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Abstract

This study presents a novel form of bistability in a mathematical model of snail
RPal neurons. This model was previously reported as a system of nonlinear
ordinary differential equations simulating the membrane potential oscillations of
snail RPal neurons. Here, we perform a numerical simulation revealing that
whether the model shows a chaotic bursting state or a depolarized steady state is
dependent on the initial condition. Notably, a certain transient current pulse can
change the dynamical state of the model from a chaotic bursting state to a
depolarized steady state, or vice versa. Taken together, these results indicate that
the snail RPal neuron model can show bistability between chaotic bursting and
depolarized steady states.
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1 Introduction

The mathematical model of snail RPal neurons is noteworthy because it shows
rich dynamical behaviors. Specifically, this model shows two types of chaotic
activity: a chaotic spiking state and a chaotic bursting state [1]. This model was
originally developed as a system of nonlinear ordinary differential equations
(ODEs) based on the Hodgkin—Huxley concept to simulate the dynamics of the
membrane potential of snail RPal neurons [1]. In addition to showing chaotic
activity, a previous study demonstrated that the model shows a certain type of
bistability, namely, the coexistence of a chaotic spiking state and a periodic
bursting state under a certain specific parameter condition [1]. Therefore, it is
natural to ask whether the model also exhibits bistability that involves a chaotic
bursting state and, if so, the type of bistability that the model shows. In other
words, what kind of dynamical state can coexist with a chaotic bursting state?
Answering this question will provide a deeper understanding of the relationship
between bistability and chaotic activity in the snail RPal neuron model. However,
this question remains unanswered. Previous studies report that a chaotic bursting
state can change into different dynamical states due to variation in the various
model parameters [2, 3]. For example, a chaotic bursting state can change into a
depolarized steady state due to variation in the time constant of potassium
conductance [2]. Given this previous finding, we hypothesized that the model may
exhibit bistability between a chaotic bursting state and a depolarized steady state.
To evaluate this hypothesis, the present study performs a numerical simulation of
the snail RPal neuron model.

2 Mathematical Model

The snail RPal neuron model investigated in the present study is described by
the following system of nonlinear ODEs (see [1] for further details):
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, in which V' (mV) (the membrane potential of snail RPal neurons), ms, hs, m, h, n,
and mca (various gating variables), and [Ca] (mM) (the concentration of
intracellular calcium) are state variables; ¢ (s) is time; l4pp (nA) (a transient current
pulse) is a system parameter; and F is the Faraday constant. Equations (1)—(8) are
numerically solved wusing the free and open source software Scilab
(http://www.scilab.org/).

3 Numerical Results

First, we perform a numerical simulation of the snail RPal neuron model
varying the initial conditions in which /g is set to 0. As J and [Ca] are
experimentally interesting state variables [1], we illustrate the time courses of V'
and [Ca] in Figure 1. When the initial condition is set that V' =—42 mV, mz=0.95,
hs,=0.77, m=0.14, h, = 0.1, n= 0.048, mca= 0.0002, and [Ca] = 6.5 x 10> mM,
the model shows a chaotic bursting state: bursting with various burst duration
lengths is observed (Figure 1a, top panel). In contrast, when the initial condition is
set that V'=—-22 mV, ms= 0.01, iz, = 0.999, m= 0.98, h, = 0.003, n= 0.62, mca=
0.01, and [Ca] = 1.0 x 10"® mM, the model shows a depolarized steady state: no
oscillatory activity is observed (Figure 1b top).

Next, we perform a numerical simulation varying /pp, and the time courses of V'
and [Ca] (Figure 2). When the simulation starts with same initial conditions as in
Figure la, the model shows a chaotic bursting state when ¢ is at 50 s or earlier
(Figure 2a, top panel). Under such conditions, if a transient current pulse is
injected into the model (i.e., ¢ is between 50 and 60 s, lyppis 10 nA; otherwise, Iupp
is 0 nA), the dynamical state of the model changes to a depolarized steady state
during the transient current pulse (see the horizontal bar in Figure 2a, top panel).
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Even if the current pulse is terminated (i.e., ¢ is 60 s and longer), the dynamical
state of the model does not recover to a chaotic bursting state, i.e., the depolarized
steady state continues (Figure 2a, top). Finally, we investigate the opposite
direction (i.e., a depolarized steady state — a chaotic bursting state) where the
simulation starts with the initial condition shown in Figure 1(b) and a transient
current pulse is injected (i.e., ¢ is 50 to 60 s, lapp is —40 nA; otherwise, lqpp is 0 nA)
(Figure 2b). In this case, we observe that the dynamical state of the model changes
from a depolarized steady state to a chaotic bursting state (Figure 2b, top).
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Figure 1. Time courses of V and [Ca] of the snail RPal neuron model under
different initial conditions. The initial conditions are as follows: in (a): V' = —42
mV, mg=0.95, hg, = 0.77, m=0.14, h, = 0.1, n=0.048, mc.= 0.0002, and [Ca] =
6.5 x 107> mM; and in (b) V' =-22 mV, ms= 0.01, Az, = 0.999, m= 0.98, h, =
0.003, n=0.62, mca= 0.01, and [Ca] = 1.0 x 10" mM. In both cases, Iy is 0. In
(a) and (b), the horizontal axis indicates ¢ (s) in both the top and bottom panels,
while the vertical axis indicates V' (mV) in the top panel and [Ca] (mM) in the
bottom panel.
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Figure 2. The transition from a chaotic bursting state to a depolarized steady state
in (a) and vice versa in (b) due to the transient current pulse. (a) A current pulse
with an amplitude of 10 nA and a duration of 10 s is injected at 50 s. The initial
conditions are the same as Figure 1(a). (b) A current pulse with an amplitude of
—40 nA and a duration of 10 s is injected at 50 s. The initial conditions are the
same as Figure 1(b). In (a) and (b), the horizontal axis indicates ¢ (s) in both the
top and bottom panels, while the vertical axis indicates V' (mV) in the top panel
and [Ca] (mM) in the bottom panel. Horizontal bars between 50 and 60 s denote
the duration of the transient current pulse.

4 Conclusion

This study focuses on the bistability of a mathematical model of snail RPal
neurons, verifying a novel type of bistability between a chaotic bursting state and
a depolarized steady state. This type of bistability differs from the previously
reported bistability between a chaotic spiking state and a periodic bursting state
[1]. Notably, bistability has been reported in previous studies of mathematical
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models of neurons different from the snail RPal neuron model (e.g., a leech
interneuron model [4], a circadian pacemaker neuron model [5]). Again, the type
of bistability reported in previous studies differs from that observed in the present
study: the leech interneuron model shows bistability between a periodic bursting
state and a hyperpolarized steady state [4], while the circadian pacemaker neuron
model shows bistability of a periodic spiking state and a depolarized steady state
[5]. In conclusion, the present study contributes to a deeper understanding of the
relationship between bistability and chaotic activity in the snail RPal neuron
model.
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