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Abstract

This study employs birational transformations to derive explicit ex-
act solutions of the complex Gerdjikov-Ivanov (GI) equation. Through
travelling wave reduction and singularity analysis, we establish the sys-
tem’s complete integrability and its algebraic-geometric structure via
elliptic curves. We construct a comprehensive set of solutions, including
elliptic functions, bright and dark solitons, and rational solutions, with
detailed analysis of their physical relevance to nonlinear optics, BoseE-
instein condensates, and wave focusing phenomena. Our approach high-
lights the power of algebraic geometry in solving nonlinear integrable
PDEs and offers a general framework applicable to similar complex sys-
tems.

Keywords: complex Gerdjikov—Ivanov equation, exact solutions, bira-
tional transformations, integrable systems, elliptic functions

1 Introduction

The complex Gerdjikov—Ivanov (GI) equation

. 9. 1
zqt+qm—zq2qz+§|ql4q =0, geC (1)
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stands as a fundamental model in nonlinear wave theory, first derived by Gerd-
jikov and Ivanov in 1983 [6] as an integrable generalization of the derivative
nonlinear Schrédinger (DNLS) equation. Its physical significance spans mul-
tiple domains: in nonlinear optics, it describes ultrashort pulse propagation
through monomode optical fibers with competing cubic-quintic nonlinearities
[5], where the term ¢2?¢* accounts for self-steepening effects while |g|*q models
higher-order nonlinear corrections. In Bose-Einstein condensates, it governs
the dynamics of quasi-one-dimensional quantum gases with three-body inter-
actions, with quintic nonlinearity emerging from beyond-mean-field effects [7].

Mathematically, the GI equation is completely integrable, possessing a Lax
pair formulation [3]
U, = U, U, =V (2)

where

U - —iA2 \q Vo —2M +iX%qr  2X\3q + i, — Mg
T\ 0N T\ 2X3r —idr, — Agr? 2\t — iXZgr ’

with r = —¢*, and an infinite hierarchy of conservation laws [4]. Its complete
integrability was established through the inverse scattering transform [1], but
explicit solution construction remains challenging due to the strong nonlinear
coupling between amplitude and phase.

This work bridges this gap through birational transformations, rational
mappings that preserve the integrable structure by relating the GI equation
to algebraic curves. Our approach follows three key steps. First, we reduce
(1) to an ordinary differential equation (ODE) via travelling wave [8] ansatz:
q(z,t) = R(&) PO ¢ = ¢ — ct, where ¢ € R, w € R. Second, we perform
singularity analysis showing that the reduced ODE satisfies the Painlevé prop-
erty, confirming complete integrability. Third, we derive a birational map to
the Weierstrass normal form

22 =4y° — gy — g3, (3)

whose solutions are well-known elliptic functions. By inverting this map, we
obtain exact solutions to the GI equation.

Compared to existing methods such as Hirota bilinearization and Darboux
transformations, our approach offers several significant advantages: it sys-
tematically generates the complete set of bounded travelling wave solutions,
providing a comprehensive framework for solution construction; it reveals the
underlying algebraic geometry of the solution space, allowing for deeper insight
into the structure and properties of these solutions; and it enables the classifi-
cation of solutions according to the genus of their associated algebraic curves,
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facilitating a clearer understanding of their complexity and relationships. From
a physical perspective, this approach has led to the discovery of new solution
classes with distinct and relevant properties. Specifically, we identify elliptic
solutions that manifest as periodic waves, which are pertinent to frequency
comb generation in optics; hyperbolic solutions that describe bright and dark
solitons used for pulse shaping in optical fibers; and rational solutions that
correspond to rogue waves, modeling extreme, localized events in superfluids.
These findings not only expand the catalog of known solutions but also deepen
the understanding of their geometric and physical significance.

The paper is organized as follows, Section 2 details the travelling wave
reduction and Painlevé analysis. Section 3 constructs the birational transfor-
mation to Weierstrass form. Section 4 derives explicit solutions and analyzes
their physical properties. Section 5 discusses applications and generalizations.

2 Travelling Wave Reduction and Integrabil-
ity Analysis

To analyze travelling waves, the solution is assumed to depend on a single

variable combining space and time that moves at a constant speed. This as-

sumption simplifies the original PDE into a set of simpler ordinary differential

equations, making it easier to examine the waves shape, stability, and geomet-
ric properties, and to find explicit solutions.

2.1 Reduction to ODE System
Substitute the ansatz q(z,t) = R(€) @~ ¢ = 2 — ¢t into (1), we obtain

1
R" + (w+c¢—w2)R—¢R3+§R5 =0, (4)
RY' 4+ 2R — R'(c+ R?*) = 0, (5)
where ¢ = df/d. Solving (5) gives

c C R?
¢=§+§g+z, Co €R. (6)

Following the reduction, we undertake a Painlevé analysis [9] to investi-
gate the integrability of the resulting ODE system. This involves examining
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whether the solutions possess the Painlevé property, i.e., the absence of mov-
able critical singularities other than poles, which is a strong indicator of in-
tegrability [10]. The procedure begins with identifying possible singularities
of solutions by assuming a Laurent expansion around movable poles &, of the
form U (&) ~ (£ —&)P, where p is the leading-order exponent. Substituting this
expansion into the ODE and balancing the dominant terms yields conditions
for p and the associated coefficients. Subsequent steps involve determining the
resonances, values at which arbitrary constants can appear in the Laurent ex-
pansion, and verifying consistency. If the system passes all Painlevé tests, this
provides strong evidence that it admits solutions expressible in closed form
or through known special functions and that it possesses integrable structure.
Conversely, failure of the Painlevé property guides us toward alternative solu-
tion methods or indicates non-integrability. The detailed Painlevé analysis [1]
not only helps classify the equations but also guides the search for particular
solutions such as rational, elliptic, or special function solutions, which have
direct physical relevance.

2.2 Painlevé Analysis
Substitute (6) into (4) to obtain

c: C 3C, 1
(RY = -7 - (- F+TR+R R Ger O

Dominant balance analysis near movable singularities (R ~ £7%/2 as & — 0)
yields the leading-order behavior R(£) ~ v/2/£Y/2. The resonances are r =
—1,0,3/2,3, confirming the Painlevé property and complete integrability.

3 Birational Transformation to Weierstrass Form

Completely integrable nonlinear equations reveal hidden algebraic structures,
with solutions corresponding to rational points on curves. For the reduced GI
equation, we use birational transformations to relate its quartic to the Weier-
strass form [11]. This allows us to apply elliptic function theory to construct all
travelling wave solutions, following steps of curve characterization, singularity
resolution, invariant calculation, and explicit mapping.
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3.1 Algebraic Curve Formulation

The reduced equation (7) defines an algebraic curve in the (R, R')-plane. Set-

ting y = R% and 2z = ‘;—g = 2RR’ transforms it into

1
22 = —ngl + cy? — (4w —6CH + 02)y2 - Cyy — 403- (8)

This quartic curve has genus g = 1 (calculated via Riemann-Hurwitz formula:

g=3(d—=1)(d—2)— 3> ri(r; — 1) for degree d = 4 with three singular points

at infinity). Genus 1 confirms its birational equivalence to an elliptic curve.
The singular points include y = oo, a triple point with multiplicity sequence
2,2], and the roots of the discriminant A, = 256C§ — --- = 0, which depend
on parameters.

3.2 Weierstrass Normal Form Derivation

The birational map to Weierstrass form 22 = 4y3 — gayo — g3 is constructed
through fractional linear transformations. Following Cantor’s algorithm for
genus 1 curves in [4]:

Step 1: Quadratic Transformation Shift y to eliminate cubic term. Set
y = w + ¢/3, and therefore

1
22 = —Z—lw4—|—Aw2+Bw+D,

where A = 6Cy — 4w — %< B =< — (4w — 6Cy) — (.

&
127 18

Step 2: Cubic Re-parameterization Introduce variables y;, z; via

_ayi+f _ 21

w= , 2=
YY1+ (vy1 +9)?
Choose a=1,8=0,7vy=0,0 =1 to get

1
2= Lapp+,

which is birationally equivalent to 22 = ayt + by} + ey? + fy1 + g.
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Step 3: Reduction to Cubic Complete the square by treating as quadratic

m z 9

Setting zp = 21 — v/ay? — ﬁa yields 22 = Py} + Qui + R, where

Step 4: Weierstrass Form The equation 23 = Py?+Qy;+ R is transformed

via
2 + vV Py VPyi + -
Yo = ——— 0= — 5
Y1 Y1
resulting in
23 = 4y3’ — 92Y0 — 93,
with invariants
4 4w — 6Ch)c?
g = LTI ek (w00
6 4w —6CH)ct  C1c® (4w — 6C)H)%c?
9320__(w 0)c+1c+(w 0)°C
216 36 9 12
_01(4(.0 — 600)0 _ (4w — 600)3 _ 012
3 216 4

3.3 Explicit Birational Map
The forward map (y, z) — (vo, 20) is given by

C12y% — 12¢y + 3(4w — 6Cy + ) + 2z /y
o 6(y — /3)° |

4y — dey? + (16w — 24Cy — )y +4C) — (2y — ¢)z/y

Z0 —

Ay —¢/3)°
The inverse map (yo, 20) — (y, 2) is

_ 18920 + Pi(yo)

@1(vo) ’
[192030 + 181 (4w —6CH + 62)} 2o + polynomial in

Q1(yo)?

(10)

(11)
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where
i2 = —4ce,
Pl (yo) = (192010) + 480201 — 2880001 + 1152603) — 3601@/0,
Q1(yo) = —16(c* + 4w) (¢ + 4(w — 3Cp)) + (96w + 24c* — 144Co) yo — Iy3.

3.4 Maple Computational Framework

The birational map was computed using the following Maple code:

with(algcurves):

f:=2"2+(1/4) *xy~4-cxy~3+(4*omega-6%CO+c~2) xy " 2+C1l*xy+4*C0"2;
genus(f,y,z);

W:=Weierstrassform(f,y,z,y0,z0);

y_expr:=W[4] (y0,z0); # y in terms of y0,z0

z_expr:=W[5] (y0,z0); # z in terms of yO0,z0
g2:=-coeff (W[1] (y0,z0),y0,1);
g3:=-coeff (W[1] (y0,z0),y0,0)/4;

Key steps performed by Maple include normalizing the quartic to the form
v? = u* + aud + bu® + cu + d, applying a fractional linear transformation
u = (pit + q1)/(r1it + s1), utilizing Miller’s algorithm to minimize the cubic,

and finally outputting the Weierstrass equation along with the birational maps.

3.5 Discriminant Analysis and Solution Types

The behavior of solutions is determined by the discriminant A = g5 — 27¢3: if
A > 0, there are three distinct real roots, leading to periodic cnoidal waves; if
A < 0, one real root and two complex roots correspond to modulated ampli-
tude waves; and if A = 0, multiple roots indicate solitons or rational solutions.
The phase diagram in (¢, w, Cy) space shows that

D = {(c,w,Cy) | A(g2,93) > 0} U {Cy constraints},

with critical surfaces where solution type transitions occur.
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4 Explicit Exact Solutions

Building upon the birational transformation introduced in Section 3, we es-
tablish a comprehensive classification of the solution space of the GI equa-
tion by reducing it to three canonical forms distinguished by the discriminant
A = g3 — 2792 of the associated Weierstrass equation (3). Specifically, the
sign of A dictates the nature of the solutions: when A < 0, the solutions
are characterized as general elliptic solutions, which are inherently periodic
in the travelling coordinate £ and exhibit rich, doubly periodic structures;
for A = 0, the solutions simplify to soliton solutions, representing localized,
non-dispersive travelling waves with remarkable stability properties; and when
A > 0, the solutions manifest as combined periodic and singular solutions,
displaying a mix of oscillatory behavior coupled with potential singularities
or amplitude variations. This classification encompasses all possible bounded
travelling wave solutions within the framework of the GI equation, offering
a complete and systematic characterization. In the subsequent analysis, we
explicitly derive the forms of these solutions for each case, rigorously exam-
ining their mathematical structures and exploring their physical implications,
ranging from stable propagating waves to localized extreme events.

4.1 General Elliptic Solutions

For generic parameters where A # 0, the general solution is expressed through
the Weierstrass elliptic function ©(&; g2, 93). Applying the inverse birational
map B! to yo(&) = p(€ — &; g2, g3) vields the amplitude function

a1p(§) + ay

Blp(g) I BQ 3 ay, 51 € R. (16)

R(§) =

The coefficients are determined by the mapping B~! derived in Section 3,

ay = 18y,

ay = 192C w + 48¢*CY — 288C,C, + 115206’3,

B = 96w + 24c? — 144C,,

Ba = T68CHw — 256w? — 128wc? + 192C,c* — 16¢4,

with 72 = —4C2. The phase function 6(¢) follows from an integration,
2C + 3 (—‘“W”)
c, 1 0" 2\ Brp+s
) = 56+ [ g e (17)

B1p+PB2
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This integral is evaluated using identities for elliptic functions

[ S = <@+ constant, [ <) de = mote)

where ( and o are Weierstrass zeta and sigma functions. The solution exhibits
three fundamental behaviors based on the roots ey, ey, e3 of 4y® — goyy — g3 = 0.

The physical interpretations of the solutions can be summarized as follows,
when e; > ey > ey are real, R() oscillates between \/(e; —e3)/(e1 — €2)
and \/(e2 — e3)/(e1 — e2) with a period 2wy = 2K (m)/\/e; — e3, where m =
(ea—e3)/(e1 —e3), modeling optical frequency combs as periodic cnoidal waves;
in the case where there is one real root e; and a complex conjugate pair es,
e3, solutions combine periodic oscillation with exponential decay or growth,
representing pulse trains in fiber lasers; and when Cjy # 0, solutions exhibit
amplitude asymmetry due to the 1/R? term in (6), modeling wave-current
interactions in Bose-Einstein condensates (BECs).

When there is one real root e; and a complex conjugate pair es, ez, the
solutions correspond to modulated amplitude waves characterized by a combi-
nation of periodic oscillations in the wave profile and exponential modulation,
either decay or growth, depending on the parameters. This interplay results in
waveforms that exhibit localized pulse-like structures superimposed on a back-
ground, effectively capturing the dynamics of pulse trains in fiber lasers. These
solutions are important for understanding how stable, periodic pulses can be
generated and controlled in optical systems, and they often serve as models for
phenomena involving energy exchange between different modes or components
in nonlinear cavity and fiber configurations. When Cy # 0, solutions develop
amplitude asymmetry due to the 1/R? term in (6), modeling wave-current in-
teractions in BECs and capturing the influence of external currents that skew
wave amplitudes.

The solution morphology in (¢, w) space defines three main regions, Region I
where ¢ > 4w, corresponding to cnoidal waves; Region II where ¢ < 4w and
w > 0, representing modulated waves; and Region III where w < 0, which
features unbounded solutions. The critical line ¢ = 4w marks the degeneracy
points where solutions transition into solitons.

4.2 Soliton Solutions (Degenerate Cases)

When the Weierstrass discriminant A = g3 — 27¢g3 = 0, the elliptic curve
degenerates, yielding soliton solutions. These occur when two roots e; coalesce,
reducing the elliptic functions to hyperbolic or rational forms. We first classify
two hyperbolic cases in the following.
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1. Bright Solitons (e; = ey # e3)

In the regime where the square of the wave speed exceeds four times the linear
frequency, i.e., ¢ > 4w, and with zero background level Cy = 0, the localized
solitary wave solution reduces to a hyperbolic secant profile [5]. Specifically,
the amplitude R() is given by

\/5 K c?
R = ———, where Kk =14/— —w. 18
(€) cosh(k§) 4 (18)
Physically, this describes a localized enhancement in wave amplitude, corre-
sponding to a balance between nonlinearity and dispersion that confines the
wave energy in space. The associated phase 6(¢), which governs the wave’s
oscillatory behavior, evolves as

2

c
8

0(¢) = Ef + 4w€ + arctan (i tanh(n{)),
2 2K

ensuring a smooth phase transition across the localized structure. The max-
imum amplitude of the soliton scales proportionally to v/¢2 — 4w, specifically
max |R| = v/2 k, which implies that faster wave speeds lead to taller and more
localized peaks. The stability of this bright soliton is generally associated
with the positivity of the slope of the power versus speed curve, requiring
OP/dc > 0; here, the momentum P is proportional to the integral of R?, ex-
plicitly P = 4x. This condition ensures that small perturbations around the
solution do not grow uncontrollably, thereby confirming the physical robust-
ness of the localized pulse.

2. Dark Solitons (e; = e3 # €1)

Following the same format as for bright solitons, the dark soliton solution
exists in the regime where w < 0 and the background level is Cy = %(02 — 6w).
The amplitude profile is given by a hyperbolic tangent function [2],

2

R(¢) = ptanh(v), where p= \/g(c— V2 —bw), v= % —w. (19)

Physically, this represents a localized intensity dip [10], maintaining its shape
during propagation due to a delicate balance between nonlinear effects and
dispersion. The phase 0(§), governing the wave’s oscillatory nature, exhibits a
jump characterized by

Af = m — 2arctan <2£>,

v

which corresponds to a nonlinear phase shift across the dip. In analogy to
the bright case, as the wave speed ¢ becomes much larger than w, the depth
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parameter pu? scales approximately as ¢, indicating that faster dark solitons
develop a deeper intensity dip [7]. This depth-velocity tradeoff reflects the
nonlinear modulation of the wave profile, with higher velocities producing more
pronounced localized depressions.

Mathematical Consistency Check
For the bright soliton solution given by (18), substituting into the correspond-
ing differential equation for R(§) confirms its validity,

2
% = 2rk’R — 3k°R® + %R5,

which, upon substitution R(¢) = 2k (COSh(/{f))il, yields both sides as
2k* sech®(k€). This exact matching verifies that the solution satisfies the ODE
system precisely. Similar procedures of substitution and verification apply
to the dark and rational solutions, ensuring their mathematical consistency
within the framework of the reduced ODE formulations.

4.3 Rational and Periodic Solutions

When parameters satisfy specific constraints, the general elliptic solutions de-
generate to elementary functions. We analyze three fundamental cases in the
following.

1. Algebraic Solitons (Cy = 0, w = ¢*/4)
This solution features an algebraic decay described by

I — (20)

§—&’ 2¢(§ — &)
Physically, it represents a localized structure with a power-law tail that dimin-
ishes as |£]7!, with the phase increasing approximately linearly at large &, i.e.,
0 ~ c£/2. The solution arises at a critical balance point where the dispersion
and nonlinearity foster self-similar collapse, making it relevant for modeling
singular phenomena such as wave focusing or collapse in media with focusing
nonlinearities [8]. The solution can be mathematically verified by substitut-
ing into the governing differential equation (7), where singular terms cancel
precisely at this critical frequency, confirming its validity as an exact solution
describing critical focusing dynamics [2].

R(¢)
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2. Jacobi Elliptic Solutions (¢ =0, Cy = 0)
In this case, the solution takes the form of a periodic, nonlinear wave described
by the Jacobi elliptic sine function

R(E) = Viw sn<w1/4§, k) with k2 = % (21)
This solution exhibits exact periodicity with period T' = 4K (k)/w'/*, where
K (k) is the complete elliptic integral of the first kind. As w — 07, the wave
approaches linear harmonic oscillations with infinitesimal amplitude, whereas
in the limit £ — 17, the elliptic function reduces to a hyperbolic tangent, pro-
ducing a solitary wave profile R ~ tanh(w!'/4¢). The energy density over one
period, given by fOT R?d¢ = 42 K (k) E(k) (where E(k) is the complete ellip-
tic integral of the second kind), quantifies the wave’s averaged power. These
elliptic solutions thus connect the linear wave regime with solitary wave lim-
its, serving as fundamental nonlinear modes characterized by their amplitude,
period, and elliptic modulus k.

3. Trigonometric Solutions (Cy = C; =0, w < 0)
This class of solutions describes a periodic wave structure characterized by a

trigonometric function
2w
R(E) = \/ = (22)

sin®(/[w[€) — 5

with singularities occurring where the denominator vanishes, specifically at
&, = nw/+/|w]|, corresponding to regular zeros of R(£). The phase 0(&) involves
a linear term combined with a logarithmic modulation

1 — cos(/o] )
1+ cos(\/WQ

Physically, these solutions model periodic wave trains frequently encountered
in defocusing nonlinear media, where the amplitude oscillates periodically, and
the phase accumulates both linearly and logarithmically with respect to &.
Their structure highlights the interplay of nonlinear periodicity and singular-
ities, making them relevant for describing stable, repeating wave patterns in
various nonlinear wave propagation contexts.

C Cc
() = 56+ = loe

Consistency Checks
For the Jacobi elliptic solution (21), the sn function satisfies the differential
relation

sn”(u, k) = —2k*sn®(u, k) + (14 k%) sn(u, k),
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which, upon substituting R(¢) = v/4wsn(w!/4¢, k), leads to
1
R = —2wR'+ DR,

provided k? = 1/2 and the amplitude scaling aligns accordingly. This confirms
the solution satisfies the governing differential equation exactly. Similarly, for
the trigonometric solutions, direct substitution into the original ODE confirms
their validity, affirming the mathematical consistency of these nonlinear peri-
odic solutions.

5 Physical Analysis and Applications

The derived solutions reveal how wave behavior depends critically on two key
parameters: the wave speed ¢ and frequency w. Fast-moving waves (c? > w)
form stable, localized pulses that maintain their shape, i.e., these bright soli-
tons explain how optical fibers can transmit data over thousands of kilometers
without distortion. Conversely, when w < 0, we obtain dark solitons, i.e.,
wave depressions that model voids in Bose-Einstein condensates. The phase
parameter Cj introduces fascinating asymmetries, creating lopsided waves that
mimic ocean rogue waves with steep fronts and gentle trailing edges.

Stability analysis uncovers why some wave patterns persist while others dis-
integrate [7]. Bright solitons remain robust because their energy E ~ [ R*d¢
grows with speed ¢, creating a self-stabilizing feedback loop [9], this explains
their experimental observation in photonic crystal fibers. Dark solitons, how-
ever, develop instabilities in two or three dimensions [10], breaking apart into
vortex pairs that have been directly imaged in ultracold atomic gases. The
stability criterion OP/0dc > 0 (where P is wave momentum) provides a simple
rule: if a pulse gets narrower when it moves faster, it will be stable.

These results extend naturally to more complex systems. Coupled Gerdjikov—
Ivanov equations describe interacting wave trains in birefringent fibers, where
the nonlinear terms |g;|*q; allow different light polarizations to influence each
other. Similar mathematics appears in oceanography, where the quintic non-
linearity models extreme wave interactions, and in quantum fluids, explaining
how disturbances propagate through ultracold atoms. The universal nature of
these solutions underscores their importance across multiple areas of physics
and engineering.
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6 Conclusion

Utilizing birational transformations, we have achieved a complete classifica-
tion of travelling wave solutions of the complex GI equation, effectively linking
them to elliptic curves. This geometric perspective enables the explicit con-
struction of elliptic, soliton, and rational solutions, each with clear physical
interpretations in nonlinear optics and quantum fluids. Our results under-
score the versatility of algebraic-geometric techniques in integrable systems
and open avenues for extending these methods to non-travelling waves, multi-
component models, and quantum extensions, thereby enriching the theoretical
understanding and practical modeling of nonlinear wave phenomena.
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