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Abstract

A new approach to find the optimal solution of linear time-invariant scaled
systems using the Chebyshev wavelets is proposed. The operational matrix of stretch
is derived and together with the operational matrix of integration are used to change
the system of state equations into a set of algebraic equations which can be solved
using a digital computer. The approximated optimal solution with respect to a
quadratic cost function is calculated by solving only these linear algebraic equations.
The main feature of this article over other possible works is that with a relatively low
number of terms we have accurate results. Numerical examples are given to support
this claim.
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1. Introduction

The systems containing the terms with a stretched arguments,play important roles
in describing the dynamics of current collection systems for electric locomotives [14]
and in describing the particulate systems [15]. Therefore, spending some time to find
the optimal solution of these systems is reasonable.

In the literature, some authors have tried block pulse series [3], Chebyshev
polynomials [6], Shifted Legendre series[7], Laguerre series[8], Walsh
series[16],Fourier series[17] methods to solve these systems.

Wavelets theory is a relatively new emerging area in mathematical research. It has
been applied in a wide range of engineering disciplines; particularly, wavelets play an
important role in establishing algebraic methods for the solution of problems
described by differential equations, such as Numerical solutions of integral
differential equations [2], analysis of time-varying [19, 5] or time-delay [12] systems,
optimal control [9, 11, 18].

A method of constrained extremum is applied which consists of adjoining the
constraint equations which are derived from the given dynamical system with the
scale argument and the inequality constraints to the performance index by a set of
undetermined Lagrange multipliers. As a result, the necessary conditions of
optimality are derived as a system of algebraic equations in the unknown coefficients
of x(t),u(t) and the Lagrange multipliers. These coefficients are determined in such
a way that the necessary conditions for extremization are imposed.

For the first time in this paper, we have introduced an alternative numerical
method to solve the linear quadratic optimal control problem using the Chebyshev
wavelets. This method consists of reducing the optimal control problem to a set of
algebraic equations by expanding the state vector x(t) and the control vector u(t)
using the Chebyshev wavelet functions with unknown coefficients so-called reduced
technique. As it is shown by the table, the approach gives more accurate results when
compared with the existing approaches (polynomial series). Also the results of [8] are
modified.

The paper is organized as follows: In Section 2, we describe the basic formulation
of the Chebyshev wavelets and our proposed method required for our subsequent
development. Section 3 is devoted to the formulation of the optimal control problem.
In Sections 4 — 5 the proposed method is used to approximate the optimal control
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problem. In Section 6, we report our numerical finding and demonstrate the accuracy
of the proposed technique by considering some examples.

2. Properties of Chebyshev wavelets

2.1. The Chebyshev wavelets

Wavelets have been used by many researchers in many scientific and engineering
fields. They constitute a family of functions constructed from the dilation and
translation of a single function called the mother wavelet. When the dilation
parameter a and the translation parameter b vary continuously, we have the following
family of continuous wavelets:

R
bor = 1a (22, b e manc

If we restrict the parameters a and b to discrete values as a = a,7*,
b = nbya, *wherea, > 1, b, > 0andn, k are positive integers, we have the
following family of discrete wavelets:

k
Yrn = lalzyp(ae*t — nby)
In particular, when a,= 2 and b, =1 then ., forms an orthonormal basis.
Chebyshev wavelets ,, ,, (t) = ¥ (n, k, m, t) have four arguments:

m=20,1,.., M-1, n=1,2,..,2k—1, k=0,1,2,....The values of m are given in
Eq.(1) and t is the normalized time. They are defined on the interval [0,1):

25T (2%t — 2m 4 1) 22k < "
lp(t)n,m = { 2T (2%t = 2n + )2"_1 st< 2k-1 (1)
0 otherwise
where
1
_ = m=0
T,.(t) = (2)

2 T(t) m>0
In Eq.(2) the coefficients are used for orthonormality. Here T,,(t) are Chebyshev
polynomials of the first kind of degree m which are orthogonal with respect to the

weight function w(t) = ﬁ ,on [-1,1] , and satisfy the following recursive formula:

TO(t) =1 ﬂTl(t) =t, Tm+1(t) = ZtTm(t) - Tm—l(t) m= 112r3r (3)
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We should note that in dealing with Chebyshev wavelets the weight function w(x)
has to be dilated and translated as:
w,(t) = w2kt —2n+1)
Remark: The time interval [0,1) in Chebyshev wavelets can be extended to an
arbitrary[t,, t,) as follows [13]:

k
22 ~ (2K n-1 n
POnm = 7T (=20 +1) GHACXIESE<nHAXE ()
0 otherwise

where At = t, — t;.

2.2. Function approximation

A time function f(t) that is square integrable on the time interval t €[0,t¢], may be
expanded by Chebyshev wavelets as follows:

f() = Xh=12m=0 Cnm Ynm(@®) = CTH (D), (%)
where C and Yare NM x 1 matrices given by

C = [€1,0:CL,1s s C1M=15 C2,00 ++» C2M=15 =+ CN,00 = EN =115 (6)

Y(t) =

[‘PLO ), Y110, oo, Y1 (), P20 (0, oo, Yo =1 (@), s P o (), ... ’le,M—l(t)]T
(7)

2.3. The Operational Matrix of Integration

We obtain the integrals of Chebyshev wavelets y;(t) which may be represented
as:

[¥@drt = PY(), ®)
Where P is the NMxNM operational matrix of integration and is given in [1]
110 F - S
P=xl: ¢ - ’ ©)
0 0 - Flynxmn

In Eq.(8) F and S are MxM matrices given by
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2 0 0
0 0
-2v2
3
S = NG 1_(_1)m+1: 1-(-1)m-1 : - :,
SE-EE) 0 o
VE (1M 1My .
-7( M M-2 ) 0 0,
1 1 0 0
V2
V2 1
- 0 - 0 0
4 4
V2 1 1
-z —~ 0 = 0
- 3 2 6
: 0 . 0 0
V(DT Enmy . 1
2\ m—-1 m+1 ' 2(m—1) ’ 2(m+1)
: : : 0 0
2 ((—1)M-2 —-1)M -1
\/—_( ) —( ) 0 O — 0
2\ M-z M 2(M - 2)

2.4. The Operational Matrix of Stretch

The scaled matrix S may be defined for the Chebyshev wavelets having the
following properties:

Y(st) = SY(t) (10)

For obtaining S, we assume s = %, in order to use equation (10) we should produce

‘P(%) , then generate Y (at), and finally by using ¥ (st) = ‘P(%t) , the scale operational

matrix S can be obtained.
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241 TheW¥ (%) function

By considering Eq.(1) over[0, 1], the function ¥ (é) over [0, b] is given by:
@ (%t) =S, [ETOPT(E-1) .. ¥T(t— b -1)] (11)
b times
let
llU(t) = [IIJOT' lplT' Ty lpzk—lT]T (12)
where

lpnT = [d)n,o; 1/Jn,1, ---'d)n,M—l]
From Eq.(1) and Eq.(3) we know ¥ (t)is defined over{ n ”+1} so W,(t) is

2K
defined over [Oyzﬂ and \y(%) can be defined over{olb] Thus by using equation (7),
2k
equation (11) can be written as:

Yo (56) =S ® %17 (©), o T (13)

where

SbeM:(SoMxM Sty T S(b—l)MxM) (14)

Thus by considering the interval {0%} we can restate equation (13) for one entry
2

as.

Ve (% (t+ zik)) =Spo(®) i=0,1,..,b—1 (15)
In other words

L (% (t + i)) = S,L(0) (16)

We know that
L ! t+i))=1
0 b l -
Thus the first row of matrixS; can be expressed as:

Sio = [1,0,0, ... ,0]
also we have
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Ly <%(t+ i)) =1 —%—%z 1- (122‘) +%L1(t)
Similarly for the second row of matrix S;we have:
(1+2i) l 0
75 0
Then by continuing the procedure, for the jth row of matrix S; we obtain:

Ly (i (t+ i)) ={2(1-525) S )1 = Sijma + [0,25,;-1(1),0,..,0| +
(0,025, ;4 2:M = D] + [5,,-.2: M), 0]} (D) an

where S; ;_1 (1) is the first element in the S; ;_, row and S; ;_;(2: M) are a row from
the second of column of S; ;_; to (M —1)th column of S; ;_;.
To find S; ; by using equation (17) we have:
1+2i 2 1
Sy ={2(1=52)S1jma = Sijez + [0,25,,20(1),0,...,0] +0,0,25 ;4 (2: M —
1
1)] + [351-, i1(2:M) ,o]} (18)
Thus we approximated the ¥ (%)as follows:
1
lpo (E t) =S [IPOT(t) ,ll)lT(t) ’ '"'lpb—lT(t)]T

with the generalization of this method for finding matrix S, we have:

@ (% t) =S5, [TOYTE-1) . ¥T(t-B-D)]

b times

The final equation for Sy, is:
Sp =« ®S) (19)

2.4.2 The ¥(at) function

To produce ¥ (at), we can restate Eq.(12) as:

@ (% t) =S [TOPT(E-1) .. ¥T(t—(a-D)] (20)

. a times
we can also write

sTaw(% t) = STSHFTOPTE-T) .. ¥7(t—(a—DT)]"

a times
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Similarly we have

(ST,S)~1ST ¥ (g t) =[WTOYT(E-T) .. ¥T(t—(a—1DT)]" (21)

a times

therefore

1
Y(t) = K(1: 2kM, ¥ (E t)
where
K = (STaSa)_lsTa
Note that K (1: 2XM, : )represents the first row to the 2¥Mth row of the matrix K.
Thus we obtain ¥ (at)given by

Y(at) = S,¥(t) (22)
where
Sa=K(1:2%M,:)

243The W (% t)function

By considering 2.4.1 and 2.4.2, we can obtain ¥ (% t) as follows:

(%) = 5,(SIS) ST [PT@PT( - 1) . ¥T(t—(a-D)] (23)

a times

where

S, = Sp(:, 1:a2kM)

Note that a2 M represents the first column to the a2*Mthcolumn of thematrix S,,.
Thus the scale matrix S in equation (11) by using equation (23) is:

$=5,5, (24)

3. Problem Statement

Consider linear time-invariant scaled systems characterized by



State analysis and optimal control 99

x(t) = Ax(t) + Bx(st) + Cu(t), x (0) specified (25)
where the state variable x(t) and the input variable u(t) are b-vector and r-vector
respectively. The time-invariant coefficient matrices A, B and Care matrices of
appropriate dimensions.

The problem is to find the optimal control u(t) and the corresponding state
trajectory x(t), satisfying Eq. (25) while minimizing the quadratic performance index
J = [ RTOQ®x() + uT(ORMu(D)] dt, (26)
using the Lagrange approach. In Eq. (27), Q (t) is a positive semi-definite b X b
matrix and R(t) is a positive-definite » X r matrix.

4. Approximation of the System Dynamics

Integrating Eq.(25) from 0 to t yields

fotfc(r) di=A fotx(r) dt+ B fotx(sr) dt+C fotu(‘c) dr (27)
By expanding x(0), x(t),x(st), u(t) in terms of Chebyshev wavelet functions and
using Egs.((8),(10)) we have

[y (@) dt = x() — x(0) = XT¥(£) — X,"¥ (t) (28)
fotx(r) dr = fOtXT‘P(T) dr = XT fot Y(1)dt = XTPY(t) (29)
[u@dr=[JUT¥ (@) dr=U" [, ¥(c)dr = UTP¥(t) (30)
[y x(st)dt = [ XTW(s7) dv = X" [, S¥(v) dr = XTSP¥ () (31)
By substituting Eqgs. (28) and (31) into Eq. (27) we get

XTW(t) — X,"W(t) = AXTPY(t) + BXTSPY(t) + CUTPY(t) (32)

or
XT —X," = AX"P + BXTSP + CcUTP (33)

And by using the properties of Kronecker product [10]we obtain

[Irn_PTrxr ® Anxn - (errprxr)T ® ann] X = X_o + [PTrxr ® Cnxm]U'
Where

r =mk
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X1
Xz

[
|
X0 =X"w(@) , X=|
|
|

e —

2%

Uy
U,

.

[
|
U@ = UT¥(@), U= i

e —

Un
Finally we obtain

X=A,""Xg+ [PToxr ® CrxemlU | (34)
Where

A5 = [I_PTrxr & Buxn — (errprxr)T ® Bpxnl
and I is the rn-dimensional identity matrix.

5. An optimal control problem

5.1.The Lagrange approach
5.1.1. The performance index approximation

Given the generalized time-invariant scaled systems described by Eq. (25), we
want to find the optimal control that minimizes the cost functional

J =51, [XT(©Qx(®) + uT (DRu(t)]dt, (35)
where the matrices Q and R areconstant positive semi-definite and positive definite,
respectively. Eq. (35) can be computed more efficiently by writing J as

] = %[)?T())? + UTRU] (36)
where

Q=W®Q , R=WQR

LY@ PT(dt =w.
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5.1.2. Solution of the optimization problem

The optimal control problem has been reduced to a parameter optimization
problem which can be stated as follows. Find X and U so that J is minimized subject
to the constraint given in Eq. (34).

L= %[XTéX + UTRU] + AT{[Irn - (Prer)T ® Anxn]X - XO - [PTrxr ®
BnXm]U}, (37)

where the vector A represents the unknown Lagrange multipliers, then the necessary
conditions for stationary are given by

oL _

oL
o_, (39)
oL _
%= (40)

6. Numerical examples

6.1. Example 1
Consider the time-invariant system with a stretch 2 described by [16]

x= —x2t), x(0)=1 (41)
Then by choosing K = 4,M = 15 we have the Chebyshev wavelet solutionsx(t).Table
1 shows the comparison between the solutions of this example, obtained by both the

Lanczos T method [4] and the Laguerre series method [8].From Table 1 it is clear that
the Chebyshev wavelet solutions converge faster than the Laguerre series solution
and also the errors of the Chebyshev wavelet solutions are much less than that of
Laguerre series solution.

6.2. Example 2

Consider the scaled system with a stretch % described by
x = x(0.5t) + 4u(t) (42)
x(0) =1 (43)
with the cost functional
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J =3[y [2(®) +uPo)ldt (44)

The problem is to find the optimal control u(t) which minimizes Eq. (44) subject to
Egs. (43) and (42).The approximated values of x,u and the results of the cost
function are shown in Tables2 and 3, respectively.

7. Conclusion

A simple and effective algorithm based on Chebyshev wavelets for obtaining
operational matrix of stretch has been presented. Then theoretical elegance of the
Chebyshev wavelet approach has been used to find the optimal solution of linear
time-invariant scaled systems subject to a quadratic cost function. It has also been
shown that the key idea is to transform the time-invariant functions including a
stretch into wavelet functions using the operational matrices of integral and stretch.
Some illustrative examples demonstrate that only a small number of terms are
required to obtain accurate approximations. Hence the present method is extremely
convenient for computer programming.
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Table 1:A comparison between the Chebyshev wavelets and Laguerre series solution of

Example 1.
Time Lanczos T method Laguerre series for Chebyshev wavelets for
[17] M=40 [19] M=15, k=4
0.0 1.000000 0.999741 1.000000
0.5 0.658273 0.658294 0.658276
1.0 0.475058 0.474977 0.475020
1.5 No result 0.360199 0.360655
2.0 0.28257 0.283142 0.282575
2.5 No result 0.227676 0.226550
3.0 0.18583 0.185863 0.185110

Table 2:A comparison between the Chebyshev wavelets and the Legendre series
approximations of x, u ofexample 2 using the Lagrange approach.

x(t) u(t)
Chebyshev wavelets Legendre series Chebyshev wavelets Legendre series
‘ M=10, K=4 M=10 M=7, N=4 M=10

0.0 0.9998949795822 0.9890616782370 -1.3938312038283 -1.374004651366
0.5 0.1366591248892 0.1362303747910 -0.2089137911844 -0.208875054179
1.0 | 0.0274153302628 0.0270684379297 -0.0550498227868 -0.052509434535
15 0.0077454934927 0.0079516205838 -0.0189796405242 -0.019221145812
2.0 0.0029468917679 0.0034918983906 -0.0084465274238 -0.009730719982
25| 0.0013209984812 0.0001060464474 -0.0040222778117 -.0007383773401
3.0 | 0.0006358942286 0.0023701015419 -0.0021381039881 -0.005995237759
3.5 | 0.0004242466779 -0.0021263525545 -0.0011541997066 0.0032761051024
4.0 0.0029365777549 -0.0096643482969 -0.0000059483052 0.0174262025031




State analysis and optimal control 105

Table 3:The values of the cost functions using the Chebyshev wavelets and the Legendre
series of example 2.

Chebyshev wavelets Legendre series Chebyshev wavelets | Legendre series
K=4 ,M=10 M=10 K=4 ,M=15 M=15

4 | 0.1739515745797 0.1739588567336 0.1739500743866 | 0.1739517273872

8 | 0.1739469815391 | 0.1743308883144 0.1739508732497 | 0.1739596296828

16 | 0.1739939638621 | 0.1744282127363 0.1739458286408 | 0.1740236675092
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