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Abstract 

In this paper we are concerned with a particular multi-criteria 
optimal path problem, known as the multi-objective shortest path 
problem. The purpose of this paper is to study a data envelopment 
analysis (DEA) model that allows us to determine the set of all 
non-dominated paths on a network. We prove that the non-
dominated path in multi-objective shortest path problem is 
equivalent to corresponding strongly efficient unit in its DEA 
model without output with actually observed units. 
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1    Introduction 

The optimal solution of the classic shortest path problem with a Min-Sum 
objective function is a single shortest route in a directed graph. This problem may 
be solved by a label-correcting algorithm [14] or for non-negative costs solved by 
a label-setting algorithm such as Dijkstra’s algorithm [6]. We can also consider 
several other objective functions such as Max-Sum, Max-Production or Max-Min 
function (See Ahuja et al. [15]). However, considering one objective function 
such as minimizing the sum of the arcs’ costs of the path may not be sufficient to 
describe real world problems. Suppose that each of the arcs of the graph has a 
number of both kinds of criteria, costs and benefits. In general, no single route  
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will have simultaneously the least costs and the most benefits. The solution to an 
instance of this multi-criteria problem will be a set of Pareto optimal routes. The 
multi-objective shortest path problem (MSPP) was proposed first by Vincke 
in1974 [12]. When all the criterions lead only to Min-Sum objective functions, 
under assumptions concerning the cost values, the set of non-dominated paths can 
be computed by a multiple objective extension of the Dijkstra’s algorithm, i.e., 
Martins’ label-setting algorithm [4]. For the same problem, Martins and Santos 
[5] and Guerriero and Musmanno [7], also give a label-correcting algorithm. 
Several other objective functions such as bottleneck objective functions are 
discussed in [11, 19]. 

Data envelopment analysis (DEA) is a mathematical programming-based 
technique widely used to measure relative efficiencies of decision making units 
(DMUs) such as evaluating the efficiencies of paths on a road network. Unlike 
parametric models, DEA does not require the analyst to pre-specify the functional 
form of the efficient frontier (production function). Instead of a pre-specified 
function form, the frontier is convex and based on the construction of a piece-wise 
linear combination of the efficient units. That “efficiency” in DEA and “convex 
efficiency” in MCDM are equivalent is not a new fact. A number of papers [2, 16, 
and 17] have discussed the analysis of the links between DEA and MCDM. 

This paper deals with the use of a technique based on an adaptation of DEA 
model of Caporaletti et al. [10] to distinguish between efficient and not efficient 
DMUs. Although Cardillo et al. [3] and Jahanshahloo et al. [8] have presented 
techniques to evaluate and identify the efficient paths on a road network; they do 
not take into account the number of paths in a multi-criteria optimal path problem, 
specifically in multi-objective shortest path problem. We prove that the efficient 
solutions in DEA model without output with actually observed units are 
equivalent to the non-dominated paths in MSPP. 

 
 
2    Background 

In this section, we introduce the notation and definitions needed to define the 
shortest path problem with multiple objectives. A network a   is defined as a 
directed and connected graph ( , )=G X U , where {1,2, , }X t= L  is vertex set 
with t vertices (none of which is isolated) and 1 2{ , , , }uU e e e= L  is arc set with u 
vertices. Each arc 1, ,le for all l u= L , is denoted by an ordered pair ( , )v w , 
where , ∈v w U  such that ≠v w . It is supposed that there is only one directed arc
( , )v w  from v to w. In this network, we specify a source vertex s and a terminal 

vertex t, and m is the number of criteria with the corresponding m dimensional 
function vector cost assigned to each arc, 

                                         1
, , ,( , ) ( , ) ( , , )

m

m
v w v w v w

c: U
v w c v w c c
→

= =ca L
R .                              (1) 
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A path p is a sequence of vertices and arcs from s to t. We assume that the 
vertices appeared on the path are all distinct. A cycle C is a path with non-
repeated vertices except the source and terminal vertices that are coincident. 
Given the source vertex s and a vertex v in X, the set of all paths from s to v is 
denoted by Ps,v. We denote the set of all paths from s to t by P, instead of Ps,t, in 
order to simplify the notation. 

Let ( )ic p  denotes the value of i-th criterion of a path p, for each 1, ,i m= L . 
The cost vector ( )C p  of path p is the sum of the cost vectors of its arcs, i.e. 
                               1 2

( , )
( ) ( ( ), ( ), , ( )) ( , )m

v w p
C p c p c p c p c v w

∈

= = ∑L ,                    (2)  

while on the contrary, the cost vector for bottleneck functions is, 
                               1 2

( , )
( ) ( ( ), ( ), , ( )) min ( , )m

v w p
C p c p c p c p c v w

∈
= =L .                    (3) 

Definition 2.1 If the objective vector is to be minimized, a path ,∈ v wp P  from 
vertex v to vertex w dominates another path ,∈ v wq P if and only if the objective 
vector ( )C p  dominates ( )C q in the sense that ( ) ( ), 1, ,k kC p C q k m≤ = L , with 
strict inequality holding for at least one k. 

Definition 2.2 A path ,∈ v wp P from vertex v to vertex w is non-dominated path 
in Pv,w if and only if there exists no other path ,∈ v wq P which dominates p. The set 
of all non-dominated paths from v to w is denoted by NDv,w and ND will be used 
for NDs,t. 

Let ( , )G X U=  denote a directed graph consisting of a finite set 
{1,2, , }X t= L  of vertices and a finite set 1 2{ , , , }uU e e e= L  of u arcs. There is a 

cost vector ,
m

v w ∈c R  associated with each arc, where m represents the number of 
criteria. Let ( )C p  be the cost vector of a path p in G. The multi-objective shortest 
path problem is to find the set of all Pareto optimal paths from the source vertex s 
to all other vertices in G, with respect to the cost vector ( )C p , so the version 
considered in this paper is as follows: 

                                     
, ( , )

( , ) \{ }
s tp P v w p

Min c v w t X s
∈ ∈

∀ ∈∑                              (4) 

 
in which, 1

, , ,( , ) ( , , )m
v w v w v wc v w c c= = cL is the cost vector of ( , )v w p∈ . 

The original DEA model, introduced by Charnes et al. [1] in 1978 and referred 
to as the CCR model, optimizes the fractional output per input of each DMU. We 
suppose that there exist n DMUs, indexed by 1,2, ,k n= L ; yrk is the quantity of 
output r, 1,2, ,r s= L , produced by the decision making unit p, xik the quantity of 
input i, 1,2, ,i m= L , used by DMUk, ur the weight associated with output r, vi the  
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weight associated with input i. The optimization program to assess the efficiency 
of DMUp, { }1,2, ,p n∈ L , is defined as follows: 

                                          

1

1

1

1

. 1, 1,2, ,

, 0, ,

s

r rp
p r

m

i ip
i

s

r rk
r

m

i ik
i

i r

u y
z Max

v x

u y
s t k n

v x
u v for all i r

=

=

=

=

∑
=

∑

∑
≤ =

∑
≥

L .                             (5) 

If * 1pz = , then DMUp is efficient.  
Now, we present a definition of efficiency proposed by Caporaletti et al. [10]. 

Definition 2.3 The DUMk is an efficient unit, if and only if there exists no 
convex combination of the other DMUs such that all criteria of the convex 
combination is less than or equal to the criteria of DMUk and at least one 
criterion is not equal. 

 
 
3    DEA and Multi-Objective Shortest Path Problems 

 
In this section, we show that a non-dominated path in multi-objective shortest 

path problem is equivalent to efficient DMUs according to definition 2.3 in DEA 
model without output with actually observed units. Using DEA terminology, we 
observe that in the well-known multi-objective shortest path problem, the paths in 
the network a can be considered as the decision making units (DMUs) without 
outputs, by replacing its cost vectors to be minimized with inputs. Let the DMUj 
to be evaluated on any trial be designated as DMUp where p ranges over 

,, , ,| |s v1 2 PL  in which v is a vertex in \{ }X s . Since we consider DMUs as 
network’s paths and actually we have to choose only one real route, the convex  
 
linear combination of paths is not permissible. This intuition is the best lead to 
deal with free disposal hull (FDH) models. 

FDH is a special case of DEA that employs a smaller set of units when 
defining the efficiency frontier. Instead of DEA’s piecewise linear frontier, FDH 
employs a stepwise (or staircase) frontier that ensures that efficiency evaluations 
are effected by only actually observed performances [18]. Because the FDH 
frontier is either identical to or interior to the DEA frontier, FDH will typically 
give larger estimates of average efficiency than DEA. Unlike DEA, FDH is not 
restricted to convex technologies. 
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According to the FDH model by Tulkens [9] the input-oriented BCC model 

without output is as follows, 
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Theorem 3.1 The VRS FDH model without output is feasible and bounded. 

Proof: The VRS FDH model has a feasible solution 1pλ = and 0 ( )j j pλ = ≠ . 
Note that the model (6) is a mixed integer programming but we can consider the 
following equivalent input-oriented model by Agrell et al. [13], 
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Consider the dual form of (7), we have: 

                

                         
,

1
,

1
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It is obvious that problem (8) is feasible and * 1≤z , so the model (6) is bounded.  



 

58                           M. M. Masoumi, F. Hosseinzadeh Lotfi and A. M. Mobasseri 

 

When in model (6), * 1pθ =  and if 0is = for all 1, 2, ,i m= L  then DMUp is 
called strongly efficient, else if there exists 0is > , {1, 2, , }i m∈ L then DMUp is 
called weakly efficient. 

Theorem 3.2 The non-dominated paths in the multi-objective shortest path 
problem are equivalent to the strongly efficient decision making units in VRS 
FDH model without output according to definition 2.3. 

Proof: ( )⇒ Let there exists a strongly efficient DMUp of model (6) such that it 
is not a non-dominated path. Therefore, there exists 1 2( , , , )T

k k k mkx x x x S= ∈L  
such that k px x≤  with at least one strict inequality. By setting 

1, 0 ( )k j j kλ = λ = ≠ , we have: 
                                          . 1j j k j

j j
x x s tλ = λ =∑ ∑                                   (9) 

that is a contradiction. 
( )⇐ On the contrary, we prove that if DMUp is not strongly efficient in VRS 

FDH model without output, then, it would not be non-dominated path. Assume 
that DMUp is either inefficient or weakly efficient unit. If DMUp is an inefficient 
unit, so * 1pθ < , and there exists a linear combination such as 

                      . 1 & {0,1}j j j j
j j

x x s t= λ λ = λ ∈∑ ∑               (10) 

such that &p px x x x≤ ≠ . Hence, there exists ,{1,2, ,| |}s vk P∈ L  such that
 

                           *1 & 1 1, 2, ,ik
k p

ip

x for all i m
x

λ = ≤ θ < = L .                  (11) 

Consequently, we have ik ipx x<  for all 1,2, ,i m= L .  

If DMUp is weakly efficient then * 1pθ = , and 

              ,( ( {1, 2, ,| |} {1, 2, , }) . 0)s v
lk l k P k p l m s t s∃ ∃ ∈ ∧ ≠ ∧ ∈ >L L .    (12) 

Since * 1pθ = , we have: 

                              
,| |

1
1, 2, ,

s vP

j ij i ip
j

x s x for all i m
=
λ + = =∑ L .                          (13)  

 
 
Moreover, we have 1kλ = and 0is ≥ , 1, 2, ,i m= L  in which 0ls > . Hence, there 
exists kx S∈  such that k px x≤ with at least one strict inequality, therefore, 
DMUp is dominated by DMUk. Consequently, it was proved that DMUp is not a 
non-dominated unit and equivalently it is not a non-dominated solution to the 
MSPP. So eventually, the above theorem proves the assumption. 
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         4    Illustrative example 

 
As an example to illustrate that strongly efficient paths in VRS FDH without 

output model and non-dominated paths in MSPP with Min-Sum objective 
function are equivalent. We consider the network a   with five vertices and eight 
arcs with two dimensional cost vector, shown in Fig.1. 

 
 
 
 

 
 

 

 

There exist five paths from vertex s to vertex t which three of them, obtained 
by Martins’ label-setting algorithm (presented to solve the MPSS), are in the set 
NDs,t as shown in Table 1. 

 
 

 
Path  
(p) 

Input (Cost) 
vector, C(p) 

Martins’ 
Algorithm 

Efficiency
(θ) 

Slack Variables 
(s) Status 

p1:1 →2→5 C(p1)=(3, 10) ,
1

s tp ND∈ θ*=1 ∀ j  ∀ i    si=0 Strongly 
Efficient

p2:1→2→4→5 C(p2)=(5, 10) Dominated 
by p1 

θ*=1 j=1, i=1  si=2 Weakly 
Efficient

p3:1→4→5 C(p3)=(7, 7) ,
3

s tp ND∈  θ*=1 ∀ j  ∀ i    si=0 Strongly 
Efficient

p4:1→3→4→5 C(p4)=(9, 8) Dominated 
by p3 

θ*=0.875 j=3   i=1  si=2 
         i=2  si=1 Inefficient

p5:1→3→5 C(p5)=(10, 3) ,
5

s tp ND∈  θ*=1 ∀ j  ∀ i    si=0 Strongly 
Efficient

(1, 2) 

(2, 3)(4, 2) 

(1, 5) 

s=1 
(3, 3)(4, 4) 

(6, 1)

(2, 5)

t=54

3 

2 

Figure 1  Example of MSPP with Min-Sum objective function 

Table 1  Paths from s to t on the network a 
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According to the DEA model proposed in this paper, we obtain four efficient 
paths with * 1pθ = . In spite of the fact that the efficiency of path p4 equals one, its 
cost vector is dominated by the cost vector of path p3. On investigating the path p4 
carefully, we find that, for i=1 and j=3, the corresponding slack variable of the 
constraint in model (6) is not equal to zero. Hence, p4 is weakly efficient path. 

 

 

5    Conclusions 

In this paper we discover which DEA model’s solutions correspond to the 
Pareto optimal solution of a MSPP. Also, we have explained by The VRS FDH 
model without output that the non-dominated paths obtained by label-setting 
Martins’ algorithm are equivalent to the efficient DMUs in DEA environment. 
The DEA technique provided powerful vision to peruse other multi-criteria 
optimal path problems, which have not been solved by an efficient labeling 
algorithm, in which both kinds of criteria, costs and benefits exist on each arc. 
Under concepts presented here, by considering costs as inputs and benefits as 
outputs, we might be able to solve multi-criteria optimal path problems. This 
study will be done in a future paper soon under way. 
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