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Abstract 
 

A new approach to find the optimal solution of linear time-invariant scaled 
systems using the Chebyshev wavelets is proposed. The operational matrix of stretch 
is derived and together with the operational matrix of integration are used to change 
the system of state equations into a set of algebraic equations which can be solved 
using a digital computer. The approximated optimal solution with respect to a 
quadratic cost function is calculated by solving only these linear algebraic equations. 
The main feature of this article over other possible works is that with a relatively low 
number of terms we have accurate results. Numerical examples are given to support 
this claim. 
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1. Introduction 
 
The systems containing the terms with a stretched argumentݏ,play important roles 

in describing the dynamics of current collection systems for electric locomotives [14] 
and in describing the particulate systems [15]. Therefore, spending some time to find 
the optimal solution of these systems is reasonable. 
In the literature, some authors have tried block pulse series [3], Chebyshev 
polynomials [6], Shifted Legendre series[7], Laguerre series[8], Walsh 
series[16],Fourier series[17] methods to solve these systems. 

Wavelets theory is a relatively new emerging area in mathematical research. It has 
been applied in a wide range of engineering disciplines; particularly, wavelets play an 
important role in establishing algebraic methods for the solution of problems 
described by differential equations, such as Numerical solutions of integral 
differential equations [2], analysis of time-varying [19, 5] or time-delay [12] systems, 
optimal control [9, 11, 18]. 

A method of constrained extremum is applied which consists of adjoining the 
constraint equations which are derived from the given dynamical system with the 
scale argument and the inequality constraints to the performance index by a set of 
undetermined Lagrange multipliers. As a result, the necessary conditions of 
optimality are derived as a system of algebraic equations in the unknown coefficients 
of ݔሺݐሻ,ݑሺݐሻ and the Lagrange multipliers. These coefficients are determined in such 
a way that the necessary conditions for extremization are imposed. 

For the first time in this paper, we have introduced an alternative numerical 
method to solve the linear quadratic optimal control problem using the Chebyshev 
wavelets. This method consists of reducing the optimal control problem to a set of 
algebraic equations by expanding the state vector ݔሺݐሻ and the control vector ݑሺݐሻ 
using the Chebyshev wavelet functions with unknown coefficients so-called reduced 
technique. As it is shown by the table, the approach gives more accurate results when 
compared with the existing approaches (polynomial series). Also the results of [8] are 
modified. 

The paper is organized as follows: In Section 2, we describe the basic formulation 
of the Chebyshev wavelets and our proposed method required for our subsequent 
development. Section 3 is devoted to the formulation of the optimal control problem. 
In Sections 4 െ 5 the proposed method is used to approximate the optimal control  
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problem. In Section 6, we report our numerical finding and demonstrate the accuracy 
of the proposed technique by considering some examples. 

 
 

2. Properties of Chebyshev wavelets 

 
2.1. The Chebyshev wavelets 
 

Wavelets have been used by many researchers in many scientific and engineering 
fields. They constitute a family of functions constructed from the dilation and 
translation of a single function called the mother wavelet. When the dilation 
parameter a and the translation parameter ܾ vary continuously, we have the following 
family of continuous wavelets: 

߰௔,௕ ൌ |ܽ|ିభ
మ߰ ൬

ݐ െ ܾ
ܽ ൰  ,     ܽ, א ܾ  Թ , ܽ ് 0 

If we restrict the parameters a and b to discrete values as  ܽ ൌ  ܽ଴
ି௞,  

ܾ ൌ ܾ݊଴ܽ଴
ି௞whereܽ଴ ൐  1 , ܾ଴ ൐ 0 andn, k are positive integers, we have the 

following family of discrete wavelets: 

߰௞,௡ ൌ |ܽ|
ೖ
మ߰ሺܽ଴

௞ݐ െ ܾ݊଴ሻ 
In particular, when ܽ଴= 2 and ܾ଴ ൌ 1 then ߰௞,௡ forms an orthonormal basis. 

Chebyshev wavelets ߰௡,௠ሺݐሻ ൌ ߰ሺ݊, ݇, ݉,  :ሻ have four argumentsݐ
݉ ൌ 0,1, … , –ܯ 1,   ݊ ൌ 1,2, … ,2݇ െ 1,   ݇ ൌ 0,1,2, … . ܶhe values of m are given in 
Eq.(1) and t is the normalized time. They are defined on the interval [0,1): 

߰ሺtሻ௡,௠ ൌ ቊ  2
ೖ
మ ෨ܶ௠ሺ2௞ݐ െ 2݊ ൅ 1ሻ ௡ିଵ

ଶೖషభ ൑ ݐ ൏ ௡
ଶೖషభ

݁ݏ݅ݓݎ݄݁ݐ݋                                     0            
     (1) 

where 

෨ܶ௠ሺ t ሻ ൌ ൞

ଵ
√஠

m ൌ 0

ටଶ
஠

 ௠ܶሺݐሻ m ൐ 0
       ሺ2ሻ 

In Eq.(2) the coefficients are used for orthonormality. Here  ௠ܶሺݐሻ are Chebyshev 
polynomials of the first kind of degree m which are orthogonal with respect to the 
weight function wሺtሻ ൌ ଵ

√ଵି௧మ , on [-1,1] , and satisfy the following recursive formula: 

଴ܶሺݐሻ ൌ 1   , ଵܶሺݐሻ ൌ ,  ݐ  ௠ܶାଵሺݐሻ ൌ ݐ2 ௠ܶሺݐሻ െ ௠ܶିଵሺݐሻ     ݉ ൌ 1,2,3,  (3) 
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We should note that in dealing with Chebyshev wavelets the weight function ݓሺݔሻ 

has to be dilated and translated as: 
ሻݐ௡ሺݓ ൌ ݐሺ2௞ݓ െ 2݊ ൅ 1ሻ 
Remark: The time interval [0,1) in Chebyshev wavelets can be extended to an 
arbitraryሾݐଵ, ݐଶሻ as follows [13]: 

߰ሺtሻ௡,௠ ൌ ൝
 ଶ

ೖ
మ

√∆௧మ ෨ܶ௠ ቀଶೖ

∆௧
ݐ െ 2݊ ൅ 1ቁ ଵݐ     ൅ ݐ∆ ൈ ௡ିଵ

ଶೖషభ ൑ ݐ ൏ ଵݐ ൅ ݐ∆ ൈ ௡
ଶೖషభ

݁ݏ݅ݓݎ݄݁ݐ݋                                                       0
 ,  (4) 

where ∆ݐ ൌ ଶݐ െ  .ଵݐ
 

2.2. Function approximation 

 
A time function ݂ሺݐሻ that is square integrable on the time interval t  may be ,[t୤,0]א

expanded by Chebyshev wavelets as follows: 

݂ሺݐሻ ، ∑ ∑  ܿ௡,௠
ெିଵ
௠ୀ଴

ே
௡ୀଵ ߰௡,௠ሺݐሻ ൌ  ሻ,  (5)ݐሺߖ்ܥ

where ܥ and ߖare NM ൈ 1 matrices given by 

ܥ ൌ ሾܿଵ,଴, ܿଵ,ଵ, … , ܿଵ,ெିଵ, ܿଶ,଴, … , ܿଶ,ெିଵ, … , ܿே,଴, … , ܿே,ெିଵሿ், (6) 

ሻݐሺߖ ൌ
ൣ߰ଵ,଴ሺݐሻ, ߰ଵ,ଵሺݐሻ, … , ߰ଵ,ெିଵሺݐሻ, ߰ଶ,଴ሺݐሻ, … , ߰ଶ,ெିଵሺݐሻ, … , ߰ே,଴ሺݐሻ, … , ߰ே,ெିଵሺݐሻ൧்

           (7) 

2.3. The Operational Matrix of Integration 
 
We obtain the integrals of Chebyshev wavelets ߰௜ሺݐሻ which may be represented 

as: 

׬ ሺ߬ሻ௧ߖ
଴ ݀ ߬ ൌ  ሻ,  (8)ݐሺߖܲ 

Where P is the NM×NM operational matrix of integration and is given in [1] 

ܲ ൌ ଵ
ଶೖ ൦

F S ڮ S
0 F ڮ S
ڭ ڭ ڰ ڭ
0 0 ڮ F

൪

ൈெேࡺࡹ

, (9) 

In Eq.(8) F and S are M×M matrices given by  
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S ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

2 0 … 0
0 0 ڮ 0

ିଶ√ଶ
ଷ

0 … 0
ڭ ڭ ڰ ڭ

√ଶ
ଶ

ቀଵିሺିଵሻౣశభ

୫ାଵ
െ ଵିሺିଵሻౣషభ

୫ିଵ
ቁ 0 … 0

ڭ ڭ ڰ ڭ
√ଶ
ଶ

ቀଵିሺିଵሻ౉

୑
െ ଵିሺିଵሻ౉షమ

୑ିଶ
ቁ 0 … ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

,  

F ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 1

1
√2ଶ 0 … ڮ 0

െ
√2మ

4 0
1
4 0 … 0

െ
√2మ

3 െ
1
2 0

1
6 ڰ 0

ڭ 0 ڰ 0 ڰ 0
√2
2 ቆ

ሺെ1ሻ୫ିଵ

m െ 1 െ
ሺെ1ሻ୫ାଵ

m ൅ 1 ቇ ڭ 0
െ1

2ሺm െ 1ሻ ڰ
1

2ሺm ൅ 1ሻ
ڭ ڭ ڭ 0 ڰ 0

√2
2 ቆ

ሺെ1ሻ୑ିଶ

M െ 2
െ

ሺെ1ሻ୑

M ቇ 0 0 …
െ1

2ሺM െ 2ሻ 0
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

2.4. The Operational Matrix of Stretch 

 
The scaled matrix S  may be defined for the Chebyshev wavelets having the 

following properties: 

Ψሺݐݏሻ ൌ ܵΨሺݐሻ (10) 

For obtaining S , we assume
b
as = , in order to use equation (10) we should produce

)(
b
t

Ψ , then generate )(atΨ , and finally by using )()(
b
atst Ψ=Ψ , the scale operational 

matrix S  can be obtained. 
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2.4.1 The શ ቀܜ
܊
ቁ function 

 
By considering Eq.(1) overሾ0, 1ሿ, the function ߖ ቀ௧

௕
ቁ over ሾ0, ܾሿ is given by: 

ߖ ቀଵ
௕

ቁݐ ൌ ܵ௕ ݐሺୃߖሻݐሺୃߖൣ െ 1ሻ  … ୃߖ൫ݐ െ ሺܾ െ 1ሻ൯൧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୃ

௕ ௧௜௠௘௦

 (11) 

let 

ሻݐሺߖ ൌ ሾ߰଴
ୃ, ߰ଵ

ୃ, … , ߰ଶೖିଵ
ୃሿୃ (12) 

where 

߰௡
ୃ ൌ ൣ߰௡,଴, ߰௡,ଵ, … , ߰௡,ெିଵ൧ 

From Eq.(1) and Eq.(3) we know )(, tmnΨ is defined over ⎥⎦
⎤

⎢⎣
⎡ +

kk

nn
2

1,
2

, so )(0 tΨ  is 

defined over ⎥⎦
⎤

⎢⎣
⎡

k2
1,0  and )(

b
t

Ψ  can be defined over
⎥⎦
⎤

⎢⎣
⎡

k
b
2

,0 . Thus by using equation (7), 

equation (11) can be written as: 

߰଴ ቀଵ
௕

ቁݐ ൌ ܵ ሾ߰଴
ୃሺݐሻ , ߰ଵ

ୃሺݐሻ , … , ߰௕ିଵ
ୃሺݐሻሿୃ ሺ13ሻ 

where 

( )
MMMMMM bbMM SSSS

××× −× = )1(10 L  (14) 

Thus by considering the interval ⎥⎦
⎤

⎢⎣
⎡

k

b
2

,0 , we can restate equation (13) for one entry 

as: 

߰଴ ൬ଵ
௕

ቀݐ ൅ ௜
ଶೖቁ൰ ൌ ௜ܵ߰଴ሺݐሻ     ݅ ൌ 0, 1, … , ܾ െ 1 (15) 

In other words 

ܮ ൬ଵ
௕

ሺݐ ൅ ݅ሻ൰ ൌ ௜ܵܮሺݐሻ (16) 
We know that 

଴ܮ ቆ
1
ܾ

ሺݐ ൅ ݅ሻቇ ൌ 1 

Thus the first row of matrix ௜ܵ can be expressed as: 

௜ܵ଴ ؠ ሾ1, 0, 0, … , 0ሿ 
also we have 
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ଵܮ ቆ
1
ܾ

ሺݐ ൅ ݅ሻቇ ൌ 1 െ
ݐ2
ܾ െ

2݅
ܾ ൌ 1 െ

ሺ1 ൅ 2iሻ
ܾ ൅

1
ܾ  ሻݐଵሺܮ

Similarly for the second row of matrix ௜ܵwe have: 

௜ܵଵ ؠ ሾ1 െ
ሺ1 ൅ 2iሻ

b ,
1
ܾ , 0, … , 0ሿ 

Then by continuing the procedure, for the jth row of matrix ௜ܵ we obtain: 

௝ܮ ൬ଵ
௕

ሺݐ ൅ ݅ሻ൰ ൌ ቄ2 ቀ1 െ ଵାଶ୧
ୠ

ቁ ௜ܵ,௝ିଵ െ ௜ܵ,௝ିଶ ൅ ቂ0, ଶ
௕ ௜ܵ,௝ିଵሺ1ሻ, 0, … ,0ቃ ൅

ቂ0, 0, ଵ
௕ ௜ܵ,௝ିଵሺ2: ܯ െ 1ሻቃ ൅  ቂଵ

௕ ௜ܵ,௝ିଵሺ2: , ሻܯ 0ቃቅ  ሻ (17)ݐሺܮ

where ௜ܵ,௝ିଵሺ1ሻ is the first element in the ௜ܵ,௝ିଵ row and ௜ܵ,௝ିଵሺ2:  ሻ are a row fromܯ
the second of column of ௜ܵ,௝ିଵ to )1( −M th column of ௜ܵ,௝ିଵ. 
To find ௜ܵ,௝ by using equation (17) we have: 

௜ܵ,௝ ؠ ቄ2 ቀ1 െ ଵାଶ୧
ୠ

ቁ ௜ܵ,௝ିଵ െ ௜ܵ,௝ିଶ ൅ ቂ0, ଶ
௕ ௜ܵ,௝ିଵሺ1ሻ, 0, … ,0ቃ ൅ ቂ0, 0, ଵ

௕ ௜ܵ,௝ିଵሺ2: ܯ െ

1ሻቃ ൅  ቂଵ
௕ ௜ܵ,௝ିଵሺ2: , ሻܯ 0ቃቅ (18) 

Thus we approximated the ߖ ቀ௧
௕

ቁas follows: 

߰଴ ൬
1
ܾ

൰ݐ ൌ ܵ ሾ߰଴
ୃሺݐሻ , ߰ଵ

ୃሺݐሻ , … , ߰௕ିଵ
ୃሺݐሻሿୃ 

with the generalization of this method for finding matrix ܵ௕ we have: 

ߖ ൬
1
ܾ ൰ݐ ൌ ܵ௕ ݐሺୃߖሻݐሺୃߖൣ െ 1ሻ  … ୃߖ൫ݐ െ ሺܾ െ 1ሻ൯൧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ୃ

௕ ௧௜௠௘௦

 

The final equation for ܵ௕ is: 

ܵ௕ ൌ ൫ܫଶೖ  ٔ ܵ൯ (19) 

2.4.2 The શሺܜ܉ሻ function 
 
To produce ߖሺܽݐሻ, we can restate Eq.(12) as: 

ߖ ቀଵ
௔

ቁݐ ൌ ܵ௔ ݐሺୃߖሻݐሺୃߖൣ െ 1ሻ  … ୃߖ൫ݐ െ ሺܽ െ 1ሻ൯൧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୃ

௔ ௧௜௠௘௦

 (20) 

we can also write 

ܵୃ
௔ߖ ൬

1
ܽ ൰ݐ ൌ ሺܵୃ

௔ܵ௔ሻ ሾୃߖሺݐሻୃߖሺݐ െ ܶሻ  … ୃߖሺݐ െ ሺܽ െ 1ሻܶሻሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥୃ

௔ ௧௜௠௘௦
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Similarly we have 

ሺܵୃ
௔ܵ௔ሻିଵܵୃ

௔ߖ ቀଵ
௔

ቁݐ ൌ ሾୃߖሺݐሻୃߖሺݐ െ ܶሻ  … ୃߖሺݐ െ ሺܽ െ 1ሻܶሻሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥୃ

௔ ௧௜௠௘௦
 (21) 

therefore 

ሻݐሺߖ ൌ :ሺ1ܭ 2௞ܯ, : ሻߖ ൬
1
ܽ

 ൰ݐ
where 
ܭ ൌ ሺܵୃ

௔ܵ௔ሻିଵܵୃ
௔ 

Note that ܭሺ1: 2௞ܯ, : ሻrepresents the first row to the 2௞ܯth row of the matrix ܭ. 
Thus we obtain ߖሺܽݐሻgiven by 

ሻݐሺܽߖ ൌ ܵҧ௔ߖሺݐሻ (22) 

where 

ܵҧ௔=ܭሺ1: 2௞ܯ, : ሻ 

2.4.3 The શ ቀ܉
܊

 ቁfunctionܜ
 
By considering 2.4.1 and 2.4.2, we can obtain ߖ ቀ௔

௕
 :ቁ as followsݐ

ߖ ቀ௔
௕

ቁݐ ൌ ܵҧ௕ሺܵ௔
ୃܵ௔ሻିଵܵ௔

ୃ ݐሺୃߖሻݐሺୃߖൣ െ 1ሻ  … ୃߖ൫ݐ െ ሺܽ െ 1ሻ൯൧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୃ

௔ ௧௜௠௘௦

 (23) 

where 

ܵҧ௕ ൌ ܵ௕ሺ: , 1: ܽ2௞ܯሻ 

Note that ܽ2௞ܯ represents the first column to the ܽ2௞ܯthcolumn of thematrix ܵ௕. 

Thus the scale matrix S in equation (11) by using equation (23) is: 

ܵ ൌ ܵҧ௕ܵҧ௔ (24) 

 

3. Problem Statement 

 
Consider linear time-invariant scaled systems characterized by  
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ሻݐሶሺݔ ൌ ሻݐሺݔܣ ൅ ሻݐݏሺݔܤ ൅  (25) ݂݀݁݅݅ܿ݁݌ݏ  ሺ0ሻ ݔ     ,ሻݐሺݑܥ
where the state variable ݔሺݐሻ and the input variable ݑሺݐሻ are ܾ-vector and ݎ-vector 
respectively. The time-invariant coefficient matrices ܤ ,ܣ and ܥare matrices of 
appropriate dimensions. 

The problem is to find the optimal control ݑሺݐሻ and the corresponding state 
trajectory ݔሺݐሻ, satisfying Eq. (25) while minimizing the quadratic performance index 

ܬ ൌ ଵ 
ଶ ׬ ሾ்ݔሺݐሻܳሺݐሻݔሺݐሻ ൅ ሻሿ ௧೑ݐሺݑሻݐሻܴሺݐሺ்ݑ

଴  (26) ,ݐ݀
using the Lagrange approach. In Eq. (27), Q (t) is a positive semi-definite ܾ ൈ ܾ 
matrix and ܴሺݐሻ is a positive-definite ݎ ൈ  .matrix ݎ
 

4. Approximation of the System Dynamics 
 
Integrating Eq.(25) from 0 to t yields 

׬ ሶሺ߬ሻݔ ݀߬௧
଴ ൌ ܣ ׬ ሺ߬ሻݔ ݀߬௧

଴ ൅ ܤ ׬ ሻ߬ݏሺݔ ݀߬௧
଴ ൅ ܥ ׬ ሺ߬ሻݑ ݀߬௧

଴  (27) 
By expanding ݔሺ0ሻ, ݔሺ߬ሻ,ݔሺ߬ݏሻ, ݑሺ߬ሻ in terms of Chebyshev wavelet functions and 
using Eqs.((8),(10)) we have 

׬ ሶሺ߬ሻݔ ݀߬௧
଴ ൌ ሻݐሺݔ െ ሺ0ሻݔ ൌ ሻݐሺߖ்ܺ െ ܺ଴

 ሻ (28)ݐሺߖ்

׬ ሺ߬ሻݔ ݀߬௧
଴ ൌ ׬ ሺ߬ሻߖ்ܺ ݀߬௧

଴ ൌ ்ܺ ׬ ሺ߬ሻߖ ݀߬௧
଴ ൌ  ሻ (29)ݐሺߖ்ܲܺ

׬ ሺ߬ሻݑ ݀߬௧
଴ ൌ ׬ ሺ߬ሻߖ்ܷ ݀߬௧

଴ ൌ ்ܷ ׬ ሺ߬ሻߖ ݀߬௧
଴ ൌ  ሻ (30)ݐሺߖ்ܷܲ

׬ ሻ߬ݏሺݔ ݀߬௧
଴ ൌ ׬ ሻ߬ݏሺߖ்ܺ ݀߬௧

଴ ൌ ்ܺ ׬ ሺ߬ሻߖܵ ݀߬௧
଴ ൌ  ሻ (31)ݐሺߖ்ܲܵܺ

By substituting Eqs. (28) and (31) into Eq. (27) we get 

ሺtሻߖ்ܺ െ ܺ଴
ሺtሻߖ்  ൌ ሺtሻߖ்ܲܺܣ ൅ ሺtሻߖ்ܲܵܺܤ ൅  ሺtሻ (32)ߖ்ܷܲܥ

or 

்ܺ െ ܺ଴
்  ൌ ்ܲܺܣ ൅ ்ܲܵܺܤ ൅  (33) ்ܷܲܥ

And by using the properties of Kronecker product [10]we obtain 

ቂܫ୰୬െ்ܲ
୰ൈ୰ ٔ ௡ൈ௡ܣ െ ሺܵ୰ൈ୰ ୰ܲൈ୰ሻܶ ٔ ௡ൈ௡ቃܤ  തܺ ൌ ܺ଴തതത ൅ ሾ்ܲ

୰ൈ୰  ٔ ௡ൈ௠ሿܥ ഥܷ, 
Where  

ݎ ൌ ݉݇ 
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ܺሺݐሻ ൌ ሻ    ,          തܺݐሺߖ்ܺ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ଵܺ

ܺଶ

ڭ

ܺ௡ے
ۑ
ۑ
ۑ
ۑ
ې

 

ܷሺݐሻ ൌ ,ሻݐሺߖ்ܷ ഥܷ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ଵܷ

ܷଶ

ڭ

ܷ௠ے
ۑ
ۑ
ۑ
ۑ
ې

 

Finally we obtain  
തܺ ൌ ௦ܣ

ିଵሾܺ଴തതത ൅ ሾ்ܲ
୰ൈ୰  ٔ ௡ൈ௠ሿܥ ഥܷ ሿ (34) 

Where 

௦ܣ ൌ ሾࡵെ்ܲ
୰ൈ୰ ௡ൈ௡ܤ ٔ െ ሺܵ୰ൈ୰ ୰ܲൈ୰ሻܶ  ௡ൈ௡ሿܤ ٔ

and ࡵ is the ݊ݎ-dimensional identity matrix. 

 

5. An optimal control problem 
 
5.1.The Lagrange approach 
5.1.1. The performance index approximation 

Given the generalized time-invariant scaled systems described by Eq. (25), we 
want to find the optimal control that minimizes the cost functional 

ܬ ൌ ଵ
ଶ ׬ ሾ்ݔሺݐሻܳݔሺݐሻ ൅ ்,ݐሻሿ݀ݐሺݑሻܴݐሺ்ݑ

௧బ
 (35) 

where the matrices ܳ and ܴ areconstant positive semi-definite and positive definite, 
respectively. Eq. (35) can be computed more efficiently by writing ܬ as 

ܬ ൌ ଵ
ଶ

ሾ ത்ܺ തܳ തܺ ൅  ഥ்ܷ തܴ ഥܷሿ (36) 

where 
തܳ ൌ ܹ ٔ ܳ   ,     തܴ ൌ ܹ ٔ ܴ 

׬ ሻ௧ݐሺߖ
଴ ݐሻ݀ݐሺ்ߖ ൌ ܹ. 
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5.1.2. Solution of the optimization problem 
The optimal control problem has been reduced to a parameter optimization 

problem which can be stated as follows. Find ܺ and ܷ so that ܬ is minimized subject 
to the constraint given in Eq. (34). 

ܮ ൌ ଵ
ଶ

ሾ ത்ܺ തܳ തܺ ൅ ഥ்ܷ തܴ ഥܷሿ ൅ ்ߣ ቄቂܫ୰୬ െ ሺ ୰ܲൈ୰ܵሻܶ ٔ ௡ൈ௡ቃܣ തܺ െ തܺ଴ െ ሾ்ܲ
୰ൈ୰  ٔ

௡ൈ௠ሿܤ ഥܷቅ, (37) 
where the vector ߣ represents the unknown Lagrange multipliers, then the necessary 
conditions for stationary are given by 
డ௅
డ௫

ൌ 0, (38) 

డ௅
డ௨

ൌ 0, (39) 

డ௅
డఒ

ൌ 0. (40) 

 

6. Numerical examples 
 
6.1. Example 1 

Consider the time-invariant system with a stretch 2 described by [16] 

ሶݔ ൌ  െݔሺ2ݐሻ,      ݔሺ0ሻ ൌ 1 (41) 
Then by choosing K = 4,M = 15 we have the Chebyshev wavelet solutionsݔሺݐሻ.Table 
1 shows the comparison between the solutions of this example, obtained by both the 
Lanczos ࣎ method [4] and the Laguerre series method [8].From Table 1 it is clear that 
the Chebyshev wavelet solutions converge faster than the Laguerre series solution 
and also the errors of the Chebyshev wavelet solutions are much less than that of 
Laguerre series solution. 

6.2. Example 2 

Consider the scaled system with a stretch ଵ
ଶ
 described by 

ሶݔ ൌ ሻݐሺ0.5ݔ  ൅  ሻ (42)ݐሺݑ4

ሺ0ሻݔ ൌ 1 (43) 

with the cost functional 
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ܬ ൌ ଵ
ଶ ׬ ሾݔଶሺݐሻ ൅ ்ݐሻሿ݀ݐଶሺݑ

଴  (44) 

The problem is to find the optimal control ݑሺݐሻ which minimizes Eq. (44) subject to 
Eqs. (43) and (42).The approximated values of ݑ ,ݔ and the results of the cost 
function are shown in Tables2 and 3, respectively. 

 

7. Conclusion 
 
A simple and effective algorithm based on Chebyshev wavelets for obtaining 

operational matrix of stretch has been presented. Then theoretical elegance of the 
Chebyshev wavelet approach has been used to find the optimal solution of linear 
time-invariant scaled systems subject to a quadratic cost function. It has also been 
shown that the key idea is to transform the time-invariant functions including a 
stretch into wavelet functions using the operational matrices of integral and stretch. 
Some illustrative examples demonstrate that only a small number of terms are 
required to obtain accurate approximations. Hence the present method is extremely 
convenient for computer programming.  
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Table 1:A comparison between the Chebyshev wavelets and Laguerre series solution of 
Example 1. 

 

Time Lanczos ࣎ method 
[17] 

Laguerre series for 
M=40 [19] 

Chebyshev wavelets for 
M=15, k=4 

0.0 1.000000 0.999741 1.000000 

0.5 0.658273 0.658294 0.658276 

1.0 0.475058 0.474977 0.475020 

1.5 No result 0.360199 0.360655 

2.0 0.28257 0.283142 0.282575 

2.5 No result 0.227676 0.226550 

3.0 0.18583 0.185863 0.185110 

 
 

Table 2:A comparison between the Chebyshev wavelets and the Legendre series 
approximations of x, ݑ ofexample 2 using the Lagrange approach. 

 

 

 ݐ

 ሻݐሺݑ ሻݐሺݔ

Chebyshev wavelets 

M=10, K=4 

Legendre series 

M=10 

Chebyshev wavelets 

M=7, N=4 

Legendre series 

M=10 

0.0 0.9998949795822 0.9890616782370 -1.3938312038283 -1.374004651366 

0.5 0.1366591248892 0.1362303747910 -0.2089137911844 -0.208875054179 

1.0 0.0274153302628 0.0270684379297 -0.0550498227868 -0.052509434535 

1.5 0.0077454934927 0.0079516205838 -0.0189796405242 -0.019221145812 

2.0 0.0029468917679 0.0034918983906 -0.0084465274238 -0.009730719982 

2.5 0.0013209984812 0.0001060464474 -0.0040222778117 -.0007383773401 

3.0 0.0006358942286 0.0023701015419 -0.0021381039881 -0.005995237759 

3.5 0.0004242466779 -0.0021263525545 -0.0011541997066 0.0032761051024 

4.0 0.0029365777549 -0.0096643482969 -0.0000059483052 0.0174262025031 
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Table 3:The values of the cost functions using the Chebyshev  wavelets and the Legendre 
series of example 2. 

 
 

t Chebyshev wavelets 
K=4 ,M=10 

Legendre series 
M=10 

Chebyshev wavelets 
K=4 ,M=15 

Legendre series 
M=15 

4 0.1739515745797 0.1739588567336 0.1739500743866 0.1739517273872 
8 0.1739469815391 0.1743308883144 0.1739508732497 0.1739596296828 
16 0.1739939638621 0.1744282127363 0.1739458286408 0.1740236675092 

. 
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