

Bistability between a Chaotic Bursting State and a Depolarized Steady State in a Mathematical Model of Snail RPa1 Neurons

Takaaki Shirahata

Kagawa School of Pharmaceutical Sciences
Tokushima Bunri University
8-53 Hamano-cho, Takamatsu-shi
Kagawa 760-8542, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2026 Hikari Ltd.

Abstract

This study presents a novel form of bistability in a mathematical model of snail RPa1 neurons. This model was previously reported as a system of nonlinear ordinary differential equations simulating the membrane potential oscillations of snail RPa1 neurons. Here, we perform a numerical simulation revealing that whether the model shows a chaotic bursting state or a depolarized steady state is dependent on the initial condition. Notably, a certain transient current pulse can change the dynamical state of the model from a chaotic bursting state to a depolarized steady state, or vice versa. Taken together, these results indicate that the snail RPa1 neuron model can show bistability between chaotic bursting and depolarized steady states.

Mathematics Subject Classification: 37N25, 92C20

PACS: 05.45.-a, 87.19.ll

Keywords: bistability, mathematical model of snail RPa1 neurons, chaotic bursting state, depolarized steady state

1 Introduction

The mathematical model of snail RPa1 neurons is noteworthy because it shows rich dynamical behaviors. Specifically, this model shows two types of chaotic activity: a chaotic spiking state and a chaotic bursting state [1]. This model was originally developed as a system of nonlinear ordinary differential equations (ODEs) based on the Hodgkin–Huxley concept to simulate the dynamics of the membrane potential of snail RPa1 neurons [1]. In addition to showing chaotic activity, a previous study demonstrated that the model shows a certain type of bistability, namely, the coexistence of a chaotic spiking state and a periodic bursting state under a certain specific parameter condition [1]. Therefore, it is natural to ask whether the model also exhibits bistability that involves a chaotic bursting state and, if so, the type of bistability that the model shows. In other words, what kind of dynamical state can coexist with a chaotic bursting state? Answering this question will provide a deeper understanding of the relationship between bistability and chaotic activity in the snail RPa1 neuron model. However, this question remains unanswered. Previous studies report that a chaotic bursting state can change into different dynamical states due to variation in the various model parameters [2, 3]. For example, a chaotic bursting state can change into a depolarized steady state due to variation in the time constant of potassium conductance [2]. Given this previous finding, we hypothesized that the model may exhibit bistability between a chaotic bursting state and a depolarized steady state. To evaluate this hypothesis, the present study performs a numerical simulation of the snail RPa1 neuron model.

2 Mathematical Model

The snail RPa1 neuron model investigated in the present study is described by the following system of nonlinear ODEs (see [1] for further details):

$$\begin{aligned} \frac{dV}{dt} = & \frac{1}{0.02} \left(I_{app} - 0.13 \left(\frac{1}{1+e^{-0.2(V+45)}} \right) (V-40) - 0.18m_Bh_B(V+58) \right. \\ & - 0.02(V-40) - 0.25(V+70) \\ & - 400m^3h(V-40) - 10n^4(V+70) \\ & \left. - m_{Ca}^2(V-150) - 0.01 \left(\frac{1}{1+e^{-0.06(V+45)}} \right) \left(\frac{1}{1+e^{15000([Ca]-0.00004)}} \right) (V-150) \right) (1) \end{aligned}$$

$$\frac{dm_B}{dt} = \frac{1}{0.05} \left(\frac{1}{1+e^{0.4(V+34)}} - m_B \right) \quad (2)$$

$$\frac{dh_B}{dt} = \frac{1}{1.5} \left(\frac{1}{1+e^{-0.55(V+43)}} - h_B \right) \quad (3)$$

$$\frac{dm}{dt} = \frac{1}{0.0005} \left(\frac{1}{1+e^{-0.4(V+31)}} - m \right) \quad (4)$$

$$\frac{dh}{dt} = \frac{1}{0.01} \left(\frac{1}{1+e^{0.25(V+45)}} - h \right) \quad (5)$$

$$\frac{dn}{dt} = \frac{1}{0.015} \left(\frac{1}{1+e^{-0.18(V+25)}} - n \right) \quad (6)$$

$$\frac{dm_{Ca}}{dt} = \frac{1}{0.01} \left(\frac{1}{1+e^{-0.2V}} - m_{Ca} \right) \quad (7)$$

$$\frac{d[\text{Ca}]}{dt} = 0.002 \left(-\frac{m_{Ca}^2 (V-150)}{2F \left(\frac{4}{3} \pi 0.1^3 \right)} - 50[\text{Ca}] \right) \quad (8)$$

, in which V (mV) (the membrane potential of snail RPa1 neurons), m_B , h_B , m , h , n , and m_{Ca} (various gating variables), and $[\text{Ca}]$ (mM) (the concentration of intracellular calcium) are state variables; t (s) is time; I_{app} (nA) (a transient current pulse) is a system parameter; and F is the Faraday constant. Equations (1)–(8) are numerically solved using the free and open source software Scilab (<http://www.scilab.org/>).

3 Numerical Results

First, we perform a numerical simulation of the snail RPa1 neuron model varying the initial conditions in which I_{app} is set to 0. As V and $[\text{Ca}]$ are experimentally interesting state variables [1], we illustrate the time courses of V and $[\text{Ca}]$ in Figure 1. When the initial condition is set that $V = -42$ mV, $m_B = 0.95$, $h_B = 0.77$, $m = 0.14$, $h = 0.1$, $n = 0.048$, $m_{Ca} = 0.0002$, and $[\text{Ca}] = 6.5 \times 10^{-5}$ mM, the model shows a chaotic bursting state: bursting with various burst duration lengths is observed (Figure 1a, top panel). In contrast, when the initial condition is set that $V = -22$ mV, $m_B = 0.01$, $h_B = 0.999$, $m = 0.98$, $h = 0.003$, $n = 0.62$, $m_{Ca} = 0.01$, and $[\text{Ca}] = 1.0 \times 10^{-6}$ mM, the model shows a depolarized steady state: no oscillatory activity is observed (Figure 1b top).

Next, we perform a numerical simulation varying I_{app} , and the time courses of V and $[\text{Ca}]$ (Figure 2). When the simulation starts with same initial conditions as in Figure 1a, the model shows a chaotic bursting state when t is at 50 s or earlier (Figure 2a, top panel). Under such conditions, if a transient current pulse is injected into the model (i.e., t is between 50 and 60 s, I_{app} is 10 nA; otherwise, I_{app} is 0 nA), the dynamical state of the model changes to a depolarized steady state during the transient current pulse (see the horizontal bar in Figure 2a, top panel).

Even if the current pulse is terminated (i.e., t is 60 s and longer), the dynamical state of the model does not recover to a chaotic bursting state, i.e., the depolarized steady state continues (Figure 2a, top). Finally, we investigate the opposite direction (i.e., a depolarized steady state \rightarrow a chaotic bursting state) where the simulation starts with the initial condition shown in Figure 1(b) and a transient current pulse is injected (i.e., t is 50 to 60 s, I_{app} is -40 nA; otherwise, I_{app} is 0 nA) (Figure 2b). In this case, we observe that the dynamical state of the model changes from a depolarized steady state to a chaotic bursting state (Figure 2b, top).

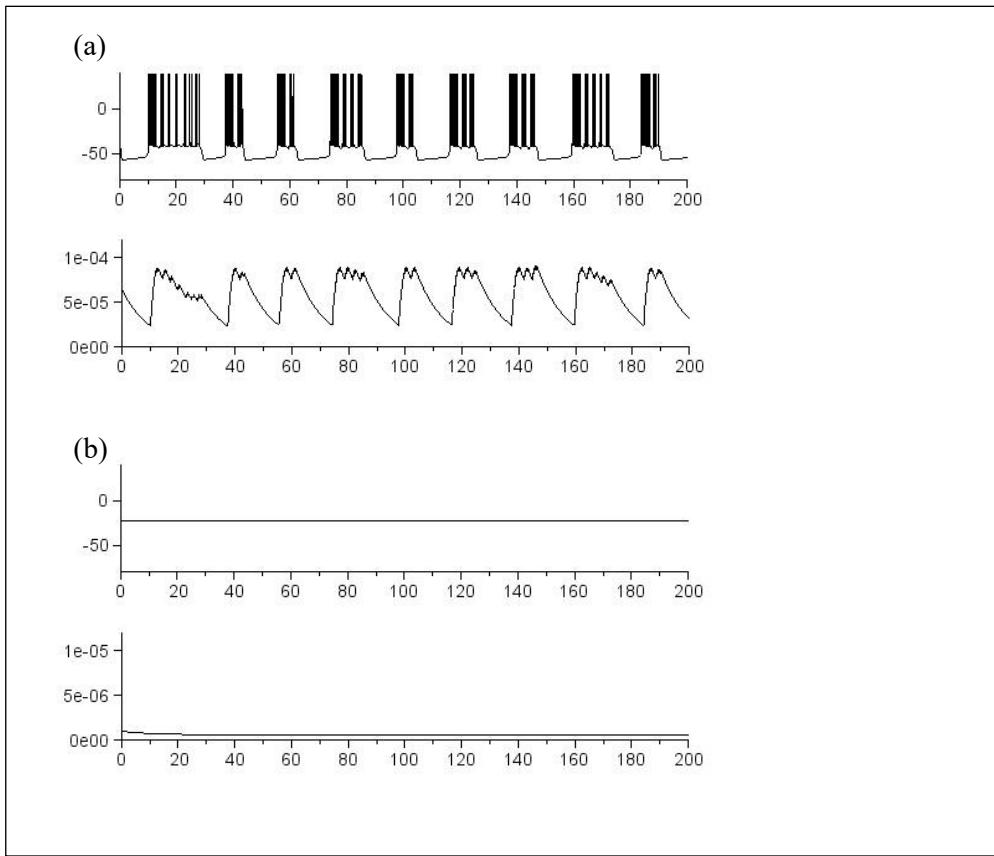


Figure 1. Time courses of V and $[Ca]$ of the snail RPa1 neuron model under different initial conditions. The initial conditions are as follows: in (a): $V = -42$ mV, $m_B = 0.95$, $h_B = 0.77$, $m = 0.14$, $h = 0.1$, $n = 0.048$, $m_{Ca} = 0.0002$, and $[Ca] = 6.5 \times 10^{-5}$ mM; and in (b) $V = -22$ mV, $m_B = 0.01$, $h_B = 0.999$, $m = 0.98$, $h = 0.003$, $n = 0.62$, $m_{Ca} = 0.01$, and $[Ca] = 1.0 \times 10^{-6}$ mM. In both cases, I_{app} is 0. In (a) and (b), the horizontal axis indicates t (s) in both the top and bottom panels, while the vertical axis indicates V (mV) in the top panel and $[Ca]$ (mM) in the bottom panel.

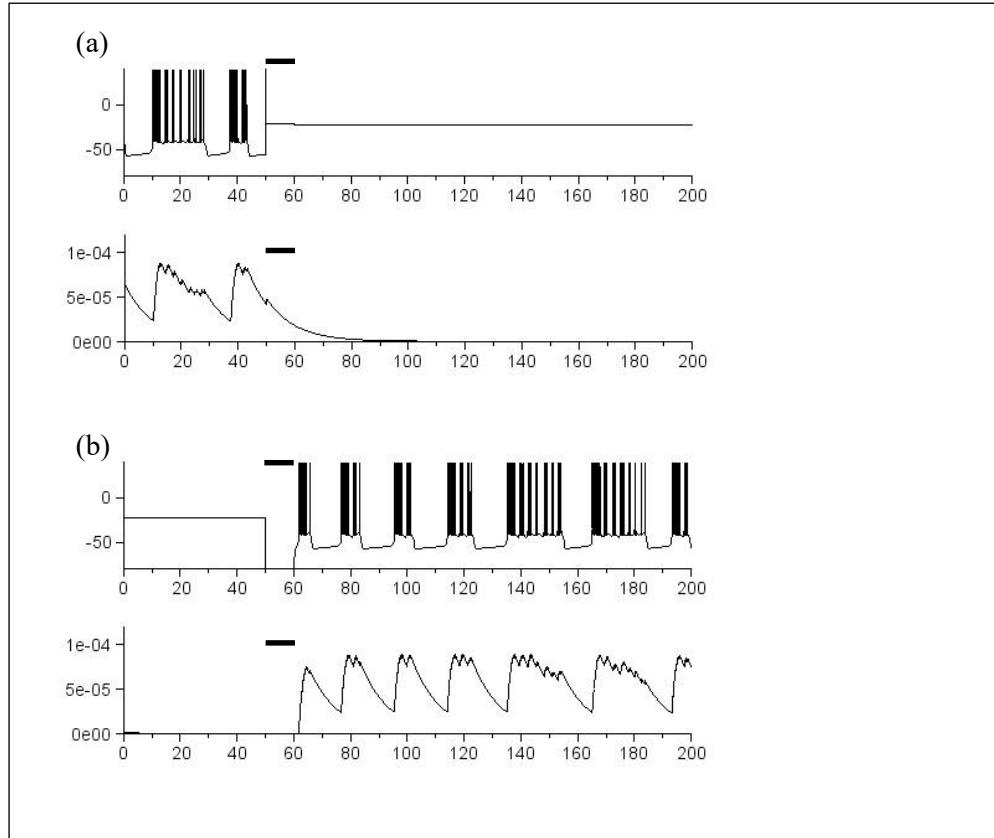


Figure 2. The transition from a chaotic bursting state to a depolarized steady state in (a) and vice versa in (b) due to the transient current pulse. (a) A current pulse with an amplitude of 10 nA and a duration of 10 s is injected at 50 s. The initial conditions are the same as Figure 1(a). (b) A current pulse with an amplitude of -40 nA and a duration of 10 s is injected at 50 s. The initial conditions are the same as Figure 1(b). In (a) and (b), the horizontal axis indicates t (s) in both the top and bottom panels, while the vertical axis indicates V (mV) in the top panel and $[Ca]$ (mM) in the bottom panel. Horizontal bars between 50 and 60 s denote the duration of the transient current pulse.

4 Conclusion

This study focuses on the bistability of a mathematical model of snail RPa1 neurons, verifying a novel type of bistability between a chaotic bursting state and a depolarized steady state. This type of bistability differs from the previously reported bistability between a chaotic spiking state and a periodic bursting state [1]. Notably, bistability has been reported in previous studies of mathematical

models of neurons different from the snail RPa1 neuron model (e.g., a leech interneuron model [4], a circadian pacemaker neuron model [5]). Again, the type of bistability reported in previous studies differs from that observed in the present study: the leech interneuron model shows bistability between a periodic bursting state and a hyperpolarized steady state [4], while the circadian pacemaker neuron model shows bistability of a periodic spiking state and a depolarized steady state [5]. In conclusion, the present study contributes to a deeper understanding of the relationship between bistability and chaotic activity in the snail RPa1 neuron model.

Acknowledgements. The author would like to thank Enago (www.enago.jp) for the English language review.

References

- [1] Komendantov, A. O. and Kononenko, N. I., Deterministic chaos in mathematical model of pacemaker activity in bursting neurons of snail, *Helix pomatia*, *Journal of Theoretical Biology*, **183** (1996), 219-230. <https://doi.org/10.1006/jtbi.1996.0215>
- [2] Shirahata, T., Characterization of the kinetic properties of tetraethylammonium (TEA)-sensitive potassium conductance in a mathematical model of snail neurons, *Advanced Studies in Theoretical Physics*, **13** (2019), 189-194. <https://doi.org/10.12988/astp.2019.9417>
- [3] Shirahata, T., Calcium conductances can modulate burst duration in a mathematical model of snail RPa1 neurons, *Advanced Studies in Theoretical Physics*, **15** (2021), 123-129. <https://doi.org/10.12988/astp.2021.91545>
- [4] Barnett, W., O'Brien, G. and Cymbalyuk, G., Bistability of silence and seizure-like bursting, *Journal of Neuroscience Methods*, **220** (2013), 179-189. <https://doi.org/10.1016/j.jneumeth.2013.08.021>
- [5] Shirahata, T., Evaluating bistability in a mathematical model of circadian pacemaker neurons, *International Journal of Theoretical and Mathematical Physics*, **6** (2016), 99-103.

Received: December 25, 2025; Published: January 7, 2026