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Abstract

In this paper we are concerned with a particular multi-criteria
optimal path problem, known as the multi-objective shortest path
problem. The purpose of this paper is to study a data envelopment
analysis (DEA) model that allows us to determine the set of all
non-dominated paths on a network. We prove that the non-
dominated path in multi-objective shortest path problem is
equivalent to corresponding strongly efficient unit in its DEA
model without output with actually observed units.
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1 Introduction

The optimal solution of the classic shortest path problem with a Min-Sum
objective function is a single shortest route in a directed graph. This problem may
be solved by a label-correcting algorithm [14] or for non-negative costs solved by
a label-setting algorithm such as Dijkstra’s algorithm [6]. We can also consider
several other objective functions such as Max-Sum, Max-Production or Max-Min
function (See Ahuja et al. [15]). However, considering one objective function
such as minimizing the sum of the arcs’ costs of the path may not be sufficient to
describe real world problems. Suppose that each of the arcs of the graph has a
number of both kinds of criteria, costs and benefits. In general, no single route
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will have simultaneously the least costs and the most benefits. The solution to an
instance of this multi-criteria problem will be a set of Pareto optimal routes. The
multi-objective shortest path problem (MSPP) was proposed first by Vincke
in1974 [12]. When all the criterions lead only to Min-Sum objective functions,
under assumptions concerning the cost values, the set of non-dominated paths can
be computed by a multiple objective extension of the Dijkstra’s algorithm, i.e.,
Martins’ label-setting algorithm [4]. For the same problem, Martins and Santos
[5] and Guerriero and Musmanno [7], also give a label-correcting algorithm.
Several other objective functions such as bottleneck objective functions are
discussed in [11, 19].

Data envelopment analysis (DEA) is a mathematical programming-based
technique widely used to measure relative efficiencies of decision making units
(DMUs) such as evaluating the efficiencies of paths on a road network. Unlike
parametric models, DEA does not require the analyst to pre-specify the functional
form of the efficient frontier (production function). Instead of a pre-specified
function form, the frontier is convex and based on the construction of a piece-wise
linear combination of the efficient units. That “efficiency” in DEA and “convex
efficiency” in MCDM are equivalent is not a new fact. A number of papers [2, 16,
and 17] have discussed the analysis of the links between DEA and MCDM.

This paper deals with the use of a technique based on an adaptation of DEA
model of Caporaletti et al. [10] to distinguish between efficient and not efficient
DMuUs. Although Cardillo et al. [3] and Jahanshahloo et al. [8] have presented
techniques to evaluate and identify the efficient paths on a road network; they do
not take into account the number of paths in a multi-criteria optimal path problem,
specifically in multi-objective shortest path problem. We prove that the efficient
solutions in DEA model without output with actually observed units are
equivalent to the non-dominated paths in MSPP.

2 Background

In this section, we introduce the notation and definitions needed to define the
shortest path problem with multiple objectives. A network ./~ is defined as a

directed and connected graph G =(X,U), where X ={1,2,---,¢} is vertex set
with ¢ vertices (none of which is isolated) and U ={e,,e,,---,¢,} is arc set with u
vertices. Each arc ¢, forall [=1---,u, is denoted by an ordered pair (v,w),
where v,we U such that v=w. It is supposed that there is only one directed arc
(v,w) from v to w. In this network, we specify a source vertex s and a terminal
vertex ¢, and m is the number of criteria with the corresponding m dimensional
function vector cost assigned to each arc,
c: U->R"
(W)= crw)=c,, =(c,,.c,)

(1)
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A path p is a sequence of vertices and arcs from s to . We assume that the
vertices appeared on the path are all distinct. A cycle C is a path with non-
repeated vertices except the source and terminal vertices that are coincident.
Given the source vertex s and a vertex v in X, the set of all paths from s to v is
denoted by P*". We denote the set of all paths from s to ¢ by P, instead of P*/, in
order to simplify the notation.

Let ¢'(p) denotes the value of i-th criterion of a path p, for each i=1,---,m.

The cost vector C(p) of path p is the sum of the cost vectors of its arcs, i.e.

C(p) = (¢ (p).*(p)+,c"(P)) = D, cvw), )
(v.w)ep
while on the contrary, the cost vector for bottleneck functions is,
C(p)=(c'(p).c*(p)--,c"(p)) = [min c(v, w). ©)

Definition 2.1 If the objective vector is to be minimized, a path p € P"" from
vertex v to vertex w dominates another path q € P""if and only if the objective
vector C(p) dominates C(q)in the sense that C,(p)<C,(q),k=1---,m, with
strict inequality holding for at least one k.

Definition 2.2 A path p € P"" from vertex v to vertex w is non-dominated path

in P*" if and only if there exists no other path q € P"" which dominates p. The set

of all non-dominated paths from v to w is denoted by ND"" and ND will be used
for ND*',

Let G=(X,U) denote a directed graph consisting of a finite set
X ={L2,---,¢} of vertices and a finite set U ={e,,e,,---,e,} of u arcs. There is a

cost vector ¢, €R" associated with each arc, where m represents the number of

criteria. Let C(p) be the cost vector of a path p in G. The multi-objective shortest

path problem is to find the set of all Pareto optimal paths from the source vertex s
to all other vertices in G, with respect to the cost vector C(p), so the version

considered in this paper is as follows:
Min Y c(v,w) Vte X \{s} 4)

peP™ (vw)ep

in which, c(v,w)=(c,,,--,c",) =c, , is the cost vector of (v,w) e p.

The original DEA model, introduced by Charnes et al. [1] in 1978 and referred
to as the CCR model, optimizes the fractional output per input of each DMU. We
suppose that there exist n DMUSs, indexed by k£ =1,2,---,n; y, is the quantity of

output r,»=1,2,---,s, produced by the decision making unit p, x; the quantity of
input, i=12,---,m, used by DMUj, u, the weight associated with output », v; the
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weight associated with input i. The optimization program to assess the efficiency
of DMUy, p €{1,2,---,n}, is defined as follows:

N
z ul‘yrp
z" = Max =

VX,
=1

Z:uryrk

st 2——<1 k=12,-,n. (5)
2V, Xy,
i-1

u,v, 20,  forall i,r

If z” =1, then DMU,, is efficient.
Now, we present a definition of efficiency proposed by Caporaletti et al. [10].

Definition 2.3 The DUM; is an efficient unit, if and only if there exists no
convex combination of the other DMUs such that all criteria of the convex
combination is less than or equal to the criteria of DMU; and at least one
criterion is not equal.

3 DEA and Multi-Objective Shortest Path Problems

In this section, we show that a non-dominated path in multi-objective shortest
path problem is equivalent to efficient DMUs according to definition 2.3 in DEA
model without output with actually observed units. Using DEA terminology, we
observe that in the well-known multi-objective shortest path problem, the paths in
the network .~rcan be considered as the decision making units (DMUSs) without
outputs, by replacing its cost vectors to be minimized with inputs. Let the DMU;
to be evaluated on any trial be designated as DMU, where p ranges over
1,2,---,| P*"| in which v is a vertex in X \{s}. Since we consider DMUs as

network’s paths and actually we have to choose only one real route, the convex

linear combination of paths is not permissible. This intuition is the best lead to
deal with free disposal hull (FDH) models.

FDH is a special case of DEA that employs a smaller set of units when
defining the efficiency frontier. Instead of DEA’s piecewise linear frontier, FDH
employs a stepwise (or staircase) frontier that ensures that efficiency evaluations
are effected by only actually observed performances [18]. Because the FDH
frontier is either identical to or interior to the DEA frontier, FDH will typically
give larger estimates of average efficiency than DEA. Unlike DEA, FDH is not
restricted to convex technologies.
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According to the FDH model by Tulkens [9] the input-oriented BCC model
without output is as follows,

Min 6°
1P
st D kX, +s,=0x,, i=12,m
|;’T’1|
A =1 : (6)
=)
he{0d) =120 PV
5,20 , i=12,---,m

Theorem 3.1 The VRS FDH model without output is feasible and bounded.

Proof: The VRS FDH model has a feasible solution 2., =1andi =0 (j# p).

Note that the model (6) is a mixed integer programming but we can consider the
following equivalent input-oriented model by Agrell et al. [13],

i

Min Z:; 07
Sk, <0n,,  i=12
s.t ,2:1 Xy $O07x,,  i=12m )
1P+
DA, =1
j=1
A, 20 =12, | P
Consider the dual form of (7), we have:
Max z”
s.t ixipv[j=1 , j=12,---| P |
. ®)
2xvy 22 J=12--- [P
i=1 ’

v, 20, i=12,,m , j=12,|P"]

It is obvious that problem (8) is feasible and z" <1, so the model (6) is bounded ]
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When in model (6), 6" =1 and if s, =0for all i=1,2,---,m then DMUj, is
called strongly efficient, else if there exists s, >0, ie{l,2,---,m}then DMU, is
called weakly efficient.

Theorem 3.2 The non-dominated paths in the multi-objective shortest path
problem are equivalent to the strongly efficient decision making units in VRS
FDH model without output according to definition 2.3.

Proof. (=) Let there exists a strongly efficient DMU,, of model (6) such that it
is not a non-dominated path. Therefore, there exists x, = (x,,, Xy, X,;) €S
such that x, <x, with at least one strict inequality. By setting
A =LA, =0(j=#k), we have:

Zhx,=x, st XA, =1 9
that is a contradiction. J j
(<) On the contrary, we prove that if DMUj, is not strongly efficient in VRS

FDH model without output, then, it would not be non-dominated path. Assume
that DMU, is either inefficient or weakly efficient unit. If DMU, is an inefficient
unit, so 9’; <1, and there exists a linear combination such as

x=2AX; st >A,=1 & X, {0} (10)
J J
suchthat x<x, & x=x,.Hence, there exists k e{1,2,---,| P*" [} such that
X. * .
r=1 & x%ké6p<l forall i=12,--,m. (11)

ip

Consequently, we have x, <x, forall i=12,---,m.
If DMUj is weakly efficient then 67 =1, and
Ak (31 (kef,2,---,| P 3nk=p A lefl,2,---,m})st 5,>0). (12)
Since 6, =1, we have:

1P|

glijl.j+sl.=xl.p forall i=12,--,m. (13)

Moreover, we have A, =1 ands, 20,i=1,2,---,m in which s, >0. Hence, there
exists x, €S such that x, <x, with at least one strict inequality, therefore,

DMU, is dominated by DMUy. Consequently, it was proved that DMU, is not a
non-dominated unit and equivalently it is not a non-dominated solution to the
MSPP. So eventually, the above theorem proves the assumption. []
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4

Ilustrative example

59

As an example to illustrate that strongly efficient paths in VRS FDH without
output model and non-dominated paths in MSPP with Min-Sum objective
function are equivalent. We consider the network .7/~ with five vertices and eight

arcs with two dimensional cost vector, shown in Fig.1.

S=1

2
(1}/ 1{5\ (2, 5)
(4.4 3, (3,3 @
4,2 (2/ 6. 1)
3

Figure 1 Example of MSPP with Min-Sum objective function

There exist five paths from vertex s to vertex ¢ which three of them, obtained
by Martins’ label-setting algorithm (presented to solve the MPSS), are in the set
ND*' as shown in Table 1.

Table 1 Paths from s to ¢ on the network &~

Path Input (Cost)| Martins’ | Efficiency Slack Variables| ..
) vector, C(p) |Algorithm| () (s)
pi:l »2—5  |Clpy)=(3,10)) meND"| =1 |Vj Vi 50 Em.%lnyt
p2:1—2—4—3 | C(p1)=(5, 10) Dog;i;fted 0'=1 | j=1i=1 s=2 g’]\fﬁiﬁ%’t
ps:1—4—5 | C(py)=(7,7) | psND™ | 6'=1 | Vj Vi 5=0 Eﬁ?&g%
Dl —3—4—5 | C(py)=(9, 8) Dogga;ed 0'=0.875 /=3 {ié ij nefficient
psil—3-5  |Clp9=(10,3)| peND* | 0'=1 | Vj Vi s=0 |39
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According to the DEA model proposed in this paper, we obtain four efficient
paths with 9; =1. In spite of the fact that the efficiency of path p, equals one, its

cost vector is dominated by the cost vector of path p;. On investigating the path p,
carefully, we find that, for ;=1 and j=3, the corresponding slack variable of the
constraint in model (6) is not equal to zero. Hence, p, is weakly efficient path.

5 Conclusions

In this paper we discover which DEA model’s solutions correspond to the
Pareto optimal solution of a MSPP. Also, we have explained by The VRS FDH
model without output that the non-dominated paths obtained by label-setting
Martins’ algorithm are equivalent to the efficient DMUs in DEA environment.
The DEA technique provided powerful vision to peruse other multi-criteria
optimal path problems, which have not been solved by an efficient labeling
algorithm, in which both kinds of criteria, costs and benefits exist on each arc.
Under concepts presented here, by considering costs as inputs and benefits as
outputs, we might be able to solve multi-criteria optimal path problems. This
study will be done in a future paper soon under way.
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