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Abstract

The quantization of Lemaitre Tolman Bondi Cosmology is reconsid-
ered. The associated one dimensional Kepler like cosmological equation,
that is extended to a three dimensional space, is canonically quantized.
Formally one is faced with the solution of a 3-dimensional Schrodinger
equation for a particle in a Coulomb potential that parametrically de-
pends on the energy and mass integration functions of the underling cos-
mological model. The acceptable energy spectrum is always not empty,
but in general, it is a proper subset of the mathematical energy spec-
trum. There is also a mass spectrum: if a mass is allowed, than also any
its multiple mass is an acceptable mass. This holds also for the mass
of the universe. Some results are numerically made explicit that also
show the compatibility of the scheme with physical data. A universe
corresponding to a proper state, is characterized by the usual Hydrogen
orbitals in the physical radius. They have an internal much more com-
plex time dependent structure when the physical radius is chosen to be
solution of the underlying one dimensional Kepler equation.
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1 Introduction

It is well known that the Arnold Deser Misner (ADS) decomposition of the
space time metric in terms of lapse function and shift vector is the basis for an
Hamiltonian formulation of General Relativity [12]. Accordingly it is possible
to perform a canonical quantization procedure to obtain the Wheeler De Witt
equation [3, 13, 20].

That equation is important to formulate a unified theory of General Relativity
and Quantum Mechanics, that is a quantization of the gravitational field (
[19, 7, 15, 14], for a simple application [24].

The cosmological quantization problem is in particular of interest in case
of the Lemaitre Tolman Bondi Cosmological (LTB) model [9, 16, 1]. That
model is based on the general co-moving spherically symmetric solution of
the Einstein field equation for a Universe filled with freely falling dust-like
matter [8]. The model has been widely discussed in terms of the mentioned
Hamiltonian formalism. The Wheeler deWitt equation has been obtained and
solved. The scheme has been also discussed in connection with spherically
symmetric dust collapse (e. g., [18] and references therein).

The problem of the quantization of the LTB cosmology was also proposed
in an elementary alternative way in [22]. In that paper one does not quantizes
the Hamiltonian following the ADS procedure. Instead one consider the Ke-
pler like one dimensional equation in the physical radius Y (r,t), derived from
the Einstein field equation, that depends on two arbitrary radial integration
functions, say E(r), M(r)[8]. Such equation is further supposed to describe
the motion of a test mass u of arbitrary, but fixed, value. Then one quan-
tizes such equation a la Schrodinger. One is then left with a Hydrogen like
atom quantum equation on the half line. By the further assumption that E(r)
represents the energy W (r) of the Hydrogen atom, the eigenfunctions corre-
sponding to a discrete (negative) W (r) value of the energy spectrum of the
H atom, represent ”confined” Universes and those corresponding to positive
W (r) represent "not confined” Universe solutions. The image of the Universe
as described by the probability distribution of the position of a test mass p is
therefore completely spherical with radial profile modulated by the behavior
of Laguerre Polynomials.

There is criticism to that result. The spherical symmetry of the solution
is not able to describe non spherically symmetric matter distribution of the
dust matter. Also an interpretation for which the model could be suitable
to represent galaxy structures, seems to work only for spherically symmetric
galaxies.

In the present paper the scheme of [22] is reviewed and extended in order
to possibly overcome those problems.

The procedure is the following. The mentioned Kepler like one dimensional
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gravitational equation in the physical radius Y is extended and canonically
quantized in a 3-dimensional euclidean space of polar coordinates Y, 8, ¢ with
7 time. Formally one has the Schédinger equation of the H atom in 3 dimen-
sions. Again, the eigenfunctions corresponding to negative value of F(r) (that
is associated to the energy spectrum of the "H atom”) represent ”confined”
Universes and those corresponding to positive E(r) to "not confined” Universe
solutions. There comes out an image of the Universe, that, when explored by
the position probability distribution of the mass pu, is given by the ”classi-
cal” orbitals in the variable Y. The orbitals have an internal more complex
structure in the variables r, ¢, if one choose Y (r,t) to be solution of the LTB
cosmological equation and t = 7.

In case of confined universe (F < 0), the functions £, M are no more
independent so that the underline LTB cosmological model depends on one
only arbitrary integration function. Moreover the "energy” spectrum is always
not empty. In general it is a subset of the complete Hydrogen like mathematical
spectrum. This is due to the fact that F is subjected to a constraint depending
on th physical role it plays in the LTB cosmological model.

The form of the universe energy spectrum has another consequence. Given
a mass, then any integer multiple of that mass is a possible mass. This hold in
particular for the mass of the universe, (that can be numerically evaluated),
and furnishes therefore something like a mass spectrum of universe.

In spite of the present oversimplified cosmological model there is at least
a compatibility of the results of the present quantization scheme with the
"experimental data”. This follows from the fact that the definition of mass
within spherical region, induced by the present theory, gives lower values (for
E < 0) with respect to those obtained by the conventional definition of mass.

2 Assumptions and preliminary considerations

The LTB cosmological model is based on the general spherically symmetric
space time whose metric tensor g, is given by

ds* = gy datde” = dt* — " "Ddr? — Y2 (r,t)(d? + sin® 0 d?) (1)

It is governed by the Einstein field equation [9, 16, 1, §]:

1 . 8rG
R,uu - §Ra Guv = "QT;W; R = A (2)
T = n(t,r) UU,, U=1 U,=0, k=r0,¢ (3)

G the gravitational constant, n the energy density of the universe, that is
assumed to describe a Universe filled with dust like matter without pressure.
(it is supposed the use of cgs unit system plus specified electric charge )
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The t,r component of the Einstein field equation can be easily integrated,
with radial integration constant E(r). The other component equations can be
re-adjusted and further integrated, with integration constant M(r), so that
the scheme can be finally equivalently reduced to the set of equations [8] :

Y2 M(r)
2N _ gy (@)
expl = 1};/2(%, M(r) = ;/OT drY'Y?n (5)

with Y = 9Y/ot, Y' = dY /Or

The equation (4) formally corresponds to a Kepler-like equation for the
mass M interacting with a test mass of value 1. We consider now the ex-
tension of the eq. (4) to the three dimensional euclidean space of coordinates
(X1, Xo, X3) and time 7 for an arbitrary but fixed ”test” mass . The assumed
Lagrangian and Hamiltonian are given by (now X = 9,):

1. : : p? L
Lo gu(Xt+ X3+ XD -U(X), H=+UX), Pi=st

By canonical quantization one has then the Schrodinger equation:

ﬁw(x,t):m%(;f’t), H= 123;+U() (7)

where ﬁk = —ihox,, X = X-. The wave function solution easily factorizes
(X, t) = ¢(X) exp(—iWr/h) where W, the separation constant, represents

the possible energy values of the model. One is then left with the eigenvalue
problem
h2
~ 5,8 ) +UX)|o(X) = Wo(X) (8)
In order to have a quantization of the LTB cosmological model it is assumed
that:

i) the coordinate (X7, Xs, X3) are chosen so that their polar spherical rep-
resentation is given by (Y, 0, );

ii) the energy potential U(X) is given by U(X) = —%,

then (X, t) = ¥(Y,0,p,t) is interpreted to represent the wave function of
the Universe. One is then faced with the study of the eigenvalue problem of
a Hydrogen like operator. By making explicit the equation (8) in the chosen
polar coordinates, [2, 11], one has

n? 1 M2 uM(r)
_778” o)+ uY? Y

e 6= W) )
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M? the square of the orbital angular momentum in the polar coordinates.
By setting ¢(Y,0,9) = x(0,9)R(Y) and by applying the standard quantum
mechanics mathematical requirement there follows that x = Y;,,(6, %), Yin
the spherical harmonics. One is then left with the separated radial equation

y(Y)

Ju¥) = W) y(v), Re) =222 (10)

2 dY? Y 2u  Y?

( R* A pM(r)  R*I(+1)

that is the conventional form of the Schrodinger radial equation of the Hydro-
gen atom in polar coordinates whose energy spectrum is well known:

p(pM@) 1 (G)2m2(r)

Wnlr) == = o) T

— =1,.2,3,.. 11
C4 n n Y Y Y ( )
From the very definition of M, it has been set m(r) = %M =4 [°drY?*Y'n.

The corresponding proper solutions of (9) are:

(n—1l-1)! s __
anlm(}/, 0, SD) = — M CL’rZL (& nY (a,nY)l L?j::zl(an Y) }/Zm<9, (,0) (12)
2 M(r) 1
ay, = Mh?m —om=Ls l=0n =L m =l =101 (13)

with L7} the Laguerre polynomials (e. g.[2, 11]).

iii) It is now further assumed the eigenvalue W of eq. (8) to be related to
the integration function E of the LTB cosmology by W (r) = pE(r), u > 0.

If now £ < 0, from iii) and (11), one only between E(r) and M(r) is an
arbitrary independent function.
From (1), (5), there is the constraint 1 + 2FE > 0 or |W,| < 1/(2u), that
is always satisfied for sufficient large n. Therefore the acceptable discrete
spectrum is a non empty subset of the set of values in (11). The interpretation
of the general solution v of (7),

(Y, 0,0,7) = Z Cnlme*%WM Grim (Y, 0, ) (14)

nlm

is such that the wave function of the universe is superposition of "universe pure
states” @nim, ]cnlm\Q is related to the probability of the occurrence of a pure
state universe ¢, with energy W,,. In the variables (Y, 0, ¢), such probabili-
ties have therefore the form of ”orbitals”, like those of the Hydrogen atom. In
the previous calculations, ¢ and 7 have been considered as disentangled vari-
ables. If one identifies ¢t and 7, one can express the final results in terms of the
coordinates of the LTB cosmological model by considering Y = Y (¢,r) to be



158 Antonio Zecca

the solution (e.g., [8] ) of the classical cosmological equation (4) with E arbi-
trary and M the corresponding expression in (11). In such case the ”orbitals”
have a much more complex structure in the r variable and may also depend
on t. It is worth noting that the universe state function 1y, o exp( %Wn)qﬁnlm
could be suitable to describe single galaxy universe.

Analogously if E > 0, W(r) = pE(r) > 0 so that 1+2E > 0. The solutions
of equation (10) are then formally the scattering solutions of the H atom and
E,; M now independent functions. The universe state i) can be given as a
continuous superposition in W of the universe states ¢wn(Y, 0, ¢)’s. In this
case an interpretation similar to the one just mentioned for the proper state
solution can be given according to the canonical interpretation of improper
states in quantum mechanics applied to the present case.

3 Numerical considerations on the mass of the
Universe

The previous results are suitable for some elementary further numerical con-
siderations concerning the mass the universe. As it appears from the very
definition, m(r) is the mass contained in a sphere of radius Y. It is useful to
possibly compare the results obtained with existing evaluations of the mass
of the Universe. As it appears from the very definition, m(r) is the mass
contained in a sphere of radius r:

m(r) = 4m /Or drY?Y'n(r,t) (15)

If m(r) is a non decreasing function of r, the lim,_,.om(r) = m, (that is sup-
posed to exist), can be interpreted as the total mass contained in the Universe.

Suppose now to consider the closed Universe case E(r) < 0 of the previous
Section, assume the mass of the Universe to be given by the two possible values

my =2 1.7-10%Kg m, =6-10"Kg (16)

where he first value in (16) of m,, is taken as a mean value of some recently
reported values [21, 17, 10, 5, 4] even if not all of them refer to the same
definition of the mass of the Universe adopted here. If F < 0, the interest is
here to see numerically when the entire spectrum (11) is acceptable. For this
it is sufficient [Wy| < & or
2

pe G2 o, 1 he 1 99
— = <- = w < — =~ —- 1.2810“K 17
To have compatibility of the two value in (16) with the constraint (17) it must
be then respectively:

p <75 -107%2gr =41 eV, <213 -107%gr 2 1.17 -10%V  (18)
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There follows that the neutrinos with estimated mass not greater then 0.8 eV
[6], fit the mentioned constraint. Also the existence of particles of greater
mass subjected to the limitations (18) is not prevented. Moreover, as already
noted, the existence of higher discrete energy levels for every choice of m, with
sufficiently large n is always possible.

It is worth noting that the quantization of the cosmological model produces
a discrete "universe mass spectrum”. To see this one can use the arbitrariness
of one of M(r), E,(r) in (11). For two universe masses m,, m,,, the eq. (11)
can be written E, = C'm?/n*, Ej = Cm/j* n,j =1,2,3,..., C constant.
Choosing F| = E,, then m,, = n-m,,. Then, by taking r = oo in (11), one has
for every given E(c0) = Ey:

E,
My = =" |Eu)-n:1.81022-\m-nl<g n=12.. (19
ol

(E, such that 1 + 2FE, > 0). This could be interpreted as a universe mass
quantization.

4 Comments

In the previous Sections the procedure of quantization of the LTB cosmolog-
ical model [22], based on the quantization of the associated one dimensional
Kepler like cosmological equation, has been extended to a three dimensional
formulation. The formulas has been given by the correct dimensional expres-
sion in the c¢. g. s. unit system. This was useful for elementary numerical
evaluation of the masses involved and in particular the universe mass. In this
connection the mass of the universe m, here employed is that in (15), in the
limit of » — oo , but the numerical values obtained from the literature often
refer to the definition of mass m" of universe so that:

oo 1 < Y2Y'n(r,t)

w_y / dr n(r,t)|g|? = 4 / dri 2150 20
m n ) rn(r,t)|gl2 n 0 r V11 2FE (20)
m* >m, if E(r)<0 (21)
m* < m, if E(r)>0 (22)

g the determinant of the metric tensor. Therefore the present quantization
scheme with F < 0 is compatible with ”"experimental data” at least for what
concerns the finiteness of the universe mass.

The present method of quantization can be applied to the LTB cosmology
with cosmological term. Indeed, an integration of the associated Einstein field
equation gives again one dimensional Kepler equation of the form (4) with the
adjoint of a harmonic potential. Such equation was quantized in [22]. It is
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not difficult to see that that model can be extended to a three dimensional
formulation that can be quantized in a completely similar way to that of the
present paper.

Finally the quantization method here proposed seems to be applicable to
more complex situation. This could be the case of the LTB gravity canonically
coupled to a scalar field ¢. Indeed, in such cases, one has again a generalized
Kepler like equation (4), with however M = M (t,r), plus other terms depend-
ing on Y and ¢ [23, 25, 26].
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