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Abstract 

 

Damage effectiveness prediction is a pivotal issue in weapon system design and 

operational application. However, the coupled multi-physics effects in complex 

environments and the scarcity of experimental data pose significant challenges to 

traditional predictive methodologies. To address these limitations, this paper 

proposes a damage effectiveness prediction method based on Physics-Informed 

Neural Networks (PINN). This approach integrates key physical mechanisms, 

including kinetic energy penetration, blast shockwave propagation, fragment 

lethality, and ricochet effects, and quantifies them as residual loss functions under 

mathematical constraints to construct a deep learning framework that incorporates 

prior physical knowledge. Experimental results demonstrate that the proposed 

model achieves a 63.3% reduction in Root Mean Square Error (RMSE) and a 42.3% 

decrease in Mean Absolute Error (MAE) on the test set. Furthermore, under 

conditions of 30%-70% training data, the model exhibits superior generalization 

capabilities compared to traditional Multilayer Perceptron (MLP) models. Physics-

consistency validation confirms that the prediction results strictly adhere to the law 

of conservation of energy. Nevertheless, the model’s capability to capture abrupt 

changes in physical parameters requires further enhancement, indicating a direction 

for future research.  This study provides a novel, high-precision, and highly inter- 
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pretable technological pathway for damage effectiveness prediction, possessing 

both theoretical innovation and engineering application value. 

 

Keywords: Damage Effectiveness Prediction; Physics-Informed Neural Networks 

(PINN); Multi-Mechanism Coupling; Data Sparsity; Deep Learning; Munition 

Design 

 

 

1. Introduction 
 

The prediction of damage effectiveness is a central issue in the design and 

operational application of weapon systems. Accurate damage prediction not only 

optimizes ammunition consumption, thereby enhancing operational cost-

effectiveness, but also enables targeted improvements in munition design based on 

specific target characteristics, augmenting destructive power. However, in complex 

battlefield environments, the damage mechanisms of different munitions against 

diverse targets exhibit significant disparities, involving multi-physics coupling 

processes such as kinetic energy penetration, blast shockwave loading, fragment 

lethality, and ricochet effects. These damage mechanisms are intricately intertwined, 

forming a highly complex nonlinear system [1-4], which poses considerable 

challenges to the accurate prediction of damage effectiveness. Furthermore, 

authentic damage experiments are prohibitively expensive and entail substantial 

risks. The stringency of experimental conditions and the irreproducibility of the 

experimental process further lead to a severe sparsity of available data, thereby 

constraining the precision and reliability of predictive models. 

Currently, data-driven methodologies are extensively employed in the domain of 

damage effectiveness prediction, with neural networks and deep learning techniques 

emerging as prominent research foci. Scholars have endeavoured to introduce these 

advanced technologies into damage effectiveness prediction. For instance, Xue et 

al. [5] introduced an Intuitionistic Fuzzy Neural Network (IFNN) to predict 

parameters within the fragment damage field, leveraging the robust feature 

extraction capabilities of IFNN to capture the spatial characteristics of fragment 

distribution, thereby achieving a certain degree of predictive accuracy. Hou et al. [6] 

proposed an adaptive fuze-warhead coordination method based on a 

Backpropagation Artificial Neural Network (BP-ANN), which effectively predicts 

damage effectiveness at different radial positions by determining the optimal 

detonation location. Wang et al. [7] considered the factors influencing the pressure 

distribution patterns of dynamic explosion shockwaves and constructed predictive 

models for static and dynamic explosion shockwave pressures based on BP neural 

networks. Recognizing the nonlinearity and complexity inherent in target damage 

assessment, Xu et al. [8] utilized deep learning to develop a neural network imbued 

with expert experience for predicting radar target damage effects. Zhou et al. [9] 

employed an acoustic-structure algorithm to simulate the non-contact underwater 

explosion of a stiffened cylindrical shell section and established a damage 

effectiveness prediction model based on a machine learning backpropagation neural  
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network algorithm. Duan et al. [10] leveraged deep learning image recognition 

technology and the QT development platform, in conjunction with target damage 

tree analysis and Bayesian network inference methods, to provide a novel approach 

for predicting the damage effectiveness against large surface naval targets. 

While these methods, predicated on neural networks and deep learning, 

demonstrate high predictive accuracy under conditions of Big Data, their 

performance often proves unsatisfactory when confronted with sparse datasets. 

Owing to the limited volume of data, such models are prone to overfitting the noise 

and local features within the training data, consequently leading to inadequate 

generalization capabilities on new, unseen data, and yielding predictions with 

considerable deviation. Furthermore, conventional data-driven models typically 

only learn the mapping relationships between inputs and outputs from the data, 

lacking an in-depth understanding and integration of physical laws. This deficiency 

allows models to generate results during the prediction process that may contravene 

fundamental physical principles, thereby diminishing the reliability and 

interpretability of the predictions and posing substantial risks in practical 

applications.  

To address the limitations inherent in current methodologies, this paper 

innovatively proposes a Physics-Informed Neural Network (PINN) approach. This 

method quantifies the depth-velocity relationship of kinetic energy penetration [11-

14], the overpressure attenuation law of blast shockwaves [15-17], the attenuation 

function of fragments perforating a target [18-20], and the critical angle conditions 

for ricochet [21-23] as physics-constrained objectives. It constructs a multi-

mechanism coupled residual loss function, thereby constraining the neural 

network’s training process with physical laws, and transforming the physical 

principles embedded within these models into mathematical constraints before 

integrating them into the neural network training regimen. By constructing a 

physics-based damage effectiveness model, the training of the neural network is 

constrained by the objective of minimizing the residual components of the physics-

constrained model. This ensures that the neural network, while learning data 

features, simultaneously adheres to the constraints imposed by physical laws, 

thereby effectively enhancing predictive precision and achieving high-accuracy 

prediction of damage effectiveness under sparse data conditions. 

This study presents several key contributions and innovations. Firstly, it deeply 

integrates an understanding of crucial physical processes, including penetration, 

explosion, fragmentation, and ricochet effects. Transcending conventional 

conceptual frameworks, it innovatively quantifies the complex physical damage 

process into parameters representing the potential contributions of different damage 

mechanisms. These parameters not only accurately reflect the extent of each 

mechanism’s role throughout the entire damage process but also provide a robust 

foundation for establishing the physics-constrained objectives within the PINN 

framework. This enables the model to simulate the actual damage process with 

greater precision while rigorously maintaining physical consistency. 

Secondly, the PINN method leverages prior physical knowledge to a significant 

extent, thereby effectively mitigating the model’s reliance on large-scale datasets.  
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By integrating physical constraints into the neural network training, it addresses the 

overfitting and non-convergence issues frequently encountered in traditional 

learning models due to insufficient data. Under conditions of limited data 

availability, this approach still achieves high-precision predictions, markedly 

enhancing the model’s stability and reliability. This offers a practical solution to 

damage effectiveness prediction in data-scarce operational environments. 

Thirdly, this paper pioneers the application of PINN to the field of damage 

effectiveness, thereby opening a new research avenue in this domain. Through 

rigorous theoretical derivations and extensive experimental validation, the proposed 

method has been demonstrated to maintain a high degree of physical consistency in 

damage effectiveness prediction. The presented approach not only accurately 

predicts damage outcomes but also provides a physical-level explanation for the 

prediction process, enhancing the model’s interpretability. Concurrently, across 

diverse experimental scenarios and data conditions, the method has consistently 

exhibited excellent effectiveness and robustness, offering a novel paradigm for 

modeling and predicting complex damage effects, and is poised to advance further 

developments in the field of munition damage effectiveness prediction. 

 

2. Methodology 
 

Addressing the challenges of predicting damage effectiveness for diverse targets 

in complex scenarios, particularly against the backdrop of sparse high-fidelity 

experimental or simulation data, traditional data-driven models often encounter 

issues of inadequate generalization capability and the possibility of prediction 

outcomes contravening physical laws. To surmount these limitations, this research 

proposes a Physics-Informed Neural Network (PINN) framework specifically for 

munition damage effectiveness prediction. The core tenet of this approach is the 

direct integration of established physical models, which describe key damage 

mechanisms, as physics constraints into the training process of a deep neural 

network, thereby leveraging physical knowledge to enhance the learning efficacy 

from sparse observational data. 

2.1. Input Parameter Definition and Preprocessing 

The performance of a Physics-Informed Neural Network (PINN) and the 

effective implementation of its physics constraints are highly contingent upon the 

precise definition and appropriate processing of the input vector x. The objective of 

this study is to construct a robust damage effectiveness prediction model, which 

takes as input a comprehensive input vector x encompassing munition 

characteristics, target attributes, and interaction parameters. This vector not only 

serves as the direct input to the neural network, driving its effectiveness prediction 

EPINN, but also provides the requisite variables for the physics models to compute 

the physics-predicted effectiveness Ephys. Consequently, the input vector x must 

comprehensively encapsulate the critical factors influencing weapon damage 

effectiveness. 

The input parameters selected in this study are designed to capture the core 

characteristics  of  the  munition,  the  target,  and  their  interaction,  and  they  are  
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determined based on an understanding of key physical processes such as penetration, 

explosion, fragmentation, and ricochet. The specific parameter constitution, their 

physical significance, and their anticipated impact on damage effectiveness are 

detailed in Table 1: 

 

Table 1 Parameter Constitution 

 
Parameter 

Category 

Parameter 

Name 
Symbol Physical Significance Impact on Damage Effectiveness 

Munition 

Attributes 

Impact 

Velocity 
v 

Instantaneous 

velocity of the 

munition upon 

impacting the target. 

Primarily determines kinetic energy 

and critical ricochet angle. Higher 

velocity generally results in greater 

penetration capability and higher 

effectiveness. 

Munition 

Mass 
m 

Overall mass of the 

munition. 

Directly affects kinetic energy; greater 

mass leads to higher kinetic energy and 

typically higher penetration 

effectiveness. 

Equivalent 

Explosive 

Yield 

yeq 

Energy released by 

munition detonation, 

expressed in TNT 

equivalent. 

Determines blast shockwave intensity 

and initial fragment energy; larger 

yield results in higher explosion and 

fragment effectiveness. 

Munition 

Type 

AT1 

AT2 

Boolean values: AT1 

indicates if the 

munition is a 

penetrator, AT2 

indicates if it is an 

explosive warhead. 

Dictates the physical mechanisms 

considered by the model. 

Target 

Attributes 

Target 

Thickness 
T 

Material thickness of 

the main body of the 

target. 

Increases penetration resistance and 

critical ricochet angle; greater 

thickness typically results in lower 

effectiveness. 

Target 

Material 

Strength 

  

Capacity of the 

material to resist 

deformation or 

fracture. 

Increases resistance to penetration and 

blast/fragment damage. Higher strength 

generally results in lower effectiveness. 

Target 

Material 

Density 

  

Mass per unit volume 

of the target material. 

Influences fragment energy attenuation 

and critical ricochet angle. Density 

effects are complex, potentially 

increasing attenuation but also 

affecting ricochet behavior. 

Interaction 

Parameters 

Impact Angle   

Angle between the 

projectile trajectory 

and the normal to the 

target surface. 

Critically affects ricochet and 

penetration/fragment path length. 

Larger angles increase ricochet 

probability and reduce effective 

penetration depth, typically lowering 

effectiveness. 

Standoff 

Distance 
R 

Distance from the 

detonation centre to 

the target evaluation 

point. 

Determines blast shockwave intensity. 

Greater distance results in a weaker 

shockwave and lower blast 

effectiveness. Relevant only for 

explosive munitions. 
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To ensure the stability and efficiency of the neural network training, as well as to 

conform to its input requirements, preprocessing of the original parameters is 

necessary: 

For continuous physical parameters, excluding munition type, either Z-Score 

Normalization or Min-Max Scaling is employed. Both methodologies map the data 

to comparable numerical ranges, thereby preventing certain features from exerting 

undue influence during gradient descent due to disparities in their magnitudes, while 

concurrently contributing to improved numerical stability. The parameters for 

standardization/normalization are computed based on the statistical properties of the 

training dataset. 

The preprocessed parameter vector x  is subsequently fed into the input layer of 

the PINN. In the computation of the physics loss Lphys, the physics models utilize 

parameter values in their original physical units to ensure the correctness of the 

physical formulae. 

2.2. Physics-Based Damage Effectiveness Model Construction 

The cornerstone of the PINN methodology lies in embedding physical knowledge 

within the loss function of the neural network. For the problem of munition damage 

effectiveness prediction, it is necessary to construct mathematical models capable 

of characterizing the primary physical damage processes. We focus on four 

dominant mechanisms: kinetic energy penetration, blast shockwave loading, 

fragmentation effects, and ricochet phenomena. Considering the complexity or 

inapplicability of directly solving the governing partial differential equations (PDEs) 

[24-26], we opt for models widely accepted in engineering that can capture the core 

physical processes relevant to the final effectiveness. 

Based on physical principles and empirical correlations, we construct the 

following physics-derived, dimensionless parameters aimed at quantifying the 

potential contribution of each primary damage mechanism: 

Penetration Potential p : Inspired by energy-based penetration models and 

based on the principle of energy conservation where the kinetic energy of the 

projectile is converted into plastic deformation energy of the target material, this 

parameter quantifies the ratio of projectile kinetic energy to target resistance. The 

normalized formula is: 

 
2

2

1

2
p

mv

T
 =



 (1) 

 

Explosion Potential b : Originating from blast loading models, the peak 

overpressure physP  is first calculated based on the equivalent TNT yield yeq and the 

standoff distance R. According to the Brode formula [28-29]:  

 

 

 
1/3 2/3

2 3

0.975 1.455 5.85eq eq eq

phys

y y y
P

R R R

  
 = + +  (2) 
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Then, dimensionless processing of the peak overpressure using the target material 

strength: 

 phys

b

P




 =  (3) 

Fragmentation Potential 
f : The initial kinetic energy of fragments Ef0 

attenuates exponentially as they pass through the target, due to material density   

and penetration path length s. This parameter estimates the residual energy of 

fragments after perforating the target material and is normalized in the same manner 

as 
p :  

 0

2

k s

f

f

E e

T





−

 =  (4) 

where k represents a material-dependent attenuation coefficient, Ef0 can be 

calculated from the initial fragment velocity and mass, and s can be approximated 

based on target thickness T and impact angle  . 

These independent potential parameters are subsequently combined with 

weighting according to the munition type to form a comprehensive potential 

parameter, c , reflecting the dominant damage mechanisms: 

 ( ) ( )1 2c p p b b f fAT AT   =  +  +   (5) 

where the weights , ,p b f    serve to balance the dimensional scales and relative 

importance of different mechanisms and are adjustable or learnable model 

parameters. 

This comprehensive potential is mapped to a basic physical effectiveness Eb via 

a saturation function, specifically: 

 1 c

bE e
− 

= −  (6) 

where   is a scaling parameter controlling the saturation rate of effectiveness. 

Finally, a ricochet effect correction is introduced. The critical ricochet angle c  

is calculated based on impact conditions and material properties, with the specific 

formula being: 

 
2

arccosc

T

v






 
=   

 

 (7) 

A smooth ricochet correction factor, fr, is defined using a Sigmoid function centered 

around c . When the actual impact angle   (in radians) exceeds the critical angle, 

this factor sharply reduces the predicted effectiveness: 

 ( ) ( )

1

1 r c
r r c k

f k
e

 
  

−
= − − =  

+
 (8) 

where kr controls the steepness of the transition band. 

The final physics-model-based predicted effectiveness Ef is obtained by 

multiplying the basic effectiveness by the ricochet correction factor: 

 
f r bE f E=  (9) 
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Ef is entirely derived from the integrated physical models and constitutes the 

physics-constrained target within the PINN framework. 

2.3. Physics-Informed Neural Network Architecture and Training 

The core computational engine of this research framework is a fully connected 

neural network, specifically a Multi-Layer Perceptron (MLP) [27], which is an 

advanced computational model used to identify complex functions via the 

backpropagation algorithm. 

2.3.1. Network Architecture 

The neural network receives the input vector x and outputs a scalar prediction of 

weapon damage effectiveness, EPINN. The network employs a typical fully 

connected structure, comprising an input layer, multiple hidden layers, and an 

output layer. 

In this study, the specific architecture of the PINN we constructed is as follows: 

Input Layer: The number of neurons is equal to the dimensionality of the input 

vector x. As per Table 1, there are a total of 9 input neurons. 

Hidden Layers: A total of 4 hidden layers are included. 

Hidden Layer Neurons: Each hidden layer contains 128 neurons. The hidden 

layers utilize Tanh or Swish as the nonlinear activation function to enhance the 

network’s expressive capability. 

Output Layer: Contains 1 neuron, outputting the raw effectiveness prediction 

value. Since damage effectiveness EPINN typically ranges between 0 and 1, the 

output layer employs a Sigmoid activation function to directly constrain the output 

within this interval, or alternatively, a linear activation function is used, with a 

Sigmoid transformation applied during the loss function calculation or for the final 

output. 

The specific structure of the neural network is illustrated in Figure 1. 

 

 
 

Fig. 1 The schematic diagram of PINN structure 

 

2.3.2. Training Process 

The training of the PINN is guided by a composite loss function, Lt, which 

linearly combines a data fidelity term and a physics-consistency term: 
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 ( ),t data data phys physL L L   = +  (10) 

where   represents the trainable weights and biases of the neural network,   

denotes parameters within the physics model that are designated as learnable during 

training (including , ,p b f   , etc.), and data  and 
phys  are weighting coefficients 

that balance the contributions of the two loss components. 

The data loss, Ldata, quantifies the discrepancy between the PINN predictions and 

the available observational data. It is typically formulated as the Mean Squared 

Error (MSE), computed over Ndata observational data points xi: 

 ( )( )
2

1

1
;

dataN
PINN ob

data i i

idata

L E x E
N


=

= −  (11) 

where ob

iE  represents the experimentally measured damage effectiveness data 

corresponding to the observation point xi. 

The physics loss, Lphys, compels the network predictions to adhere to the 

comprehensive physical model constructed in Section 2.2. Unlike traditional PINNs 

that enforce zero residuals of PDEs, our approach constrains the neural network’s 

prediction, EPINN, to be consistent with the direct prediction from the physics model, 

Ef. This loss is evaluated on a set of Nphys collocation points xj, which are sampled 

across the input parameter space, particularly in regions where observational data 

are scarce: 

 ( ) ( )( )
2

1

1
; ;

physN

PINN

phys f j

jphys

L E E x
N

 
=

= −  (12) 

The network parameter  , and potentially  , are optimized by minimizing the 

total loss Lt using the gradient-based Adam optimization algorithm [30]. This 

process simultaneously drives the network to fit the sparse observational data and 

to adhere to the constraints imposed by the physics model over the input domain, as 

defined by the collocation points. The introduction of the physics loss acts as a 

potent regularization mechanism, contributing to an enhanced generalization 

capability of the model and ensuring the generation of physically plausible 

predictions even when training data are limited. 

 

3. Results and Discussion 
 

This chapter aims to systematically evaluate the performance of the proposed 

damage effectiveness prediction method, which is based on a PINN integrated with 

damage mechanisms, through a series of numerical experiments. Initially, high-

fidelity finite element simulation data are acquired by simulating damage tests using 

the explicit dynamics module within the ANSYS simulation software. Subsequently, 

the predictive performance of the constructed PINN model is validated and 

benchmarked against a purely data-driven model devoid of physical information, 

with a particular focus on its performance under data-sparse conditions. Finally, the 

prediction results are presented via visualization techniques, and the advantages and 

implications of integrating physical information are discussed in depth. 
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3.1. Numerical Simulation Setup 

The experimental data employed in this study were entirely derived from finite 

element simulations conducted using the ANSYS Explicit Dynamics module [31]. 

To emulate authentic damage experiments, simulations were performed in batches, 

distinguishing between two damage mechanisms: penetration and explosive 

fragmentation. The first batch constituted the dataset for penetration munitions, 

encompassing 30 distinct penetration processes and their resultant damage under 

varying parameters such as initial velocity, material hardness, and target plate 

thickness. The second batch comprised the dataset for blast munitions, simulating 

30 scenarios of blast shockwave propagation and structural response under different 

equivalent yields, heights of burst (or contact points), and confinement conditions. 

Taking penetration damage as an example, the projectile and target plate were 

created by inputting parameters such as mass, thickness, material density, and 

material strength. After mesh generation, simulation experiments were conducted 

by setting initial condition parameters, such as projectile initial velocity and flight 

angle, as well as boundary condition parameters, to generate corresponding damage 

contour plots. Figure 2 shows the damage effectiveness contour plot, depicting the 

extent of damage in different regions of the target; and the value of 1 signifies 

element failure. 

 

 

 
 

Fig. 2 Damage effectiveness diagram 

 

 

3.2. Performance Comparison Analysis 

The Physics-Informed Neural Network (PINN), by embedding relevant 

governing equations for damage effectiveness, can maintain high prediction 

accuracy even with sparse training data. This offers a novel approach to address the 

data dependency issue in munition effectiveness assessment in complex 

environments. To validate its advantages, this study conducts comparative 

experiments from multiple perspectives, benchmarking the PINN model against a 

purely data-driven Multilayer Perceptron (MLP), based on a small set of high-

fidelity finite element simulation data from different scenarios. 
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3.2.1. Overall Prediction Accuracy 

The most critical metrics for evaluating the performance of a model are its Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE) on the test dataset. 

These indicators intuitively reflect the accuracy with which each model predicts the 

target variable after being trained on the complete set of available training data. 

Following simulation, the experimental results are presented in Figures 3, 4, and 5. 

 
Fig. 3 Model prediction comparison chart  

 

Figure 3 simultaneously displays, using different colors or marks, a comparison 

of the prediction points of both PINN and MLP against the true values on the test 

set. It is evident from the figure that the scatter points for PINN are more tightly 

clustered around the y=x diagonal, with a lower RMSE value of 0.0322. In contrast, 

the scatter points for MLP are more disorganized, with some points significantly 

deviating from the y=x diagonal, indicating that the MLP model systematically 

overestimates or underestimates the damage effectiveness values. Concurrently, its 

RMSE value of 0.0877 is also substantially higher than that of the PINN. 

 

 
Fig. 4 Distribution chart of PINN absolute errors  
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Fig. 5 Distribution chart of MLP absolute errors 

 

 

Figures 4 and 5 respectively illustrate the absolute error distributions of PINN 

and MLP predictions on the test set after training with the complete dataset; to more 

intuitively represent the error distribution, the y-axis is set to a logarithmic scale. It 

can be observed from both figures that the error distributions are highly 

concentrated around 0, indicating that both models perform well, with most 

prediction errors being very small. However, compared to Figure 9, the tail of the 

distribution in Figure 8 is relatively more concentrated and shorter, signifying that 

PINN produces fewer large errors, rendering the model more stable. 

Considering both RMSE and MAE for a comprehensive assessment, PINN, after 

being trained on the complete available training data, demonstrates superior 

performance in terms of prediction accuracy and stability. 

3.2.2. Performance under Data-Sparse Conditions 

In the contemporary armament domain, regarding the critical issue of munition 

damage effectiveness prediction, data acquisition frequently encounters numerous 

limitations, leading to a common prevalence of data sparsity. Consequently, 

comparing the performance of different models under data-sparse conditions 

assumes paramount importance. 

This experiment investigates the sensitivity of model performance to the volume 

of training data by training both PINN and MLP models using subsets of 30%, 70%, 

and 100% of the training data, respectively. Specifically, it compares the 

performance of PINN and MLP under conditions of data sparsity by contrasting 

their RMSE values on the test set. To reduce training duration, the number of 

training epochs was changed from the previous 80,000 to 15,000 epochs per cycle. 

The specific results are illustrated in Figure 6. 

 

 



  

Methodological investigation of physics-informed neural networks                               13 

 

 

 

 

 
 

Fig. 6 Root Mean Square Error (RMSE) under different training data volumes  

 

 

It can be observed from the figure that as the number of training samples increases, 

the RMSE for both PINN and MLP exhibits a downward trend, indicating that the 

models learn more information from a larger dataset. Although the RMSE curve for 

PINN is significantly higher than that of MLP when the data volume is small, its 

RMSE decreases more rapidly with an increase in data volume, reaching a lower 

plateau at 70% of the sample size. This suggests that PINN possesses better 

generalization capabilities under data-sparsity conditions and can make more 

effectively compensation by leveraging physical knowledge. As the sample size 

continues to increase, the marginal benefit diminishes substantially, indicating that 

PINN performs better with 70% of the sample data. 

3.2.3. Physics Consistency Verification 

Physics consistency is one of the key indicators for measuring whether a PINN 

has successfully integrated physical information into the model. A critical factor in 

quantifying physics consistency is the physical residual. Physics collocation points 

are points sampled within the domain where the physical equations are enforced, 

and they do not necessarily have corresponding labeled data. By substituting the 

model output into the physical equations at these points, residual values can be 

calculated. The physical residual represents the degree to which the model’s 

prediction results adhere to the physical equations at the collocation points; the 

smaller the residual, the better the physics consistency. Following simulation, the 

experimental results are illustrated in Figures 7 and 8. 
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Fig. 7 PINN physical residual histogram 

 

 
 

Fig. 8 MLP physical residual histogram 

 

It is evident from Figure 7 that the histogram exhibits a relatively narrow 

distribution, a very light tail, and a peak extremely close to zero. This indicates that 

the physical residual values and their fluctuation range for PINN are very small at 

most collocation points, demonstrating good and consistent physical conformity. 

In contrast, the physical residual distribution for MLP in Figure 8 is broader than 

that of PINN and possesses a longer tail, underscoring the limitations of purely data-

driven methods in satisfying physical constraints. Concurrently, it intuitively 

demonstrates that PINN, through the introduction of physical constraints, achieves 

significant improvements in terms of physical consistency. 

Considering the comprehensive experimental results, the trend exhibited by 

PINN aligns with the theoretical expectations regarding the influence of target 

thickness on damage effectiveness, demonstrating good physical consistency. 



  

Methodological investigation of physics-informed neural networks                               15 

 

 

4. Conclusion 
 

This research innovatively proposes a Physics-Informed Neural Network (PINN) 

model that achieves high-precision prediction of damage effectiveness in complex 

environments by organically integrating the physical mechanisms of munition 

damage with a deep learning framework. To comprehensively evaluate the 

performance of the PINN model, this study conducted systematic validations in 

multiple dimensions. Firstly, in terms of overall prediction performance, the PINN 

was benchmarked against a traditional Multilayer Perceptron (MLP) model. 

Experimental results demonstrated that on the same test dataset, the PINN achieved 

a 63.3% reduction in Root Mean Square Error (RMSE) and a 42.3% decrease in 

Mean Absolute Error (MAE), significantly enhancing prediction accuracy and 

stability. Secondly, to validate the model’s performance under data-sparse 

conditions, comparative experiments were conducted using 30%, 70%, and 100% 

of the training data, respectively. The results showed that as the training data volume 

increased from 30% to 70%, the prediction error of the PINN rapidly decreased, 

fully substantiating its capability to effectively leverage physical knowledge to 

compensate for data insufficiency under sparse data conditions, thereby exhibiting 

excellent generalization ability. Furthermore, through comparisons of physics 

consistency verification, it was found that the PINN not only converged faster but 

also produced prediction results that strictly adhered to physical laws such as energy 

conservation, comprehensively confirming the model’s high precision and 

robustness. 

Despite the outstanding performance of the PINN model, limitations still exist 

under certain specific circumstances. When the impact velocity exceeded a 

threshold, thereby inducing an abrupt change in damage effectiveness, the PINN 

failed to completely reflect the true physical abrupt transition effect, leading to a 

reduction in prediction accuracy. This is primarily attributed to the inherent 

contradiction between the smoothing characteristics of neural networks and the 

phenomenon of physical abrupt changes. Addressing this issue, future improvement 

efforts should focus on refining the model. Enhancements such as introducing 

penalty terms for abrupt changes in the loss function and increasing the density of 

network nodes in regions of abrupt transitions could further elevate the model’s 

predictive performance in complex physical scenarios, thereby providing more 

reliable technological support for munition damage effectiveness assessment. 
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