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Abstract 

 

This study presents a novel form of bistability in a mathematical model of snail 

RPa1 neurons. This model was previously reported as a system of nonlinear 

ordinary differential equations simulating the membrane potential oscillations of 

snail RPa1 neurons. Here, we perform a numerical simulation revealing that 

whether the model shows a chaotic bursting state or a depolarized steady state is 

dependent on the initial condition. Notably, a certain transient current pulse can 

change the dynamical state of the model from a chaotic bursting state to a 

depolarized steady state, or vice versa. Taken together, these results indicate that 

the snail RPa1 neuron model can show bistability between chaotic bursting and 

depolarized steady states. 
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1 Introduction 
 

   The mathematical model of snail RPa1 neurons is noteworthy because it shows 

rich dynamical behaviors. Specifically, this model shows two types of chaotic 

activity: a chaotic spiking state and a chaotic bursting state [1]. This model was 

originally developed as a system of nonlinear ordinary differential equations 

(ODEs) based on the Hodgkin–Huxley concept to simulate the dynamics of the 

membrane potential of snail RPa1 neurons [1]. In addition to showing chaotic 

activity, a previous study demonstrated that the model shows a certain type of 

bistability, namely, the coexistence of a chaotic spiking state and a periodic 

bursting state under a certain specific parameter condition [1]. Therefore, it is 

natural to ask whether the model also exhibits bistability that involves a chaotic 

bursting state and, if so, the type of bistability that the model shows. In other 

words, what kind of dynamical state can coexist with a chaotic bursting state? 

Answering this question will provide a deeper understanding of the relationship 

between bistability and chaotic activity in the snail RPa1 neuron model. However, 

this question remains unanswered. Previous studies report that a chaotic bursting 

state can change into different dynamical states due to variation in the various 

model parameters [2, 3]. For example, a chaotic bursting state can change into a 

depolarized steady state due to variation in the time constant of potassium 

conductance [2]. Given this previous finding, we hypothesized that the model may 

exhibit bistability between a chaotic bursting state and a depolarized steady state. 

To evaluate this hypothesis, the present study performs a numerical simulation of 

the snail RPa1 neuron model. 

 

 

2 Mathematical Model 
 

   The snail RPa1 neuron model investigated in the present study is described by 

the following system of nonlinear ODEs (see [1] for further details): 
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, in which V (mV) (the membrane potential of snail RPa1 neurons), mB, hB, m, h, n, 

and mCa (various gating variables), and [Ca] (mM) (the concentration of 

intracellular calcium) are state variables; t (s) is time; Iapp (nA) (a transient current 

pulse) is a system parameter; and F is the Faraday constant. Equations (1)–(8) are 

numerically solved using the free and open source software Scilab 

(http://www.scilab.org/). 

 

 

3 Numerical Results 
 

   First, we perform a numerical simulation of the snail RPa1 neuron model 

varying the initial conditions in which Iapp is set to 0. As V and [Ca] are 

experimentally interesting state variables [1], we illustrate the time courses of V 

and [Ca] in Figure 1. When the initial condition is set that V = −42 mV, mB = 0.95, 

hB, = 0.77, m = 0.14, h, = 0.1, n = 0.048, mCa = 0.0002, and [Ca] = 6.5 × 10−5 mM, 

the model shows a chaotic bursting state: bursting with various burst duration 

lengths is observed (Figure 1a, top panel). In contrast, when the initial condition is 

set that V = −22 mV, mB = 0.01, hB, = 0.999, m = 0.98, h, = 0.003, n = 0.62, mCa = 

0.01, and [Ca] = 1.0 × 10−6 mM, the model shows a depolarized steady state: no 

oscillatory activity is observed (Figure 1b top). 

   Next, we perform a numerical simulation varying Iapp, and the time courses of V 

and [Ca] (Figure 2). When the simulation starts with same initial conditions as in 

Figure 1a, the model shows a chaotic bursting state when t is at 50 s or earlier 

(Figure 2a, top panel). Under such conditions, if a transient current pulse is 

injected into the model (i.e., t is between 50 and 60 s, Iapp is 10 nA; otherwise, Iapp 

is 0 nA), the dynamical state of the model changes to a depolarized steady state 

during the transient current pulse (see the horizontal bar in Figure 2a, top panel).  

http://www.scilab.org/
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Even if the current pulse is terminated (i.e., t is 60 s and longer), the dynamical 

state of the model does not recover to a chaotic bursting state, i.e., the depolarized 

steady state continues (Figure 2a, top). Finally, we investigate the opposite 

direction (i.e., a depolarized steady state → a chaotic bursting state) where the 

simulation starts with the initial condition shown in Figure 1(b) and a transient 

current pulse is injected (i.e., t is 50 to 60 s, Iapp is −40 nA; otherwise, Iapp is 0 nA) 

(Figure 2b). In this case, we observe that the dynamical state of the model changes 

from a depolarized steady state to a chaotic bursting state (Figure 2b, top). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Time courses of V and [Ca] of the snail RPa1 neuron model under 

different initial conditions. The initial conditions are as follows: in (a): V = −42 

mV, mB = 0.95, hB, = 0.77, m = 0.14, h, = 0.1, n = 0.048, mCa = 0.0002, and [Ca] = 

6.5 × 10−5 mM; and in (b) V = −22 mV, mB = 0.01, hB, = 0.999, m = 0.98, h, = 

0.003, n = 0.62, mCa = 0.01, and [Ca] = 1.0 × 10−6 mM. In both cases, Iapp is 0. In 

(a) and (b), the horizontal axis indicates t (s) in both the top and bottom panels, 

while the vertical axis indicates V (mV) in the top panel and [Ca] (mM) in the 

bottom panel. 
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Figure 2. The transition from a chaotic bursting state to a depolarized steady state 

in (a) and vice versa in (b) due to the transient current pulse. (a) A current pulse 

with an amplitude of 10 nA and a duration of 10 s is injected at 50 s. The initial 

conditions are the same as Figure 1(a). (b) A current pulse with an amplitude of 

−40 nA and a duration of 10 s is injected at 50 s. The initial conditions are the 

same as Figure 1(b). In (a) and (b), the horizontal axis indicates t (s) in both the 

top and bottom panels, while the vertical axis indicates V (mV) in the top panel 

and [Ca] (mM) in the bottom panel. Horizontal bars between 50 and 60 s denote 

the duration of the transient current pulse. 

 

 

4 Conclusion 

 

This study focuses on the bistability of a mathematical model of snail RPa1 

neurons, verifying a novel type of bistability between a chaotic bursting state and 

a depolarized steady state. This type of bistability differs from the previously 

reported bistability between a chaotic spiking state and a periodic bursting state 

[1]. Notably, bistability has been reported in previous studies of mathematical  

 

 

(a)

(b)
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models of neurons different from the snail RPa1 neuron model (e.g., a leech 

interneuron model [4], a circadian pacemaker neuron model [5]). Again, the type 

of bistability reported in previous studies differs from that observed in the present 

study: the leech interneuron model shows bistability between a periodic bursting 

state and a hyperpolarized steady state [4], while the circadian pacemaker neuron 

model shows bistability of a periodic spiking state and a depolarized steady state 

[5]. In conclusion, the present study contributes to a deeper understanding of the 

relationship between bistability and chaotic activity in the snail RPa1 neuron 

model. 
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