parity Check codes (LDPC codes) [13] is a family of XOR 

based codes described using the Tanner graph, special bichromatic graphs. 

Performance of these codes is much higher compared to maximum distance 

separable codes. They are asymptotically separable codes with maximum distance.  

To set an LDPC code with parameters (𝑛, 𝑘) it takes a bipartite graph with 

𝑘 apexes corresponding to the source data on the one side and (𝑛 − 𝑘) apexes on 

the other side corresponding to code symbols. It is required for at least one verge 

to be part of each of the code apexes. In this case, to code the source-dimensional 

vector, the vector coefficients are assigned to the apexes of the bipartite graph on 

one side of the graph and to each code symbol of the apex on the other side of the 

graph, and each code symbol is calculated as modulo 2 sum of all the coefficients 

mapped to the apexes having the common verge with the apex for this coefficient. 

With the set encoding degree 𝑘 → ∞ the ratio of the code symbol number 

(𝑛 − 𝑘) to the number of errors of the code is able to correct on average works for 

1, which means the code is asymptotically maximum distance separable. 

Despite good practical properties, the most well-known LDPC codes 

(Raptor [14], Tornado [15]) are covered by patents and cannot be freely used 

commercially. 

 

4. The Comparison Table Containing the Main Features of the 

Covered Approaches 
 

Code Max. number of 

errors 

Coding complexity Decoding complexity Updating complexity 

RAID5, 𝑛 drives 1 𝑂(𝑛) 𝑂(𝑛) 𝑂(1) 

RAID6, 𝑛 drives 2 𝑂(𝑛) 𝑂(𝑛) 𝑂(1) 
Reed–Solomon with 

parameters  (𝑛, 𝑘) 
𝑘 𝑂(𝑛(𝑛 − 𝑘)) 𝑂(𝑛(𝑛 − 𝑘)) 𝑂(𝑛 − 𝑘) 

EVENODD 2 𝑂(𝑛2) Specific case dependent 𝑂(1) or 𝑂(𝑛) depending on specific case 

X-code 2 𝑂(𝑛2) 𝑂(𝑛) for each of failed drives 𝑂(1) 
LDPC Depends on code 𝑂(𝑛) 𝑂(𝑛) 𝑂(1) 

 

5. Data Restore Methods with the Effective Network and Disk 

Usage 

 

Naive strategy to restore data encoded using the error-correcting scheme 

(𝑛, 𝑘) is as follows: decode the object from the remaining correct fragments, then  



Mathematical methods and models of improving data storage reliability         1599 

 

 

encode the object using the same scheme to obtain missing fragments and write 

them on the disk or transfer over to the network. The strategy has several apparent 

drawbacks: 

 High cost of communication: you need to read one fragment from each of 

the 𝑘  drives or load one fragment from each of the 𝑘  machines in a 

distributed system. 

 High cost of computing resources entailed by encoding and decoding 

fragments. 

 The machine performing the restore process becomes a bottleneck. 

 The time required to restore data is the critical aspect taking into account 

the possibility of consecutive failures. 

Thus, in order to be efficient in a distributed system with frequent disk 

failures, a system of error-correcting coding should have one or more of the 

following properties: 

 efficient use of the network and disk. 

 load balancing, capability to parallelize the restore process, and to 

decrease the time required to restore data. 

 capability to restore several errors. 

Let us consider one of the possible approaches to error-correcting coding 

optimized for restoring data frequently that is based on the Reed-Solomon codes. 

Locally Repairable Codes (LRC) [16] are error-correcting codes 

converting 𝑘 input symbols into 𝑛 code symbols so that in order to restore any one 

of 𝑛 code symbols just 𝑟 of other code symbols are enough. 

Let us consider one of the ways to obtain locally repairable code. Assume 

that we have Reed–Solomon code with parameters (𝑚 = 𝑛
𝑟

𝑟+1
, 𝑘). Let's split 𝑚 

code symbols into 
𝑚

𝑟
 groups of 𝑟 symbols so that they would not overlap. Then, 

we apply error-correcting coding with the parameters (𝑟 + 1, 𝑟). to each of these 

groups. The array of resulting code symbols will represent the code that can be 

repaired locally allowing you to restore any code symbol from 𝑟 code symbols. 

Use of locally repairable codes allows you to limit the network and disk 

bandwidth that are needed for the data restore in a distributed system and to 

reduce the average time required to restore a block of data by increasing the 

redundancy of data storage. 

 

6. Overview of Methods to Increase Reliability of Data Storage in 

Actual Systems 
 

Reliability of data storage is one of the key problems for modern distributed 

systems. It is solved differently depending on the tasks the system performs. Let 

us briefly consider approaches used in some modern systems. 

Ceph, an open distributed file system, supports both data replication and 

error-correcting coding using user selectable advanced algorithms (different  
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variants of Reed–Solomon codes, Cauchy code, Blaum-Roth, Liberation, 

Liber8tion) [18]. Ceph positions the storage using error-correcting coding as 

"cold" storage with high latency and low data access speed designed to store large 

(~1 GB) objects that remain unchanged after writing. 

Wuala [19], a social distributed cryptographic file system, uses Reed–

Solomon code based error-correcting coding and georeplication to provide high 

reliability and availability of storage. 

Facebook has developed and is using a proprietary solution for error-

correcting coding, locally repairable codes (LRC), allowing you to reduce the 

volume of disk and network traffic compared to typical solutions based on Reed–

Solomon codes. 

 

7. Plans for Future 
 

As one of the possible directions for further work, it is proposed to develop 

and implement a computer model to study the performance of distributed systems. 

Depending on different parameters, the model should use various solutions based 

on error-correcting coding algorithms. It looks interesting to investigate the 

dependence of such system performance on the following parameters: 

 data transfer speed in the network 

 average latency of data transfer 

 network load 

 network topology 

Development of such models will allow you to predict the most efficient 

approaches to be used in various typical scenarios of the data storage operation. 

 

8. Conclusion 
 

This work considers the typical approaches that are used to provide reliability and 

availability of data storage in modern distributed systems. It has been shown that 

the typical approaches like replication and RAIDs are losing their relevance in 

view of the exponential growth of the stored data. Thus, RAIDs, for example, 

provide relatively low reliability due to the long time needed to restore and the small 

number of simultaneous disk failures that a RAID can survive without data loss. 

Error-correcting coding allows you to achieve higher data storage reliability 

compared to standard approaches, but its performance is lower. The selection of 

an encoding algorithm for a certain system directly depends on the system 

configuration, requirements, and dominant patterns of the system operation. 

Among the erasure codes reviewed in this article the Reed Solomon codes and 

their modifications are the most universal and suitable for the wide range of 

problems. Reed–Solomon codes, for example, can be effectively used in 

distributed and peer-to-peer systems where data transfer between servers over the 

network is the bottleneck and the overhead of encoding algorithm implementation  
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can be disregarded. In systems without any constant configuration where 

machines can randomly become unavailable or connected to the system, 

flexibility of Reed–Solomon codes, i.e., the possibility to freely change the 

number of the coding fragments without the complete re-encoding of the object is 

the major advantage. The performance problems of the Reed-Solomon codes can 

be solved by using the modified variants of the Reed-Solomon codes, such as 

Cauchy codes, that combine all the advantages of the Reed-Solomon codes with 

the relatively high performance. 

On the other hand, in RAIDs, where it is not required to flexibly change 

parameters and the system configuration stays the same, it is convenient to use 

parity-array code based schemes that can be efficiently implemented at the level 

of RAID controller hardware. 

Locally repairable codes and other codes optimized for data restore should be 

considered in case of frequent disk failures in the system, where network and disk 

traffic required to restore data generates a significant load on the system. Under 

these conditions, the use of locally repairable codes allows you to limit the load 

on the system by way of a certain increase of data storage redundancy.  
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