

Contemporary Engineering Sciences, Vol. 4, 2011, no. 1, 1 – 12

Error Free Transport of Transmitter Payload over

Ad Hoc Wireless Network Using Osculating

Polynomial Cross Products

Siddesh G.K.

Department of Electronics and Communication
SBM Jain College of Engineering, Bangalore, India

professorsiddeshgk@gmail.com

K. N. Muralidahara

Department of Electronics and Communication
PES College of Engineering, Mandya, India

Keywords: Pay Load, Osculating, Cyclic Redundancy Codes, Ad Hoc Networks,
Polynomials, RS Codes

Abstract

In any communication scenario, is it a wired network or an ad hoc wireless network
or digital cordless telephony, transport of payload in an error-free manner is of
paramount importance. It is matter of common knowledge that transport of data
(whether modulated or un-modulated) over a medium is always subject to external
noise, introducing bit errors. Received data containing errors is practically of no use
in most of the situations. Traditionally, the most common solution is to employ
Cyclic Redundancy Checksums which are generated using primitive modulo-2
polynomials and appended to the payload. The receiver computes the CRC of the

2 Siddesh G.K. and K. N. Muralidahara

payload locally and compares with the received CRC. If a match doesn’t occur, it is
assumed that the received data is in error and usually the implemented protocol
requests for a retransmission. This implies that whenever there is error in the data
stream, the protocol transfer time is doubled or trebled due to retransmissions. Such a
situation is not acceptable in scenarios where the transfer needs to take place in real
time without much latency. This is typical of Ad Hoc Wireless Networks deployed
for disaster management where time plays a crucial role.

It would be ideal if there is a method whereby errors can somehow be detected at the
receiver and corrected on the fly without the need of retransmission. Technologies
like Digital TV operating in real time have used Reed Solomon Error Correcting
Codes to correct bit errors at the receiver end. Correction of bit errors involves just
flipping the bits to the opposite state. In this paper we use Osculating Polynomials
which have the desirable property that their cross product changes with change in bit
patterns and given the original cross product, the original bit patterns of the data can
be easily recovered by the inverse process of de-convolution. This paper, therefore,
seeks to discuss the properties of osculating polynomials and their application in
forward error correction on digital streams within the framework of Ad Hoc
Networks.

Introduction

Environmental interference and physical defects in the communication medium can
cause random bit errors during data transmission. Error coding is a method of
detecting and correcting these errors to ensure information is transferred intact from
its source to its destination. Error coding is used for fault tolerant computing in
computer memory, magnetic and optical data storage media, satellite and deep space
communications, network communications, cellular telephone networks, and almost
any other form of digital data communication. Error coding uses mathematical
formulas to encode data bits at the source into longer bit words for transmission. The
"code word" can then be decoded at the destination to retrieve the information. The
extra bits in the code word provide redundancy that, according to the coding scheme
used, will allow the destination to use the decoding process to determine if the
communication medium introduced errors and in some cases correct them so that the
data need not be retransmitted. Different error coding schemes are chosen depending
on the types of errors expected, the communication medium's expected error rate,
and whether or not data retransmission is possible. Faster processors and better
communications technology make more complex coding schemes, with better error
detecting and correcting capabilities, possible for smaller embedded systems,
allowing for more robust communications. However, tradeoffs between bandwidth

Error free transport of transmitter payload 3

and coding overhead, coding complexity and allowable coding delay between
transmissions must be considered for each application.

Error coding is a method of providing reliable digital data transmission and storage
when the communication medium used has an unacceptable bit error rate (BER) and
a low signal-to-noise ratio (SNR). Error coding is used in many digital applications
like computer memory, magnetic and optical data storage media, satellite and deep
space communications, network communications, and cellular telephone networks.
Rather than transmitting digital data in a raw bit for bit form, the data is encoded
with extra bits at the source. The longer "code word" is then transmitted, and the
receiver can decode it to retrieve the desired information. The extra bits transform
the data into a valid code word in the coding scheme. The space of valid code words
is smaller than the space of possible bit strings of that length and therefore the
destination can recognize invalid code words.

If errors are introduced during transmission, they will likely be detected during the
decoding process at the destination because the code word would be transformed into
an invalid bit string. Given a data string to be transmitted that is k bits long, there are
2k possible bit strings that the data can be. Error coding assumes the worst case
scenario that the information to be encoded can be any of these bit strings. Therefore
there will be 2k valid code words. The code words will be n bits long, where n > k.
So just having extra bits in the data transmission eliminates many of the possible
2n bit strings as valid code words.

Perhaps the simplest example of error coding is adding a parity check bit. A bit
string to be transmitted has a single bit concatenated to it to make a code word for
transmission. The bit is a 1 or a 0 depending on the parity. If odd parity is being
used, the parity bit will be added such that the sum of 1's in the code word is odd. If
even parity is being used, the sum of 1's in the code word must be even.

A number of error correcting mechanisms are in vogue in the domain of
communication each of which has its own merits and demerits. Most notable of these
are Reed-Solomon Codes, BCH, Turbo Codes, Cyclic Redundancy Checksums etc.
to name a few. Although these methods are capable of correction of bit errors, they
are not by any way foolproof. Multiple bit errors are quite difficult to handle.
However, a brief mention of Reed-Solomon Code will be appropriate in the context
of exposition on error correction.

Reed-Solomon Codes
In coding theory, Reed–Solomon (RS) codes are non-binary cyclic error correcting
codes invented by Irving S. Reed and Gustave Solomon. They described a systematic
way of building codes that could detect and correct multiple random symbol errors.

4 Siddesh G.K. and K. N. Muralidahara

By adding t check symbols to the data, an RS code can detect any combination of up
to t erroneous symbols, and correct up to t/2 symbols. As an erasure code, it can
correct up to t known erasures, or it can detect and correct combinations of errors
and erasures. Furthermore, RS codes are suitable as multiple-burst bit-error
correcting codes, since a sequence of b+1 consecutive bit errors can affect at most
two symbols of size b. The choice of t is up to the designer of the code, and may be
selected within wide limits.
In Reed-Solomon coding, source symbols are viewed as coefficients of
a polynomial p(x) over a finite field. The original idea was to create n code symbols
from k source symbols by oversampling p(x) at n > k distinct points, transmit the
sampled points, and use interpolation techniques at the receiver to recover the
original message. That is not how RS codes are used today. Instead, RS codes are
viewed as cyclic BCH codes, where encoding symbols are derived from the
coefficients of a polynomial constructed by multiplying p(x) with a cyclic generator
polynomial. This gives rise to an efficient decoding algorithm, which was discovered
by Elwyn Berlekamp and James Massey, and is known as the Berlekamp-Massey
decoding algorithm.
Reed-Solomon codes have since found important applications from deep-space
communication to consumer electronics. They are prominently used in consumer
electronics such as CDs, DVDs, Blu-ray Discs, in data transmission technologies
such as DSL & WiMAX, in broadcast systems such as DVB and ATSC, and in
computer applications such as RAID 6 systems. In 1977, RS codes were notably
implemented in the Voyager program in the form of concatenated codes. The first
commercial application in mass-produced consumer products appeared in 1982 with
the compact disc, where two interleaved RS codes are used. Today, RS codes are
widely implemented in digital storage devices and digital communication standards,
though they are being slowly replaced by more modern low-density parity-check
(LDPC) codes or turbo codes. For example, RS codes are used in the digital video
broadcasting (DVB) standard DVB-S, but LDPC codes are used in its
successor DVB-S2.
The original concept of Reed-Solomon coding (Reed & Solomon 1960) describes
encoding of k message symbols by viewing them as coefficients of
a polynomial p(x) of maximum degree k-1 over a finite field of order N, and
evaluating the polynomial at n>k distinct input points. Sampling a polynomial of
degree k-1 at more than k points creates an over-determined system, and allows
recovery of the polynomial at the receiver given any k out of n sample points
using (Lagrange) interpolation. The sequence of distinct points is created by
a generator of the finite field's multiplicative group, and includes 0, thus permitting
any value of n up to N. Using a mathematical formulation, let (x1, x2, ..., xn) be the
input sequence of n distinct values over the finite field F; then the codebook C

Error free transport of transmitter payload 5

created from the tuplets of values obtained by evaluating every polynomial (over F)
of degree less than k at each xi is

where F[x] isthe polynomial ring over F, and k and n are chosen such that 1 ≤ k ≤ n ≤
N. As described above, an input sequence (x1, x2, ..., xn) of n=N values is created as

,

where α is a primitive root of F. When omitting 0 from the sequence, and since αN-

1 = 1, it follows that for every polynomial p(x) the function p(αx) is also a
polynomial of the same degree, and its codeword is a cyclic left-shift of the
codeword derived from p(x); thus, a Reed–Solomon code can be viewed as a cyclic
code. This is pursued in the classic view of RS codes, described subsequently.

Error Correction based on Osculating Polynomials

Consider a case in which we desire an interpolating polynomial that not only agrees
with the function values at a discrete number of points, but whose derivative(s) also
agree(s) with the derivative(s) of the function at these same points. These needs can
be fulfilled by so-called osculating polynomials. Theory of Osculating Polynomials
is to be found extensively in various literatures in mathematics. Also known as
Hermite Polynomials, they have the most desirable property of detecting sequences
of bit errors.
In this paper, we seek to exploit this property in developing a systematic procedure
for error detection and correction on the fly by computing the so-called Osculating
Polynomial Cross Product. Henceforth, throughout this discussion, we will refer to
our error correction scheme as OPCP for short.

Introduction

OPCP codes are some of the sturdiest error correcting codes. Error correcting codes
are very useful in sending information over long distances or through channels where
errors might occur in the message. They have become more prevalent as
telecommunications have expanded and developed a use for codes that can self-
correct.
 Here below, we discuss vector operations and describe how to form a vector
from a polynomial. Subsequently, we introduce OPCP codes and show how to form
encoding matrices and encode messages. Thereafter, we give a method for decoding
OPCP encoded messages. Finally, we give an example of decoding an encoded
message in the concluding pages.

6 Siddesh G.K. and K. N. Muralidahara

Definition of Terms and Operations
 The vector spaces used in this paper consist of strings of length , where m is a
positive integer, of numbers in . The code words of a OPCP code form a
subspace of such a space. Vectors can be manipulated by three main operations:
addition, multiplication, and the dot product.
For two vectors and , addition is
defined by:

where each or is either 1 or 0, and 1 + 1 = 0, 0 + 1 = 1, 1 + 0 = 1, 0 + 0 = 0:
For example, if x and y are defined as x = (10011110) and y = (11100001), then the
sum of and is
The addition of a scalar to vector is defined by

The complement of a vector is the vector equal to . An example of the
addition of a constant to a vector is 1 + (000111) = (111000). Multiplication is
defined by the formula,

where each and is either 1 or 0 and 1 * 1 = 1, 0 * 1 = 0, 1 * 0 = 0, 0 * 0 = 0.
For example, using the same and above, the product of is:

The multiplication of a constant to vector is defined by:

An example is 0 * (111001) = (000000). The dot product of and is defined by:

For example, using and from above:

All three of these operations require vectors with the same number of coordinates.
Vectors can be associated with Boolean polynomials. A Boolean polynomial is a
linear combination of Boolean monomials with coefficients in F2. A Boolean
monomial in the variables:

is an expression of the form,

where

Error free transport of transmitter payload 7

The reduced form is obtained by applying the rules:

until the factors are distinct. The degree of is the ordinary degree of , which is
the number of variables in . A Boolean polynomial is in reduced form if each
monomial is in reduced form. The degree of a Boolean polynomial is the ordinary
degree of its reduced form .
An example of a Boolean polynomial in reduced form with degree three is:

We can now describe how to associate a Boolean monomial in m variables to a
vector with entries. The degree-zero monomial is 1, and the degree-one
monomials are
First we define the vectors associated with these monomials. The vector associated
with the monomial 1 is simply a vector of length , where every entry of the
vector is 1. So, in a space of size , the vector associated with 1 is (11111111). The
vector associated with the monomial is ones, followed by zeros. The
vector associated with the monomial is ones, followed by zeros,
then another ones, followed by another zeros. In general, the vector
associated with a monomial is a pattern of ones followed by zeros,
repeated until values have been defined. For example, in a space of size , the
vector associated with is (1010101010101010).
To form the vector for a monomial , first place the monomial in
reduced form. Then multiply the vectors associated with each monomial in the
reduced form. For example, in a space with m = 3, the vector associated with the
monomial can be found by multiplying (11110000) * (11001100) *
(10101010) which gives (10000000).
To form the vector for a polynomial, simply reduce all of the monomials in the
polynomial, and find the vectors associated with each of the monomials. Then, add
all the vectors associated with each of these monomials together to form the vector
associated with the polynomial. This gives us a bijection between reduced
polynomials and vectors. From now on, we will treat the reduced polynomial and the
vector associated with that polynomial interchangeably.

OPCP Code and Encoding Matrices
An order OPCP code is the set of all binary strings (vectors) of length
equal to associated with the Boolean polynomials of
degree at most r. The order OPCP code consists of the binary strings
associated with the constant polynomials 0 and 1, that is, .

8 Siddesh G.K. and K. N. Muralidahara

Thus, is just a repetition of either zeros or ones of length . At the other
extreme, the order OPCP code consists of all binary strings of length

. To define the encoding matrix of , let the first row of the encoding
matrix be 1, the vector length with all entries equal to 1. If r is equal to 0, then
this row is the only one in the encoding matrix. If r is equal to 1, then add m rows
corresponding to the vectors to the encoding matrix. To

form a encoding matrix where r is greater than 1, add rows to the
 encoding matrix. These added rows consist of all the possible reduced

degree r monomials that can be formed using the rows . For
example, when m = 3 we have:

The rows = 11000000, = 10100000, and = 10001000 are added to
form:

Finally, the row = 10000000 is added to form:

Another example of a OPCP encoding matrix is:

Error free transport of transmitter payload 9

Encoding a message using OPCP code is straightforward. Take the code we
are using to be . Its dimension is:

In other words, the encoding matrix has k rows. We send messages in blocks of

length k. Let , the encoded message is: ,
where is a row of the encoding matrix of

For example, using to encode m = (0110) gives:
0 * (11111111) + 1 * (11110000) + 1 * (11001100) + 0 * (10101010) = (00111100).
Similarly, using to encode m = (10101110010) gives (0011100100000101).

Decoding OPCP:
 Decoding OPCP encoded messages is more complex than encoding them. The
theory behind encoding and decoding is based on the distance between vectors. The
distance between any two vectors is the number of places in the two vectors that
have different values. The distance between any two code words in code is

. The basis for OPCP encoding is the assumption that the closest codeword in
 to the received message is the original encoded message. Thus for e errors to

be corrected in the received message, the distance between any two of the code
words in must be greater than 2e.
The decoding method used is not very efficient, but is straightforward to implement.
It checks each row of the encoding matrix and uses majority logic to determine
whether that row was used in forming the encoding message. Thus, it is possible to
determine what the error-less encoded message was and what the original message
was. This method of decoding is given by the following algorithm: Apply Steps 1

10 Siddesh G.K. and K. N. Muralidahara

and 2 below, to each row of the matrix, starting from the bottom and working
upwards.
Step 1.
Choose a row in the encoding matrix. Find characteristic vectors (this
process is described below) for that row, and then take the dot product of each of
those rows with the encoded message.
Step 2.
Take the majority of the values of the dot products and assign that value to the
coefficient of the row.
Step 3.
After doing Steps 1 and 2 for each row except the top row from the bottom of the
matrix up, multiply each coefficient by its corresponding row and add the resulting
vectors to form . Add this result to the received encoded message. If the resulting
vector has more ones than zeros, then the top row's coefficient is 1, otherwise it is 0.
Adding the top row, multiplied by its coefficient to gives the original encoded
message. Thus, we can identify the errors. The vector formed by the sequence of
coefficients starting from the top row of the encoding matrix and ending with the
bottom row is the original message.
To find the characteristic vectors of any row of the matrix, take the monomial r
associated with the row of the encoding matrix. Then, take E to be the set of all
that are not in the monomial r, but are in the encoding matrix. The characteristic
vectors are the vectors corresponding to the monomials in and , such that
exactly one of or is in each monomial for all in E. For example, the last row
of the encoding matrix is associated with so the characteristic vectors
correspond to the following combinations of , and

These characteristic vectors have the property that the dot product is zero with all the
rows in except the row to which the characteristic vectors correspond.
Example:
If the original message is m = (0110) using , then the encoded message is

. Because the distance in is = 4, this code can
correct one error. Let the encoded message after the error be = (10111100): The
characteristic vectors of the last row = (10101010) are , , and

. The vector associated with is (11110000), so = (00001111). The
vector associated with is (11001100), so = (00110011). Therefore, we have

 = (11000000), = (00110000), = (00001100), and =
(00000011). Taking the dot products of these vectors with , we get
(11000000) . (10111100) = 1; (00110000) . (10111100) = 0;

(00001100) . (10111100) = 0; (00000011) . (10111100) = 0:

Error free transport of transmitter payload 11

We can conclude that the coefficient of is 0.
Doing the same for the second to last row of the matrix, = (11001100), we get the
characteristic vectors , , and . These vectors are (10100000),
(01010000), (00001010), and (00000101), respectively. Taking the dot products of
these vectors with , we get:

(10100000) . (10111100) = 0; (01010000) . (10111100) = 1;
(00001010) . (10111100) = 1; (00000101) . (10111100) = 1:

So, we can conclude that the coefficient of is 1. Doing the same for the second
row of the matrix = (11110000), we get:

(10001000) . (10111100) = 0; (00100010) . (10111100) = 1;
(01000100) . (10111100) = 1; (00010001) . (10111100) = 1:

We can conclude that the coefficient for is also 1.
If we add 0 * (10101010) and 1 * (11001100) and 1 * (11110000) we get , which
is equal to (00111100). Then we see that the sum of and is equal to
(00111100) + (10111100) = (10000000).
This message has more zeros than ones, so the coefficient of the first row of the
encoding matrix is zero. Thus we can put together coefficients for the four rows of
the matrix, 0,1,1, and 0, and see that the original message was (0110). We can also
see that the error was in the first place of the error-free message = (00111100).

Conclusion:

It is no exaggeration that communication protocols in Wireless Ad Hoc Networks
should be secure and error free, considering the fact that such networks are deployed
in emergency situations requiring real time response. Most of the protocols
implemented hitherto in Wireless Ad Hoc Networks are quite unsatisfactory in terms
of error-free communication (DARPA Report: 26754 – November 2009), especially
considering the fact that the nodes are likely to be highly mobile and that a noise-free
environment is in no way guaranteed. A compromise has to be reached whereby a
balance between clean reception and speed of communication is achieved without
impairing the quality and real-time nature.

A majority of the protocols specifically Reed-Solomon, Hamming Codes and Turbo
Codes are not robust enough in achieving the required goal. While isolated bit errors
are corrected well, long-duration burst errors are almost impossible to correct. Our
Osculating Polynomial based correction scheme achieves the desired goal to a large
extent. Simulations on burst errors of varying duration give very satisfactory results.
Very long burst errors are in any case impossible to correct – this is a state where no
strategy, however sophisticated, will succeed. Practical implementations of

12 Siddesh G.K. and K. N. Muralidahara

Osculating Polynomial Error Correction will have to look into FPGA
implementations to mitigate the delays encountered in software implementations.

References

 [1] Arazi, Benjamin, A Commonsense Approach to the Theory of Error Correcting
Codes,_MIT Press, 1988.

 [2] Hoffman, D. G. et al. Coding Theory - the Essentials, Marcel Dekker Inc., 1991.

 [3]Mann,Henry B., Error Correcting Codes, John Wiley and Sons,1968.

 [4] Purser, Michael, _Introduction to Error-Correcting Codes, Artech House Inc.,

Norwood, MA, 1995.

 [5] Irving S., A Class of Multiple- Error-Correcting Codes and Decoding Scheme,

MIT Lincoln Laboratory, 1953.

 [6] Roman, Steven, Coding and Information Theory, Springer-Verlag, 1992.

[7] Van Lindt, J. H., Introduction to Coding Theory, Springer-Verlag, 1982.

[8] The Art of Error Correcting & Coding – Todd Moon

[9] C.Barrett et al., "Characterizing the Interaction Between Routing and
 MAC Protocols inAd-hoc Networks," Proc. MobiHoc 2002 , pp. 92-103

[10] J.Broch etal.,"A Performance Comparison of Multi-Hop Wireless
 AdHocNetworkRouting Protocols," Proc. Mobicom '98.

Received: August, 2010

