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Abstract

The scalar field equation is expanded by the Newman Penrose for-
malism in a general curved space time. The result is specialized to the
Kerr and the Lemaitre-Tolman-Bondi metric. The equation results fi-
nally in known expression. It is directly separable in Kerr metric and in
a class of Lemaitre-Tolman-Bondi cosmological model. The problem of
the determination of the normal mode solutions is possible within the
Lemaitre-Tolman-Bondi cosmological model.
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1 Introduction

The scalar field equation is a spin zero relativistic equation. It has been widely
studied not only because it is the lowest spin value equation, but also for
applications that range from quantum mechanics to cosmology.

From a mathematical point of view, the equation is generally developed in
the coordinate formalism in terms of partial derivatives. To get the final form
of the equation one could as well proceed by the Newman-Penrose formalism
[1, 2], that is a special case of the tetrad formalism. Accordingly the expansion
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of covariant spinor derivatives involves the directional derivatives and the spin
coefficients [1]. This is a cumbersome method when applied to the scalar field
equation, but it seems very useful in the formulation and separation of higher
spin value equations [3, 4, 6, 5]. Since explicit null tetrad frames are well known
in many cases of physical space time metric (e.g. [7]), it seems useful to study
the scalar field equation by the Newman Penrose formalism. Accordingly, the
scalar field equation is first expanded in a general curved space time. The
general result is then made explicit in Kerr and in Lemaitre-Tolman-Bondi
space time. These are metrics of physical interest not only in themselves, but
also because they contain the Schwarzschild and the Robertson-Walker metric
respectively. In all cases the final result coincides with that directly obtained
by the pure coordinate formalism. Separability of the equation directly follows
in the Kerr metric. In LTB metric, separability holds for a subclass of LTB
cosmologies. Some comments on the determination of the normal modes of
the equation are also done that are of relevance in view of the quantizaton of
the scalar field.

2 Basic formalism

The scalar field equation is considered here in the general 4-dimensional Rie-
mann space time. The study is based on the torsion free Newman Penrose
2-dimensional spinor formalism. It is based on the choice of a null tetrad
frame of suitable normalized contravariant four vectors {I’,n’, m*, m'} [7]:

The directional derivatives are customary denoted:

D = lz(?, == 800/, A = n@, == 811/ (4)
0= mlal = (901/, — m’& = (910/ (5)

The following relations are useful:

YZL = O'fB/YAB/; VAB/¢ = aAB’Q5 (6)
Oap 0P = DA+ AD — 66" — 6%6 (7)

. . . . !
where ¢ = ¢(x) is a scalar function, Y, a four dimensiona vector and the o48"’s

the van der Waerden matrices [2].
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3 Scalar field in Newman Penrose formalism

In space time of metric tensor g,, the Lagrangian of the (minimally coupled)
scalar field ¢(x) of mass p, the Lagrangian equation and the torsion free scalar
field equation reads (e. g., [8]):

! 1
L= gV Vaxw — 5i2?) 0
oL oL
3 o) ®)
Vey VP + P = 0 (10)

The covariant spinor derivatives can be made explicit in terms of directional
derivatives and spin coefficients. One has

Vax VXY = 0%, V(02X ¥) (11)
= 0ap 07 ) + T p(0759) + (D gy ) (04%00) (12)

By using the conventional notation for the spin coefficient I, (see, e.g., the
table 4.5.16 in [2]) one has then

Vax VA = 04p 04 + (e — p+ € — p) 3™
+(/4L_’7+,UJ* _7*)611’¢+ (5 — 4T _a*)aOI’I/}
+(r—a+p" - T*)am’w (13)

The general form of the scalar field equation in the Newman Penrose formalism
in curved space time is therefore

(DA + AD — 65 — 6*6) + p*h + Xp =0 (14)
X=(e—pt+te—p)A+t(p—v+u —7)D
—B—T74+7 —a") —(r—a+ =7 (15)

The general equation is now made explicit in space time of physical interest.

4 Scalar field in Kerr space time

In the present case we refer to Chandrasekhar’s book for notation and prelim-
inary results. Accordingly the assumed metric tensor g, is

1 —2Mr/p? 0 0 2aMr sin® 0/ p?
0 —% 0
G = 0 T 0o (16)
2aMrsin*0/p> 0 0 —sin®@[r? + a? + 2o Mrsin"0]

p
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where A =72 —2Mr +a?, p?> = r?+a?cos? 6. The null tetrad frame assumed
here is the one considered in [7]. The corresponding directional derivatives,
that are reported for the reader convenience, are:

2+2 2+2 A
TA“@+@+%@, A:ra&—%ﬁﬁ;bwﬂﬂ

2p?
ta sin 9 ? a
)= O + 0y, 0" =(6)" 18
w2 T "t e ©) )
where 6 = r + iacosf. The explicit expression of the spin coefficients, can be
found in [7]. (Notice that the conventional rotation coefficient p is denoted by
p in the present Kerr metric case).
We now show that the scalar field equation is completely separable by vari-
able separation. Since the coefficients of the metric tensor are ¢, ¢ independent,
so are the coefficients of the scalar field equation. Therefore, by setting

D=

Y(t,r,0,0) = ¢(r,0) eFT) kmeR (19)

we first consider the effect of the different terms of (14) on . By denoting
F.(z,y) = 0,F(z,y) one obtains :

Acﬁr

)
(40), +¢W}+<B¢>r—a(2ﬁ2@)} (20)

1asin 0

(DA+AD) = {375(40+ 60) + 7 (B —
A
C2p?

(65" +70) = — —{on — C2—

(rC¢ — ia cost gbg)} (21)

M—-r 2rB tasinfiacos@ iarCsinf cot 0
xo= {o[atiory 20y smbnent_iwComd o8, ) (o
where it has been set:
o

A=— B=— = ik(r? 2 ; 2
A’ 27 a = 1k(r° +a®) + iam (23)

= aksinf =C(0 24
C = aksin t 5= C(0) (24)

Reconstructing the equation (14), many terms simplify so that one is left with
— oo — cot 0 gy — 0.(A0.¢) + (2AB + 1i*)p’dp = 0 (25)

By the explicit expression of A, B, p? the last equation separates by setting
o(r,0) = R(r) S(0) with separation constant A, to obtain:

m2
AmlS =0 26
sin? 0+ ] (26)

AO(NOR) + [K*(a® 4+ r?)? + dmaMkr — (u*r® 4+ A, + a®k*)A + a®>m*|R =0 (27)

57 +cot§ S + [a®(k* — p?) cos® 0 —
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The result coincides with those obtained in [9] and similarly in [10, 11] in
the coordinate formalism. The equations (26), (27) have been discussed in
connection with the quantization of the scalar field in Kerr metric [9, 11]. For
recent studies concerning the solution see e.g., [12, 13] and recently [14].

The previous scheme contains the Schwarzschild case by choosing a = 0

n (16), (26), (27). The solution of the field equation is then of the form
o(t,r,0,0) = exp(ikr)Y;, (0, o) R(r) where Y},,,’s are the spherical harmonics
and R(r) satisfies the equation:

d2R+ 2(r — M) dR [ k*r? B A+ m?r?
dr? ~ r(r—2M) dr (r—2M)?2 r(r—2M

>}R:0 (28)

(A=1(l+1)). An integration by series of the last equation has been given in
[15] were also a discussion of the solutions has been done to characterize the
existence of a set of normal mode of the complete scalar field.

The complete solution of the Schwarzschild case has been given in [16].

5 Lemaitre-Tolman-Bondi space time
The LTB metric tensor g, is given by (see, e. g.,[17]):
ds? = gy datdz” = dt* — e"dr? — Y*(df? + sin® 0dp?) (29)

with I' = T'(r,t), Y = Y(r,t). The directional derivatives assumed here are
those relative to the null tetrad frame given in [18]:

1 1
D=—(0,4+¢7%0,), A=——(8—¢€"7?0,), 30
\/—(  +e/20,) \/5( ) —el?0,) (30)
§= Y\/_(ag—i—zcch@) 0 = Y\/_(89—205090) (31)
with corresponding non zero spin coefficients
1
—T/2 _ —T/2
= \/_< —Y,.e ), p= Y\/E<Y}+YT6 ) (32)
cot 0 Iy
=—a=—-———, =—y=—-—— 33
f=-a=—2 NG €=V="17 (33)
In the present case one has (¢ = ¥(t,r,0,9)):
L
(DA + AD)@Z} = gbtt - e_err - ?6 er (34)
1
(30" + 6°0)v> = (0o + ,—%aw)w (35)

LY .
X = (5 + 25— Sy — 20" 2y (36)



36 Antonio Zecca

The final form of the equation in the partial derivatives is then

_ 1 1
VY — € Py — v2 [lbee + mlﬂw + cot ‘97#9}

i, [I;t + 2E] + e Ty, [I; - 21;:

= | +wv =0 (37)

that separates by setting ¢ = x(6,p)¢(r,t). The angular equation gives
X(0,¢) = Yi.(0,¢), the spherica harmonics, so that one is left with the r,¢
equation:

/ !

b ¢ T+ (G = 2000, 4 (5 F 20N 00t (g T =0 (39
that, coincides with what obtained in [19].

Further consideration relative to the separability of scalar field equation
(38) can be developed within the Lemaitre-Tolman-Bondi cosmological models.

Such model represents the general spherically symmetric solution of the
Einstein field equation for a universe filled with freely falling dust like matter
[17] here expressed by the metric tensor (29). By first integration of the Ein-
stein field equation, the LTB cosmological model can be equivalently expressed
by the equations [17]:

R vZ o M>r)
e = T5980) 2 v E(r) (39)
M(r) = 4nG /0 L dry?Y'd(t,r) (40)

E(r), M(r) are arbitrary integration functions , d(¢,r) is the energy density
of the dust matter. The integration of the Newton-like equation is given in
parametric form by (e,.g.[17]):

Y:G%gﬂ))(coshn—l) (n>0)
o M)
t—to(r) = GW(smhn—n) (E>0) (41)
_ o M)
Y—G[_zE(r)](l—cosn) (0 <n<2m)
t—to(r) = G[_Qj\gé:))]?ﬁ (n —sinn) (E <0) (42)
v = [DeMe) e -we]” @ =0 (43)
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where () is an arbitrary integration function.

Coming back to the eq. (38), by using the parametric representations (41-
43) of the solution of the Newton like cosmological equation, the equation (38)
results separable for to(r) = 0 both in case E(r) = 0, M(r) # 0 and in case
E #0,|E’? < M (see e., g. [19]). [Notice that, in both cases, the ”physical
radius” Y has a factorized dependence of the r, ¢ variables as it is evident by
an inspection into eqs. (41)-(43)].

Moreover, in case E # 0 the final separated radial equation can be recast
into the form of an eigenvalue problem of a Weyl-Stone operator that results to
be essentially self adjoint for a (non void) class of E(r) functions. Accordingly,
for such E(r), there exists a set of normal modes of the complete scalar field
equation [19]. The result is useful in view of the quantization of the scalar
field in Lemaitre-Tolman-Bondi cosmological models [20].

A second remark concerns the solution of the scalar field equation in the
Robertson Walker space time. It can be obtained by choosing, in the previous
scheme, expl' = R%(t)/(1 — kr?),Y = rR(t), k = 0,41, where R(t) is the
radius of the Universe. The resulting scalar field equation can be completely
separated by elementary variable separation. The separated angular and radial
equations can be explicitly integrated. Instead the separated time equation
can be integrated only by giving an explicit cosmological time evolution. In
general, a complete set of normal modes of the complete scalar field can be
obtained. This follows by using a scalar product of the solutions, induced by a
conserved current. Such results are well known and were already summarized
in [21].

6 Comments

In the previous Sections it has been shown that the scalar field equation formu-
lated by the Newman Penrose formalism can be made explicit, so to coincide
to the usual one in coordinate variables, in some physical metric cases.

It is known that the Newman Penrose formalism is a powerful tool to study
field equations of arbitrary spin in curved space time. In particular, for higher
spin value, it has been put in evidence that there is a recurrence relation among
the component equations of the field. This enables to reduce the solution of
the massive field equation to a set of separated ordinary differential equations,
thus making possibly easier to solve the field equation. In this line the massive
spin 1/2 and the massless spin 1 field equation were widely studied and solved
in Kerr metric [7]. Also the arbitrary spin massless field equation can be
integrated in Kerr metric and more generally in Petrov type D space time [22,
23]. The arbitrary spin massive field equation were separated in Schwarzschild
metric [4], in a class of LTB cosmologies [5] and in the Robertson Walker metric
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in which case the equation has also been integrated in term of Heun functions
6].

What lacks, for what concerns the previous considerations, is the treatment
of spin 0 field equation in curved space time by the Newman Penrose formalism.
Therefore, besides the mathematical interest, the present paper is intended to
cover that lack that, so far, does not seem to have been done in the literature.
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