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Abstract 
 
In any communication scenario, is it a wired network or an ad hoc wireless network 
or digital cordless telephony, transport of payload in an error-free manner is of 
paramount importance. It is matter of common knowledge that transport of data 
(whether modulated or un-modulated) over a medium is always subject to external 
noise, introducing bit errors. Received data containing errors is practically of no use 
in most of the situations. Traditionally, the most common solution is to employ 
Cyclic Redundancy Checksums which are generated using primitive modulo-2 
polynomials and appended to the payload.  The receiver computes the CRC of the  
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payload locally and compares with the received CRC. If a match doesn’t occur, it is 
assumed that the received data is in error and usually the implemented protocol 
requests for a retransmission. This implies that whenever there is error in the data 
stream, the protocol transfer time is doubled or trebled due to retransmissions. Such a 
situation is not acceptable in scenarios where the transfer needs to take place in real 
time without much latency. This is typical of Ad Hoc Wireless Networks deployed 
for disaster management where time plays a crucial role.  
 
It would be ideal if there is a method whereby errors can somehow be detected at the 
receiver and corrected on the fly without the need of retransmission. Technologies 
like Digital TV operating in real time have used Reed Solomon Error Correcting 
Codes to correct bit errors at the receiver end. Correction of bit errors involves just 
flipping the bits to the opposite state. In this paper we use Osculating Polynomials 
which have the desirable property that their cross product changes with change in bit 
patterns and given the original cross product, the original bit patterns of the data can 
be easily recovered by the inverse process of de-convolution. This paper, therefore, 
seeks to discuss the properties of osculating polynomials and their application in 
forward error correction on digital streams within the framework of Ad Hoc 
Networks. 
 
 
Introduction 
 
Environmental interference and physical defects in the communication medium can 
cause random bit errors during data transmission. Error coding is a method of 
detecting and correcting these errors to ensure information is transferred intact from 
its source to its destination. Error coding is used for fault tolerant computing in 
computer memory, magnetic and optical data storage media, satellite and deep space 
communications, network communications, cellular telephone networks, and almost 
any other form of digital data communication. Error coding uses mathematical 
formulas to encode data bits at the source into longer bit words for transmission. The 
"code word" can then be decoded at the destination to retrieve the information. The 
extra bits in the code word provide redundancy that, according to the coding scheme 
used, will allow the destination to use the decoding process to determine if the 
communication medium introduced errors and in some cases correct them so that the 
data need not be retransmitted. Different error coding schemes are chosen depending 
on the types of errors expected, the communication medium's expected error rate, 
and whether or not data retransmission is possible. Faster processors and better 
communications technology make more complex coding schemes, with better error 
detecting and correcting capabilities, possible for smaller embedded systems, 
allowing for more robust communications. However, tradeoffs between bandwidth  
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and coding overhead, coding complexity and allowable coding delay between 
transmissions must be considered for each application. 
 
Error coding is a method of providing reliable digital data transmission and storage 
when the communication medium used has an unacceptable bit error rate (BER) and 
a low signal-to-noise ratio (SNR). Error coding is used in many digital applications 
like computer memory, magnetic and optical data storage media, satellite and deep 
space communications, network communications, and cellular telephone networks. 
Rather than transmitting digital data in a raw bit for bit form, the data is encoded 
with extra bits at the source. The longer "code word" is then transmitted, and the 
receiver can decode it to retrieve the desired information. The extra bits transform 
the data into a valid code word in the coding scheme. The space of valid code words 
is smaller than the space of possible bit strings of that length and therefore the 
destination can recognize invalid code words.  

If errors are introduced during transmission, they will likely be detected during the 
decoding process at the destination because the code word would be transformed into 
an invalid bit string. Given a data string to be transmitted that is k bits long, there are 
2k possible bit strings that the data can be. Error coding assumes the worst case 
scenario that the information to be encoded can be any of these bit strings. Therefore 
there will be 2k valid code words. The code words will be n bits long, where n > k. 
So just having extra bits in the data transmission eliminates many of the possible 
2n bit strings as valid code words. 

Perhaps the simplest example of error coding is adding a parity check bit. A bit 
string to be transmitted has a single bit concatenated to it to make a code word for 
transmission. The bit is a 1 or a 0 depending on the parity. If odd parity is being 
used, the parity bit will be added such that the sum of 1's in the code word is odd. If 
even parity is being used, the sum of 1's in the code word must be even.  

A number of error correcting mechanisms are in vogue in the domain of 
communication each of which has its own merits and demerits. Most notable of these 
are Reed-Solomon Codes, BCH, Turbo Codes, Cyclic Redundancy Checksums etc. 
to name a few. Although these methods are capable of correction of bit errors, they 
are not by any way foolproof. Multiple bit errors are quite difficult to handle. 
However, a brief mention of Reed-Solomon Code will be appropriate in the context 
of exposition on error correction. 

Reed-Solomon Codes 
In coding theory, Reed–Solomon (RS) codes are non-binary cyclic error correcting 
codes invented by Irving S. Reed and Gustave Solomon. They described a systematic 
way of building codes that could detect and correct multiple random symbol errors.  
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By adding t check symbols to the data, an RS code can detect any combination of up 
to t erroneous symbols, and correct up to t/2  symbols. As an erasure code, it can 
correct up to t known erasures, or it can detect and correct combinations of errors 
and erasures. Furthermore, RS codes are suitable as multiple-burst bit-error 
correcting codes, since a sequence of b+1 consecutive bit errors can affect at most 
two symbols of size b. The choice of t is up to the designer of the code, and may be 
selected within wide limits. 
In Reed-Solomon coding, source symbols are viewed as coefficients of 
a polynomial p(x) over a finite field. The original idea was to create n code symbols 
from k source symbols by oversampling p(x) at n > k distinct points, transmit the 
sampled points, and use interpolation techniques at the receiver to recover the 
original message. That is not how RS codes are used today. Instead, RS codes are 
viewed as cyclic BCH codes, where encoding symbols are derived from the 
coefficients of a polynomial constructed by multiplying p(x) with a cyclic generator 
polynomial. This gives rise to an efficient decoding algorithm, which was discovered 
by Elwyn Berlekamp and James Massey, and is known as the Berlekamp-Massey 
decoding algorithm. 
Reed-Solomon codes have since found important applications from deep-space 
communication to consumer electronics. They are prominently used in consumer 
electronics such as CDs, DVDs, Blu-ray Discs, in data transmission technologies 
such as DSL & WiMAX, in broadcast systems such as DVB and ATSC, and in 
computer applications such as RAID 6 systems. In 1977, RS codes were notably 
implemented in the Voyager program in the form of concatenated codes. The first 
commercial application in mass-produced consumer products appeared in 1982 with 
the compact disc, where two interleaved RS codes are used. Today, RS codes are 
widely implemented in digital storage devices and digital communication standards, 
though they are being slowly replaced by more modern low-density parity-check 
(LDPC) codes or turbo codes. For example, RS codes are used in the digital video 
broadcasting (DVB) standard DVB-S, but LDPC codes are used in its 
successor DVB-S2. 
The original concept of Reed-Solomon coding (Reed & Solomon 1960) describes 
encoding of k message symbols by viewing them as coefficients of 
a polynomial p(x) of maximum degree k-1 over a finite field of order N, and 
evaluating the polynomial at n>k distinct input points. Sampling a polynomial of 
degree k-1 at more than k points creates an over-determined system, and allows 
recovery of the polynomial at the receiver given any k out of n sample points 
using (Lagrange) interpolation. The sequence of distinct points is created by 
a generator of the finite field's multiplicative group, and includes 0, thus permitting 
any value of n up to N. Using a mathematical formulation, let (x1, x2, ..., xn) be the 
input sequence of n distinct values over the finite field F; then the codebook C  
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created from the tuplets of values obtained by evaluating every polynomial (over F) 
of degree less than k at each xi is 

 
where F[x] isthe polynomial ring over F, and k and n are chosen such that 1 ≤ k ≤ n ≤ 
N. As described above, an input sequence (x1, x2, ..., xn) of n=N values is created as 

 

, 
 

where α is a primitive root of F. When omitting 0 from the sequence, and since αN-

1 = 1, it follows that for every polynomial p(x) the function p(αx) is also a 
polynomial of the same degree, and its codeword is a cyclic left-shift of the 
codeword derived from p(x); thus, a Reed–Solomon code can be viewed as a cyclic 
code. This is pursued in the classic view of RS codes, described subsequently. 

Error Correction based on Osculating Polynomials 

Consider a case in which we desire an interpolating polynomial that not only agrees 
with the function values at a discrete number of points, but whose derivative(s) also 
agree(s) with the derivative(s) of the function at these same points. These needs can 
be fulfilled by so-called osculating polynomials. Theory of Osculating Polynomials 
is to be found extensively in various literatures in mathematics. Also known as 
Hermite Polynomials, they have the most desirable property of detecting sequences 
of bit errors. 
In this paper, we seek to exploit this property in developing a systematic procedure 
for error detection and correction on the fly by computing the so-called Osculating 
Polynomial Cross Product. Henceforth, throughout this discussion, we will refer to 
our error correction scheme as OPCP for short. 
 
Introduction 
 
OPCP codes are some of the sturdiest error correcting codes. Error correcting codes 
are very useful in sending information over long distances or through channels where 
errors might occur in the message. They have become more prevalent as 
telecommunications have expanded and developed a use for codes that can self-
correct.  
      Here below, we discuss vector operations and describe how to form a vector 
from a polynomial. Subsequently, we introduce OPCP codes and show how to form 
encoding matrices and encode messages. Thereafter, we give a method for decoding 
OPCP encoded messages. Finally, we give an example of decoding an encoded 
message in the concluding pages. 
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Definition of Terms and Operations 
     The vector spaces used in this paper consist of strings of length , where m is a 
positive integer, of numbers in . The code words of a OPCP code form a 
subspace of such a space. Vectors can be manipulated by three main operations: 
addition, multiplication, and the dot product.  
For two vectors  and , addition is 
defined by: 
 

 
where each  or  is either 1 or 0, and 1 + 1 = 0, 0 + 1 = 1, 1 + 0 = 1, 0 + 0 = 0: 
For example, if x and y are defined as x = (10011110) and y = (11100001), then the 
sum of  and  is  
The addition of a scalar  to vector is defined by 

 
 
The complement  of a vector  is the vector equal to . An example of the 
addition of a constant to a vector is 1 + (000111) = (111000). Multiplication is 
defined by the formula, 

 
where each  and  is either 1 or 0 and 1 * 1 = 1, 0 * 1 = 0, 1 * 0 = 0, 0 * 0 = 0. 
For example, using the same  and  above, the product of  is: 
 

 
The multiplication of a constant  to vector  is defined by: 

 
 
An example is 0 * (111001) = (000000). The dot product of  and  is defined by: 

 
For example, using  and  from above: 

 
All three of these operations require vectors with the same number of coordinates. 
Vectors can be associated with Boolean polynomials. A Boolean polynomial is a 
linear combination of Boolean monomials with coefficients in F2. A Boolean 
monomial  in the variables: 

 
is an expression of the form, 

 
where  
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The reduced form  is obtained by applying the rules: 

 
until the factors are distinct. The degree of  is the ordinary degree of , which is 
the number of variables in . A Boolean polynomial is in reduced form if each 
monomial is in reduced form. The degree of a Boolean polynomial  is the ordinary 
degree of its reduced form . 
An example of a Boolean polynomial in reduced form with degree three is: 

 
 
We can now describe how to associate a Boolean monomial in m variables to a 
vector with  entries. The degree-zero monomial is 1, and the degree-one 
monomials are  
First we define the vectors associated with these monomials. The vector associated 
with the monomial 1 is simply a vector of length , where every entry of the 
vector is 1. So, in a space of size , the vector associated with 1 is (11111111). The 
vector associated with the monomial  is  ones, followed by  zeros. The 
vector associated with the monomial  is ones, followed by  zeros, 
then another  ones, followed by another  zeros. In general, the vector 
associated with a monomial  is a pattern of  ones followed by  zeros, 
repeated until  values have been defined. For example, in a space of size , the 
vector associated with  is (1010101010101010). 
To form the vector for a monomial , first place the monomial in 
reduced form. Then multiply the vectors associated with each monomial  in the 
reduced form. For example, in a space with m = 3, the vector associated with the 
monomial  can be found by multiplying (11110000) * (11001100) * 
(10101010) which gives (10000000). 
To form the vector for a polynomial, simply reduce all of the monomials in the 
polynomial, and find the vectors associated with each of the monomials. Then, add 
all the vectors associated with each of these monomials together to form the vector 
associated with the polynomial. This gives us a bijection between reduced 
polynomials and vectors. From now on, we will treat the reduced polynomial and the 
vector associated with that polynomial interchangeably. 
 
OPCP Code and Encoding Matrices 
An  order OPCP code  is the set of all binary strings (vectors) of length 
equal to associated with the Boolean polynomials  of 
degree at most r. The  order OPCP code  consists of the binary strings 
associated with the constant polynomials 0 and 1, that is, . 
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Thus,  is just a repetition of either zeros or ones of length . At the other 
extreme, the  order OPCP code  consists of all binary strings of length 

. To define the encoding matrix of , let the first row of the encoding 
matrix be 1, the vector length  with all entries equal to 1. If r is equal to 0, then 
this row is the only one in the encoding matrix. If r is equal to 1, then add m rows 
corresponding to the vectors  to the  encoding matrix. To 

form a  encoding matrix where r is greater than 1, add  rows to the 
 encoding matrix. These added rows consist of all the possible reduced 

degree r monomials that can be formed using the rows . For 
example, when m = 3 we have: 

 
The rows  = 11000000,  = 10100000, and  = 10001000 are added to 
form: 

 
 
Finally, the row  = 10000000 is added to form: 

 
 

Another example of a OPCP encoding matrix is: 
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Encoding a message using OPCP code  is straightforward. Take the code we 
are using to be . Its dimension is: 
 

 
 

In other words, the encoding matrix has k rows. We send messages in blocks of 

length k. Let , the encoded message  is: , 
where  is a row of the encoding matrix of  
 
For example, using  to encode m = (0110) gives:  
0 * (11111111) + 1 * (11110000) + 1 * (11001100) + 0 * (10101010) = (00111100). 
Similarly, using  to encode m = (10101110010) gives (0011100100000101). 
 
Decoding OPCP: 
 Decoding OPCP encoded messages is more complex than encoding them. The 
theory behind encoding and decoding is based on the distance between vectors. The 
distance between any two vectors is the number of places in the two vectors that 
have different values. The distance between any two code words in  code is 

. The basis for OPCP encoding is the assumption that the closest codeword in 
 to the received message is the original encoded message. Thus for e errors to 

be corrected in the received message, the distance between any two of the code 
words in  must be greater than 2e. 
The decoding method used is not very efficient, but is straightforward to implement. 
It checks each row of the encoding matrix and uses majority logic to determine 
whether that row was used in forming the encoding message. Thus, it is possible to 
determine what the error-less encoded message was and what the original message 
was. This method of decoding is given by the following algorithm: Apply Steps 1  
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and 2 below, to each row of the matrix, starting from the bottom and working 
upwards. 
Step 1.  
Choose a row in the  encoding matrix. Find  characteristic vectors (this 
process is described below) for that row, and then take the dot product of each of 
those rows with the encoded message. 
Step 2.  
Take the majority of the values of the dot products and assign that value to the 
coefficient of the row. 
Step 3.  
After doing Steps 1 and 2 for each row except the top row from the bottom of the 
matrix up, multiply each coefficient by its corresponding row and add the resulting 
vectors to form . Add this result to the received encoded message. If the resulting 
vector has more ones than zeros, then the top row's coefficient is 1, otherwise it is 0. 
Adding the top row, multiplied by its coefficient to  gives the original encoded 
message. Thus, we can identify the errors. The vector formed by the sequence of 
coefficients starting from the top row of the encoding matrix and ending with the 
bottom row is the original message. 
To find the characteristic vectors of any row of the matrix, take the monomial r 
associated with the row of the encoding matrix. Then, take E to be the set of all  
that are not in the monomial r, but are in the encoding matrix. The characteristic 
vectors are the vectors corresponding to the monomials in  and , such that 
exactly one of  or  is in each monomial for all  in E. For example, the last row 
of the encoding matrix  is associated with  so the characteristic vectors 
correspond to the following combinations of , and  

 
These characteristic vectors have the property that the dot product is zero with all the 
rows in  except the row to which the characteristic vectors correspond. 
Example: 
If the original message is m = (0110) using , then the encoded message is 

. Because the distance in  is  = 4, this code can 
correct one error. Let the encoded message after the error be  = (10111100): The 
characteristic vectors of the last row  = (10101010) are , ,  and 

. The vector associated with  is (11110000), so  = (00001111). The 
vector associated with  is (11001100), so  = (00110011). Therefore, we have 

 = (11000000),  = (00110000),  = (00001100), and  = 
(00000011). Taking the dot products of these vectors with , we get 
(11000000) . (10111100) = 1; (00110000) . (10111100) = 0; 

(00001100) . (10111100) = 0; (00000011) . (10111100) = 0: 
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We can conclude that the coefficient of  is 0. 
Doing the same for the second to last row of the matrix,  = (11001100), we get the 
characteristic vectors , ,  and . These vectors are (10100000), 
(01010000), (00001010), and (00000101), respectively. Taking the dot products of 
these vectors with , we get: 

(10100000) . (10111100) = 0; (01010000) . (10111100) = 1; 
(00001010) . (10111100) = 1; (00000101) . (10111100) = 1: 

So, we can conclude that the coefficient of  is 1. Doing the same for the second 
row of the matrix  = (11110000), we get: 

(10001000) . (10111100) = 0; (00100010) . (10111100) = 1; 
(01000100) . (10111100) = 1; (00010001) . (10111100) = 1: 

 
We can conclude that the coefficient for  is also 1. 
If we add 0 * (10101010) and 1 * (11001100) and 1 * (11110000) we get , which 
is equal to (00111100). Then we see that the sum of  and  is equal to 
(00111100) + (10111100) = (10000000). 
This message has more zeros than ones, so the coefficient of the first row of the 
encoding matrix is zero. Thus we can put together coefficients for the four rows of 
the matrix, 0,1,1, and 0, and see that the original message was (0110). We can also 
see that the error was in the first place of the error-free message  = (00111100). 
 
Conclusion: 

It is no exaggeration that communication protocols in Wireless Ad Hoc Networks 
should be secure and error free, considering the fact that such networks are deployed 
in emergency situations requiring real time response. Most of the protocols 
implemented hitherto in Wireless Ad Hoc Networks are quite unsatisfactory in terms 
of error-free communication (DARPA Report: 26754 – November 2009), especially 
considering the fact that the nodes are likely to be highly mobile and that a noise-free 
environment is in no way guaranteed. A compromise has to be reached whereby a 
balance between clean reception and speed of communication   is achieved without 
impairing the quality and real-time nature. 

A majority of the protocols specifically Reed-Solomon, Hamming Codes and Turbo 
Codes are not robust enough in achieving the required goal. While isolated bit errors 
are corrected well, long-duration burst errors are almost impossible to correct. Our 
Osculating Polynomial based correction scheme achieves the desired goal to a large 
extent. Simulations on burst errors of varying duration give very satisfactory results. 
Very long burst errors are in any case impossible to correct – this is a state where no 
strategy, however sophisticated, will succeed. Practical implementations of  
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Osculating Polynomial Error Correction will have to look into FPGA 
implementations to mitigate the delays encountered in software implementations. 
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