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Abstract

A class of models of Cahn-Hilliard fluids are developed by consider-
ing two incompressible non-reacting phases. The concentration of one
of the phases, satisfying the classical diffusion equation, is regarded as
the order parameter. The balance of energy and the entropy inequality
are taken as for a single constituent but, owing to the non-simple char-
acter of the continuum, extra fluxes of energy and entropy are allowed
to occur. Known models in the literature are recovered as particular
cases.
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1 Introduction

The transition between different phases, or constituents of a mixture, is often
modelled by phase-field schemes where the sharp interface is replaced by a
narrow layer across which the phases may mix. In the layer, diffusion and
motion of the mixture occur and the mixture is described by an additional
field, that of an order parameter. This is the essence of phase-field models [4].
Quite often, the order parameter is the concentration of a constituent or the
mass density of the mixture.

Owing to the jump of mass density across the transition layer, the mod-
elling allows for non-uniform densities and, mathematically, for a dependence
of energy also on the mass density gradients. This idea traces back to van
der Waals [16] and is at the basis of the Cahn-Hilliard model [6] for a purely
diffusional problem. Improvements of the model have been set up to account
for phase segregation where the (two) constituents of the mixture form sepa-
rated or homogeneous domains. In this regard a realistic description has to
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involve the coupling of the equations of fluid dynamics with the occurrence of
diffusion. This view is at the basis of [13] where the dependence of the energy
upon concentration gradients plays a central role for both balance equations
and constitutive properties.

Within the framework of continuum mechanics, the dependence of consti-
tutive functions on appropriate gradients has to be compatible with thermo-
dynamics. This in turn implies that a non-simple scheme is adopted in which
the occurrence of additional fluxes of energy or entropy is allowed. Hence ques-
tions arise about the possible equivalence of different schemes and, otherwise,
which scheme is more appropriate.

The purpose of this paper is twofold. The first fold is to set up a de-
scription of two-phase fluids following the guidelines of continuum mechanics.
The concentration is governed by the classical balance equations for mixtures.
The diffusion flux and the other constitutive functions are required to be com-
patible with thermodynamics. For generality, the continuum is allowed to be
non-isothermal. For definiteness, the two phases are regarded as incompress-
ible fluids so that the mixture is quasi-incompressible, which means that the
densities are uniquely determined by the concentration. The thermodynamic
framework is quite general in that extra-energy and extra-entropy fluxes are
allowed to occur. The second fold is to show that there are similar, but inequiv-
alent, models appeared in the literature which are associated with appropriate
selections of the extra fluxes.

2 Mixture of incompressible constituents

We restrict attention to a binary mixture of two incompressible non-reacting
fluids. Denote by ρ10, ρ20 the two intrinsic constant densities of constituents 1
and 2. If φ is the volume fraction of constituent 1 we can write the total mass
density ρ of the mixture as ρ = ρ1 + ρ2 where ρ1 and ρ2 are the peculiar mass
densities, ρ1 = ρ10φ, ρ2 = ρ20(1 − φ). The concentration c of constituent 1 is
defined by c = ρ1/ρ; c and φ are related to each other by

c =
φρ10

ρ20 + (ρ10 − ρ20)φ
, φ =

cρ20

ρ10 + (ρ20 − ρ10)c
.

Hence, c ∈ [0, 1] is equivalent to φ ∈ [0, 1] in that c = 0, 1 ⇔ φ = 0, 1
and dc/dφ > 0. Both c and φ are possible order parameters; we use the
concentration c. The function ρ(c),

ρ =
ρ10ρ20

ρ10 + (ρ20 − ρ10)c
, (2.1)
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is invertible in that the derivative ρc is nonzero and bounded. Indeed,

ρc = τρ2, τ =
1

ρ20

− 1

ρ10

.

We now state the balance equations in a local form. The balance of mass
for the mixture as a whole provides the classical continuity equation

ρ̇ = −ρ∇ · v, (2.2)

where ˙ = ∂t + v · ∇. Since ρ and c are related by (2.1), it follows from (2.2)
that ċ is determined by ∇ · v through ċ = −(ρ/ρc)∇ · v.

The concentration c enters also the balance of mass for constituent 1. Let
v1,v2 be the velocities of the constituents and v = cv1+(1−c)v2 the baricentric
velocity. Also let u be the diffusion velocity and j the mass flux, u = v1 − v,
j = ρcu. The balance of mass for constituent 1 provides

ρċ = −∇ · j. (2.3)

Hence ċ,∇ · v, and ∇ · j are mutually related by

ρċ = −1

τ
∇ · v = −∇ · j. (2.4)

The balance of linear momentum for the mixture is given the standard form

ρv̇ = ∇ · T + ρf , (2.5)

where T is the stress tensor and f is the body force density. The stress T is
taken to be symmetric, as it follows from the balance of angular momentum.

Consistent with (2.5), we let the balance of energy be given by

ρė = T · L −∇ · q −∇ ·w + r + ζ, (2.6)

where e is the energy density, L the velocity gradient, q the heat flux and r the
heat supply (per unit volume). Here w is a possible extra-energy flux vector
and ζ an extra-energy supply. As we see in §5, both w and ζ arise naturally
in modelling materials with internal structures (microforces).

The second law of thermodynamics is taken as the statement that the
Clausius-Duhem inequality holds for any set of functions which satisfy the
balance equations. Also because of possible nonlocal effects, the entropy flux
is likely to be different from q/θ, θ being the absolute temperature. Hence,
letting η be the entropy density and k the extra-entropy flux vector, we write
the Clausius-Duhem inequality in the form

ρη̇ ≥ −∇ · (q/θ) −∇ · k +
r

θ
. (2.7)
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Substitution of r − ∇ · q from (2.6) and use of the free energy ψ = e − θη
provide

−ρ(ψ̇ + ηθ̇) + T · L− 1

θ
q · ∇θ + θ∇ · k −∇ · w + ζ ≥ 0. (2.8)

The flux vectors w,k occur in (2.8) in the form θ∇ · k −∇ · w + ζ . This
indicates that thermodynamics places restrictions on θ∇·k−∇·w+ζ but not
separately on k,w and ζ . That a simultaneous occurrence of the fluxes of extra
energy and extra entropy leads to some degree of arbitrariness has already been
noticed [10]. The arbitrariness is usually avoided by requiring that one of the
two fluxes vanish. Sometimes k = 0, as in [8], but very often w = 0, ζ = 0. It
seems more reasonable to regard w as known, possibly zero, simply because
the balance of energy is given by an equality between physically well-defined
quantities (energy rate and powers). The recourse to w is reasonable when the
model of the continuum is endowed with an internal structure. As an example
of material with internal structure we mention [11] where any given atomic
arrangement is assumed to be maintained by a system of microforces entering
a further balance equation. In such a case k = 0 whereas w and ζ are non-zero.

3 Thermodynamic restrictions

Let D = symL. Denote by a superposed ◦ the deviatoric part. Since trD =

trL = ∇ · v then
◦
D= D − (1/3)(∇ · v)1,

◦
L= L − (1/3)(∇ · v)1. We assume

that j,T,q,k are determined by the set of variables

Γ = (θ, c,∇θ,∇c, ...,
◦
D)

through appropriate constitutive functions, the dots denoting higher-order gra-
dients of θ and c. Also we let e and ψ be C2-functions of Γ0 = (θ, c,∇θ,∇c).

For any C1-function f , on Ω × R, the identity

∇̇f = ∇ḟ − LT∇f (3.1)

holds. Hence, time differentiation of ψ and substitution in (2.8) gives

−ρ[(ψθ + η)θ̇ + ψcċ+ ψ∇θ · (∇θ̇ − LT∇θ) + ψ∇c · (∇ċ− LT∇c)]
+T · L − 1

θ
q · ∇θ + θ∇ · k −∇ · w + ζ ≥ 0. (3.2)

By (2.6), the arbitrariness of the heat supply field r(x, t), on Ω×R, allows
us to say that θ̇ and ∇θ̇, at a point x and time t, may be chosen as an arbitrary
scalar and an arbitrary vector. The same argument does not apply to ċ and
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∇ċ because ∇·v, ċ and ∇· j are related to each other by (2.4). Now, inequality
(3.2) holds for any value of ∇θ̇ and θ̇ only if

ψ∇θ = 0, η = −ψθ. (3.3)

The remaining inequality is divided by θ to obtain

1

θ
[T + ρ∇c⊗ ψ∇c] · L − ρ

θ
ψcċ− ρ

θ
ψ∇c · ∇ċ− 1

θ2
q · ∇θ + ∇ · k +

1

θ
(ζ −∇ · w) ≥ 0.

(3.4)

Let

δcψ := ρψc − θ∇ · (ρ
θ
ψ∇c).

Upon some rearrangements, inequality (3.4) becomes

1

θ
[T + ρ∇c⊗ ψ∇c] · L − 1

θ
δcψ ċ− 1

θ2
q · ∇θ + ∇ · (k − ρ

θ
ψ∇cċ) +

1

θ
(ζ −∇ · w) ≥ 0.

In view of (2.3) we can replace ċ to get

1

θ
[T + ρ∇c⊗ ψ∇c] · L +

1

ρθ
δcψ∇ · j− 1

θ2
q · ∇θ + ∇ · (k +

1

θ
ψ∇c∇ · j) +

1

θ
(ζ −∇ · w) ≥ 0.

(3.5)

A possible dependence of T on L is made explicit by letting

T = −p1 + T0 + ν
◦
D +λ(∇ · v)1 + α(

◦
D ·

◦
D)

◦
D, (3.6)

where T0 is a tensor independent of D. By (3.6), the effective shear viscosity

modulus is ν + α
◦
D ·

◦
D.

Substitution of (3.6) in (3.5), use of (2.3) and some rearrangements yield

(
◦
T0 +ρ

◦
∇c⊗ ψ∇c)·

◦
L +(trT0 + ρ∇c · ψ∇c)∇ · v + α(

◦
D ·

◦
D)2 + ν

◦
D ·

◦
D

+λ(∇ · v)2 − θj · ∇μ

θ
− 1

θ
q · ∇θ + θ∇ · (k +

1

θ
ψ∇c∇ · j +

μ

θ
j) + ζ −∇ · w ≥ 0,

where

μ :=
1

ρ
δcψ − τp. (3.7)

The inequality holds if

T0 + ρ∇c⊗ ψ∇c = 0, α, ν, λ ≥ 0, (3.8)
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−θj · ∇μ

θ
− 1

θ
q · ∇θ + θ∇ · (k +

1

θ
ψ∇c∇ · j +

μ

θ
j) + ζ −∇ · w ≥ 0. (3.9)

In turn, inequality (3.9) holds if

k = −1

θ
ψ∇c∇ · j− μ

θ
j, j · ∇μ

θ
+

1

θ
q · ∇θ − (ζ −∇ · w) ≤ 0, (3.10)

or if

k = −1

θ
ψ∇c∇ · j− μ

θ
j +

1

θ
w, j · ∇μ

θ
+

1

θ
(q + w) · ∇θ − ζ ≤ 0. (3.11)

In addition, since T (and hence T0) is symmetric then ψ is subject to

∇c⊗ ψ∇c = ψ∇c ⊗∇c.

Hence it follows that

ψ∇c = χ(θ, c,∇c)∇c,

which occurs if ψ depends on ∇c through |∇c|. If χ is independent of ∇c then
ψ takes the additive form

ψ = ψ0(θ, c) +
1

2
χ(θ, c)|∇c|2.

Some remarks are in order. No restriction is placed on p. It is reasonable
to regard p as a function of c and θ. By (3.8), eq. (3.6) becomes

T = −p1 − χ∇c⊗∇c+ ν
◦
D +λ(∇ · v)1 + α(

◦
D ·

◦
D)

◦
D . (3.12)

In [13], the Cauchy stress tensor, say T, is defined by

T = −ρ2ψρ1 − ρ∇c⊗ ψ∇c.

That T has to be defined rather than be derived as a thermodynamic restric-
tion is consistent with the fact that, in quasi-incompressible mixtures, ρ is a
function of c. Here, however, p is an arbitrary function, not generated by the
free energy ψ.

It is natural to view μ as the chemical potential. By (3.7), μ consists of
three contributions. First, δcψ/ρ originates from the free-energy potential ψ
and is then the strict analogue of the classical chemical potential which is
defined as the variational derivative of ψ relative to the order parameter (see,
e.g., [11]). Here, however, ψ enters the variational derivative in the rescaled
form ψ/θ as is the case in other approaches (see, e.g., [4, 1]). Second, −τp is
the characteristic term associated with the quasi-incompressibility as is made
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evident by the factor ρc. It is of interest that (δcψ)/ρ− τp coincides with the
chemical potential in [13] (see (4.13)) when the temperature θ is uniform.

The results (3.3), (3.8), (3.9) hold if the set of variables Γ is allowed to
contain also ċ,∇ċ. This feature is of interest to recover the results of [11].

By (3.11) we can take j = −κ∇(μ/θ), κ ≥ 0. Select the free energy
ψ = Ψ(θ, c) + 1

2
χ|∇c|2 + τP (c), P being the integral of p. Hence, by (2.3),

ρċ = ∇ · {κ∇ 1

ρθ
δc[Ψ(θ, c) +

1

2
χ|∇c|2]}.

If ρ, θ, κ, χ are constants then we find the standard form of the Cahn-Hilliard
equation

ċ = κ0Δ[Ψc(c) − χ0Δc]. (3.13)

4 Relation to other approaches

Based on a variational analysis, Lowengrub and Truskinovsky [13] assume that
the rate of work A done on the boundary ∂P of a material domain P is given
by

A =

∫
∂P

[(Tn) · v + t · n ċ]da
where t = ρψ∇c. As a consequence, the balance of energy becomes (see their
(3.20))

ρė = T · L + ∇ · (tċ) + r.

Gurtin [11] (see also [15]) takes the view that any given arrangement is
maintained by a system of microforces,

∇ · ξ + π + γ = 0,

where ξ is a vector stress, π is a scalar internal force and γ is a scalar body
force. Hence, the power of microforces is given the form

A =

∫
∂P

ξ · n ċ da+

∫
P
γċdv.

Next ξ too is shown to be related to the free energy, say ξ = ρψ∇c.
Though the approaches of [13] and [11] are different, they involve the same

term ∇ · (ρψ∇cċ) as the power associated with the variation of c.
Here, instead, the balance of energy is allowed to be unaffected by the

variation of the concentration and hence the balance law is taken in the clas-
sical form (2.6). Meanwhile the temperature field is allowed to be also space
dependent and, owing to the non-simple character of the mixture, a nonzero
extra-entropy flux k is allowed to occur. It looks advantageous that the energy
balance equation is free from the additional term ∇ · (ρψ∇cċ).
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4.1 Gibbs’ equation and the second law

Here we address two purposes. First, the occurrence of ċ in the balance of
energy, through w, is not standard in classical thermodynamics. Rather, the
second law is often stated in the form of Gibbs’ equation as (see, e.g., [7])

θη̇ = ė+ pv̇ −
∑

l

μlċl, (4.1)

where v = 1/ρ is the specific volume. Since no ċ term occurs in our approach
(if w = 0, ζ = 0) it is natural to check whether ċ-terms occur in the Gibbs
equation though they do not appear in the energy balance. Second, we look
for the possible forms of the entropy inequality compatible with

ψ = ψ(θ, c,∇c), η = −ψθ, (4.2)

the stress tensor (3.12) and the balance of energy (2.6).

By (4.2), ψ̇ = −ηθ̇ + ψcċ+ ψ∇c · ∇̇c and hence, by (3.1),

ρ

θ
(ψ̇ + ηθ̇) =

1

θ
δcψċ+ ∇ · (ρ

θ
ψ∇cċ) − ρ

θ
(∇c⊗ ψ∇c) · L.

Also, because ψ̇ + ηθ̇ = ė− θη̇, by means of (3.7) we obtain

ρη̇ =
ρ

θ
ė− 1

θ
[ρμ+

ρc p

ρ
− ρc

3ρ
∇c · ψ∇c −∇ · (ρ

θ
ψ∇cċ) +

ρ

θ
(∇c⊗ ψ∇c) · L.

(4.3)

Substitution of ė from (2.6) gives

ρη̇ + ∇ · q

θ
− r

θ
= −∇ · (ρ

θ
ψ∇cċ) + ∇ · (μ

θ
j) +

1

θ
(ζ −∇ · w) +

1

θ
T · L

− 1

θ2
q · ∇θ − j · ∇μ

θ
+

1

θ
(p− 1

3
∇c · ψ∇c)∇ · v +

ρ

θ
(∇c⊗ ψ∇c) · L.

Moreover, substitution of T from (3.12) provides

ρη̇ + ∇ · q

θ
− r

θ
+ ∇ · (ρ

θ
ψ∇cċ− μ

θ
j) = − 1

θ2
q · ∇θ − j · ∇μ

θ
+

1

θ
(ζ −∇ · w + σ),

(4.4)

where

σ = ν
◦
D ·

◦
D +α(

◦
D ·

◦
D)2 + λ(∇ · v)2.

It is apparent from (4.4) that (2.7) holds with

k =
ρ

θ
ψ∇cċ− μ

θ
j
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if ζ = 0,w = 0. Otherwise, nonzero values of ζ and w affects the value of the
extra-entropy flux k. This is now exemplified by means of other approaches.

To check the possible consistency of other approaches with (4.4) we need
to distinguish between different definitions of the chemical potential. By (3.7),
μ is defined as

ρμ = θ[
ρ

θ
ψc −∇ · (ρ

θ
ψ∇c)] + · · · ,

where ψ occurs in the rescaled form ψ/θ. The rescaled free energy occurs also in
[1, 4]. In other cases, e.g. in [11, 13], the temperature θ does not enter explicitly
and the chemical potential, call it μ0, is defined by ρμ0 = ρψc−∇·(ρψ∇c)+· · · .
Hence

μ = μ0 +
1

θ
ψ∇c · ∇θ.

The classical form (4.1) is based on the assumption that ∇c = 0 or that ψ
and η are unaffected by ∇c. In such a case (4.3) simplifies to

ρη̇ =
ρ

θ
ė− 1

θ
[ρμ+

ρcp

ρ
]ċ.

Since v̇ = −ρ̇/ρ2 = −τ ċ then Gibbs’ equation (4.1) is recovered provided only
that we let l = 1, 2 and μ = μ1 − μ2.

4.2 Two models with a non-zero extra-energy flux

A model of Cahn-Hilliard fluid is given in [9] where

w = ψ∇c∇ · j + μ0j,

whereas ζ = 0 and k = 0. This conclusion follows at once from (4.4). For,
letting ζ = 0,w = ψ∇c∇ · j + μ0j we have

1

θ
(ζ −∇ · w) − j · ∇μ

θ
+ ∇ · (μ

θ
j) −∇ · (ρ

θ
ψ∇cċ)

= −1

θ
∇ · (μ0j) +

μ

θ
∇ · j − 1

θ2
∇ · j∇θ · ψ∇c = −1

θ
j · ∇μ0.

This means that (4.4) reduces to

ρη̇ + ∇ · q

θ
− r

θ
= − 1

θ2
q · ∇θ − j · ∇μ0 +

σ

θ
,

where the extra-entropy flux is zero (k = 0) and the dissipation term for j
involves μ0. The result of [9] is thus recovered. It is worth mentioning that [9]
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gives a model where T contains a term ġ
◦
D, g = g(c). The same term can be

shown to hold here with w = 0 and k given by (3.10) or (3.11).

Another model for the Cahn-Hilliard fluid is given in [13] where

w = ψ∇c∇ · j.

Because

−1

θ
∇ · w − j · ∇μ

θ
+ ∇ · (μ

θ
j) −∇ · (ρ

θ
ψ∇cċ) = ∇ · (μ0

θ
j) − j · ∇μ0

θ
,

eq. (4.4) becomes

ρη̇ + ∇ · q

θ
− r

θ
−∇ · (μ0

θ
j) = −j · ∇μ0

θ
+
ζ + σ

θ
.

This implies that

k =
μ0

θ
j,

which provides (3.24a) of [13] and ζ ≥ 0. Indeed, ζ = 0 in [13]. The seemingly
different sign in [13] is due to the fact that J of [13] is opposite to j, J = −j.

4.3 Demixing term

If w = 0, ζ = 0, by (3.11) the mass diffusion flux j is required to satisfy

j · ∇μ

θ
+

1

θ2
q · ∇θ ≤ 0.

This shows that in uniform temperature fields (∇θ = 0) we have j · ∇μ ≤ 0,
which means that j is opposite to ∇μ. This in turn means that the two species
are pulled in opposite directions by the chemical potential gradient.

In the physical literature (see, e.g., [2, 12]) this view is modelled by regard-
ing −ϕ∇μ as the force, per unit volume, produced by local chemical-potential
variations, ϕ being an order parameter. For definiteness we may say that
ϕ = 2c − 1 ∈ [−1, 1]. It is worth looking at [12] where a motivation is given
for regarding −ϕ∇μ as the force that demix the phases.

As is often the case, the free energy ψ is taken in the form ψ(ϕ,∇ϕ) =
f(ϕ) + 1

2
χ|∇ϕ|2, χ being a constant and f a double-well potential whose wells

define the two phases. Hence, μ is defined as the variational derivative of ψ,

μ = f ′(ϕ) − χΔϕ. (4.5)
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In addition to the viscosity term and the pressure contribution, a chemical
stress tensor Tchem is taken to occur. Moreover it is stated that

ϕ∇μ = −∇ · Tchem (4.6)

provided that Tchem := −{ϕf ′ − f − χ[ϕΔϕ + 1
2
|∇ϕ|2}1 − χ∇ϕ ⊗ ∇ϕ. This

follows at once in that ϕ∇μ = ϕ[f ′′∇ϕ − χΔ∇ϕ] and the same result arises
for −∇ · Tchem.

The validity of (4.6) is related to the classical (Ginzburg-Landau) form
(4.5) of μ. However, irrespective of the fact that we can prove (4.6) for more
general forms of the chemical potential for corresponding tensors Tchem, this
does not mean that ϕ∇μ is the correct force term to be inserted in the equa-
tion of motion. Rather, depending on the form of the chemical potential, upon
substitution in j = −κ∇μ, the divergence ∇ · j provides −ρċ(ϕ). Meanwhile,
the stress tensor, as well as other constitutive functions, has to be compat-
ible with thermodynamics. Here the stress tensor (3.12) is compatible with
thermodynamics and does not involve any chemical stress tensor.

4.4 Balance of molar concentration

The Cahn-Hilliard equation is often associated with an order parameter [6,
5]. The derivation [11] starts with the mass balance ρ̇ = −∇ · h, the mass
flux h being related to μ through h = −κ∇μ. Next μ is defined as the
variational derivative of ψ, μ = ψρ − ∇ · ψ∇ρ. The constitutive assumption
ψ = f(ρ) + (α/2)|∇ρ|2 completes the derivation. So ρ is an order parameter
which, however, is required to satisfy a balance of mass equation. As shown
by (3.13), the concentration satisfies the Cahn-Hilliard equation.

In [3] the analogue of the mass (balance) is the composition or molar con-
centration. Let n1, n2 be the number of moles per unit volume and M1,M2

the molecular weight so that ρα = nαMα, α = 1, 2. Let n = n1 + n2. The
composition X (of phase 1) is defined as n1/n. If M1 �= M2 then X �= c. The
number of moles is a conserved quantity and this is said to lead to the balance
law (see (4) of [3])

Ẋ + ∇ · jX = 0. (4.7)

Some objections can be raised against eq (4.7). 1) The number of moles is a
conserved quantity but the composition is not. 2) The densities nα satisfy the
continuity equations, ∂tnα +∇ · (nαvα) = 0, α = 1, 2. Let V denote the mean
velocity (n1v1 +n2v2)/n. Summation over α gives ∂tn+∇· (nV) = 0. Hence,
letting U1 = v1 −V we find that

nX̀ + ∇ · jX = 0, (4.8)
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where X̀ = ∂tX + V · ∇X, jX = nXU1. 3) Since V �= v then X̀ �= Ẋ.
It seems that the balance of composition should be in the form (4.8). How-

ever, since the balance of energy and the Clausius-Duhem inequality involve
the total time derivative, e.g. ψ̇ = ∂tψ + v · ∇ψ, then the composition X is
not a convenient variable whereas such is c.

5 Models based on microforces

Evolution equations for two-phase, isothermal, systems are derived in [11] by
means of the mass balance and of the balance of appropriate microforces. Here
we re-visit the derivation by following the lines of continua with extra-fluxes.

5.1 Microforces in undeformable isothermal bodies

Let the body be undeformable and isothermal. A microforce system is charac-
terized by a vector stress ξ and scalar body forces π, γ that represent, respec-
tively, internal and external forces. At any point they are in equilibrium,

∇ · ξ + π + γ = 0. (5.1)

The power of the (external) forces is (ξ · n)ċ per unit area and γċ per unit
volume. The balance of energy then reduces to

ρė = ∇ · (ξċ) + γċ+ r,

which means that

w = −ξċ, ζ = γċ.

Hence the entropy inequality (2.8) simplifies to

−ρψ̇ + θ∇ · k + ζ −∇ · w ≥ 0. (5.2)

Because θ is constant then a single flux w−θk occurs and, without any loss of
generality, we may set k = 0. If θ is not constant then also −ρηθ̇−q ·∇θ/θ has
to occur in (5.2). Let ψ = ψ(c,∇c), ξ = ξ(c,∇c, ċ,∇ċ), π = π(c,∇c, ċ,∇ċ).
By means of (5.1), inequality (5.2) provides

−(π + ρψc)ċ+ (ξ − ρψ∇c) · ∇ċ ≥ 0. (5.3)

We split π, ξ into a reversible and a dissipative part,

π = πrev(c,∇c) + πdis(c,∇c, ċ,∇ċ), ξ = ξrev(c,∇c) + ξdis(c,∇c, ċ,∇ċ).
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Hence (5.3) implies that πrev = −ρψc, ξrev = ρψ∇c, and

−πdisċ + ξdis · ∇ċ ≥ 0. (5.4)

Inequality (5.4) holds if

πdis = −βċ− b · ∇ċ, ξdis = aċ+ A∇ċ,

where the scalar β, the vectors b, a, and the tensor A are functions of c,∇c, ċ,∇ċ
such that

βċ2 + ċ(b + a) · ∇ċ+ ∇ċ · A∇ċ ≥ 0.

Equation (5.1) then becomes

(β −∇ · a)ċ + (b − a) · ∇ċ = ∇ · [ρψ∇c + A∇ċ] − ρψc + γ. (5.5)

Let now β, a,b, and A be constant and the material be isotropic, so that
a,b = 0 and A = κ1. If, further, γ = 0 and ψ = ψ̂(c) + χ|∇c|2/2 then (5.5)
simplifies to

βċ = ∇ · (χρ∇c) + κΔċ− ρψ̂c. (5.6)

5.2 Microforces in diffusive species

The order parameter is identified with the density of a diffusing species of
atoms. Here, though, we keep using the concentration c as the order parameter
and hence the balance equation (2.3) still applies. The microforces ξ, π, γ are
allowed to occur and to satisfy the equilibrium condition (5.1). Borrowing
from [11] we let ρė = γċ + ∇ · (ξċ − μj), which amounts to assuming that
ζ = γċ, w = μj − ξċ. Hence we let k = 0 and (2.8) becomes

−ρψ̇ + γċ−∇ · (μj − ξċ) ≥ 0.

In view of (5.1), some rearrangements give

ρψ̇ + (π − ρμ)ċ− ξ · ∇ċ+ j · ∇μ ≤ 0, (5.7)

which is formally equal to (3.6) of [11] except for the occurrence of c as the
order parameter and ρ as the non-constant mass density.

Let ψ, j, ξ, π be functions of Γ = (c,∇c, ċ, μ,∇μ). It is assumed that fields
c, μ can be found such that c̈, μ̇, and (∇μ)̇ have arbitrarily prescribed values
at some chosen point and time. This allows us to see that, as a consequence of
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(5.7), the free energy is a function of c,∇c only, ψ = ψ(c,∇c) and ξ = ρψ∇c.
Hence (5.7) reduces to

(ρψc + π − ρμ)ċ+ j · ∇μ ≤ 0. (5.8)

Let

π = πrev + πdis, πrev(c,∇μ) := −ρψc + ρμ

and hence

πdis = π + ρψc − ρμ. (5.9)

By (5.8) it follows that there a scalar β, vectors a,b, and a tensor A such that

πdis = −βċ− b · ∇μ, j = −aċ−A∇μ, (5.10)

and

βċ2 + ċ(a + b) · ∇μ+ ∇μ ·A∇μ ≥ 0.

Again let ψ = ψ̂(c) + 1
2
χ|∇c|2. By means of (5.9), (5.10)1, and (5.1) we

obtain

ρμ− b · ∇μ = ρψ̂c −∇ · (χρ∇c) + βċ− γ. (5.11)

Substitution of j from (5.10)2 into (2.3) gives

ρċ = ∇ · (aċ + A∇μ). (5.12)

For a quasi-incompressible mixture, ρ is a function of c and hence eqs (5.11)-
(5.12) constitute a system of equations in the unknowns c, μ. Apart from the
occurrence of ρ, they are named Cahn-Hilliard-Gurtin equations [14].

6 Conclusions

Models of Cahn-Hilliard fluids describe space variation of the concentration.
Constitutive functions then depend on the concentration gradients, and possi-
bly on the temperature gradients, of various orders. Owing to the dependence
on the gradients, extra-energy and -entropy fluxes w,k, as well as an extra-
energy supply, are likely to occur in the energy equation and in the entropy
inequality. After the general scheme of thermodynamic restrictions, section
§4 shows that the simplest model arises by letting k = (ρ/θ)ψ∇cċ − (μ/θ)j
whereas w = 0, ζ = 0. Other models appeared in the literature are shown to
be associated with different selections of k,w, ζ . Models based on microforces
naturally correspond to k = 0 and nonzero w and ζ .
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