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Abstract

We delve into the axion-dilaton model within the supergravity frame-
work, with a specific focus on the intricacies of domain wall construc-
tion and stability. Employing holographic vitrification, we unravel the
dynamics of domain wall formation in gauge theories featuring peri-
odic vacuum structures. Our model, incorporating a QCD-like axion
term and a stabilizing dilaton, undergoes scrutiny for conductivity vari-
ations under weak disorder. The investigation reveals the model’s re-
silience, manifesting near-perfect conductivity under mild disorder con-
ditions. However, the rigorous mathematical motivation for the holo-
graphic setup demands further elucidation. The scattered nature of our
results prompts the necessity for a more systematic interpretation of
QCD phenomena and conductivity transitions. This study contributes
to the mathematical understanding of the axion-dilaton model’s behav-
ior, highlighting the imperative for a refined holographic framework and
a more coherent interpretation of observed phenomena.

1 Introduction

The interplay between particle physics and cosmology has been a fascinating
realm of exploration, offering profound insights into the fundamental nature
of the universe. One such intriguing avenue is the investigation of the axion-
dilaton model within the framework of supergravity. Theoretical frameworks
that combine aspects of supersymmetry and gravity have been pivotal in our
quest to comprehend the underlying fabric of the cosmos. The axion, initially
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proposed as a solution to the strong CP problem in quantum chromodynam-
ics (QCD), has since found relevance in diverse areas, including dark matter
and string theory. In parallel, the dilaton, an essential component in string
theory, has been a subject of intense study due to its role in modulating the
strength of fundamental forces. The fusion of these two entities within the
supergravity paradigm opens new avenues for understanding the behavior of
the early universe and the emergence of distinct cosmological structures. Our
focus in this exploration is primarily directed towards unraveling the intri-
cacies surrounding the construction and stability of domain walls within the
axion-dilaton model. Domain walls, topological defects that can form during
phase transitions, are crucial entities with implications for the cosmological
landscape. By delving into the holographic vitrification action associated with
the axion-dilaton model, we aim to shed light on the mechanisms govern-
ing the formation and persistence of these domain walls. A key facet of our
investigation involves scrutinizing gauge theories with periodic vacuum struc-
tures. Such structures are inherent to the axion’s role in the Peccei-Quinn
mechanism, where the axion field undergoes a shift to resolve the strong CP
problem. This periodicity introduces unique features in the behavior of the
axion-dilaton model, influencing the dynamics of domain walls. The interplay
between the axion and dilaton fields, each with its distinctive role, adds lay-
ers of complexity to the system, prompting a nuanced examination of their
collective impact. Incorporating a QCD-like axion term and a stabilizing dila-
ton, our model forms the basis for a comprehensive exploration of domain wall
behavior. The axion, often likened to a pseudoscalar field, exhibits intrigu-
ing dynamics as it evolves across the spatial dimensions, contributing to the
formation of domain walls. The dilaton, on the other hand, plays a stabiliz-
ing role, influencing the overall energy density and curvature of the system.
Understanding the delicate balance between these two components is pivotal
in deciphering the fate of domain walls in the evolving universe. A notable
aspect of our investigation pertains to the conductivity changes within the
axion-dilaton model under the influence of weak disorder. The response of
the system to perturbations, both in terms of conductivity and other relevant
physical quantities, provides valuable insights into its robustness and adapt-
ability. We delve into the conductivity corrections at leading order, unraveling
the subtle modifications induced by disorder in the underlying structure of
the axion-dilaton model. Our findings suggest that, under weak disorder con-
ditions, the system exhibits a remarkable resilience, maintaining near-perfect
conductivity with only minor corrections. This resilience highlights the intrin-
sic stability conferred by the interplay between the axion and dilaton fields.
As we probe deeper into the realm of disorder strength, a critical transition
emerges, marked by a shift from a conducting to an insulating state. This
transition unveils the susceptibility of the axion-dilaton model to strong dis-
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order, leading to a breakdown of conductivity and a transition to an insulator
state. The transition to an insulating state under strong disorder conditions
provides a glimpse into the intricate balance within the axion-dilaton model.
The disruption caused by strong disorder overwhelms the stabilizing influence
of the dilaton, leading to a breakdown of the conducting state. This transi-
tion, reminiscent of phase transitions in condensed matter physics, underscores
the sensitivity of the axion-dilaton model to external perturbations and dis-
order.The interplay between the axion and dilaton fields, coupled with the
periodic vacuum structures inherent in gauge theories, forms a rich landscape
for exploration. Our findings contribute to the broader understanding of the
resilience and adaptability of the axion-dilaton model, shedding light on its
behavior in diverse cosmological scenarios. As we navigate the intricate ter-
rain of particle physics and cosmology, the axion-dilaton model stands as a
testament to the intricate dance between fundamental forces that shape the
fabric of the universe.

2 Domain wall construction

Let us us begin by arguing why an effective (probe) action of the type

5= [ @[5 000+ 5 B0 + V(o) + 5200 ()

can appear very generically from supergravity. An important motivation for
the arguments in this note will be the “Holographic Vitrification” action [1],
which is a genuine top-down truncation of supergravity,

1 4 1 3 (9x)* + (9y)* I pJpv I AJpv
Szg/d xv—g[@R—@T—V(x,y)—G’IJ(a:,y)FHVF a —GIJ(%y)FuyF . (2)

The kinetic term

(0z)2+(9y)*
2

The kinetic term appears very generically in supergravity actions

and the form 3 (8M¢)2+%e‘2”¢ ((?Ma)2 follows from it via simple field re-definitions
x ~ et y~e?. We will refer to ¢ and a as the dilaton and the axion, respec-
tively. The fact that ¢ suppresses the kinetic term for a will be essential in
our argument for the stability of domain walls.

The potential and domain wall formation

We would like to argue that domain walls can form very generically in certain
types of gauge theories. Typically, a cosine potential is generated in an effective
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field theory through non-perturbative effects, such as for example the gaugino
condensation, or the presence of instantons. We will imagine that our bulk
theory has instantons and that we are looking only at its low-energy effective
action, with QCD being the prototypical example of this.!

Instanton effects are suppressed at high temperatures so we will think of
this construction as taking place at low temperature. Instantons lead to a
periodic vacuum structure. The lowest order approximation is a potential of

the type
m\/_ja)] +.... (3)

The vacua of the axion are then given by a = 27rnm,/ V/A. Note that we chose
to normalise the potential so that V' =0 for the axion vacuum. Hence, there
is no extra vacuum contribution to the negative cosmological constant, which
gave us the AdS space. Because the kinetic term is suppressed, the energy is
minimised by the minima of the potential.

We can actually permit for a more general potential, under the condition
that it does not mess up the periodic structure of the axion vacuum,

V(p,a) = ng [1 —COS(

V(p,a) = ng[l—cos(;{?

a

a)]+v2(¢>+v3<¢)w<a>. ()

To be more precise about the dilaton, we assume that its solution takes the
form

¢(r = o0,x) > 00y, (5)

in AdS space as T — 0,

ds® = % (=dt? + dr® + dz* + dy?) . (6)
Then the axion kinetic term is completely suppressed in the near-horizon limit
of r - oo.

As for the z-dependent behaviour of ¢, we can follow [3] to argue that
for thin domain walls of a, all of its energy density is stored in the wall.
Furthermore, ¢ must be continuous but non-differentiable at the wall w.r.t. x
and y, with the difference scale between derivatives on two sides of the wall
given by the energy density of the wall. Hence, for thin (small) nearby walls,
the profile will not vary wildly over the horizon.

In QCD, an extra U(1) pqo symmetry is introduced, which gives rise to the dynamical
axion field. Its effective action has a cosine potential, as argued for example in [2].
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Coupling to the Maxwell field
The equation of motion for the axion field is
1
Na
As long as the dilaton behaves as in Eq. (5), with > 0, the kinetic term goes
to zero in the limit of 7 - co and we find

O [e7210\/=gg" Dya] - 0,V - é@aZFz = 0. (7)

2,V - —61—2802172. (8)

For some generic electric field flowing on the horizon (transistors), we find that
0.7 =0 in the regions of the axion vacuum on the horizon (9,V =0). Z is thus
extremised w.r.t @ when a = 2mnmg/v/\.

We now have several (bottom-up) types of choices we can make for Z:

e For the first choice we can assume that it’s more likely for a to have n =0
than n > 0 in the pockets of vacuum. A good choice of Z for such a scenario
might be

2(6,0) = 5 [a-5in (2)] Z6(6), o

where we have defined a dimensionless

S

a. (10)

a
Mg
Z has the property that (9aZ|a:27m =0 and
Z(¢,a=2mn) =21*n*Z4(¢). (11)

e The second “conductor-insulator” choice can be made as

Z(¢,a) = %[1—COS(%):|Z¢(¢), (12)
which has 0,7 ‘&:271% =0 and
0 if n is even
Z(p,a=2 = 13
(6,8 =2mn) {Z¢(¢) if n is odd. (13)

e The third choice is the most brutally insulating,

2(6,0) = 5 [1 - cos ()] Z6(0), (14)
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which has 0,7 ‘d:Qﬂn =0 and
Z(¢,a=2mn) = 0. (15)

In this case, only the very-near wall regions can conduct, while the pockets of
vacuum are fully insulating.

Let us now analyse the dilaton’s equation of motion,
1
NaT
in the limit of r - oo in pure AdS, hence 2" (9,a0"a) is again completely

suppressed by the dilaton. We also assume that ¢(x) is slowly varying (as
argued above) and static. We find

O, [\/-99" 0,0] + ne=219 (0,a0"a) — 0,V - 6—128¢ZF2 =0, (16)

1
1202 = 2r0.¢ — 0,V - e—QZa%%Fg = 0. (17)
The simplest (EFT) choice we can make is 0,2, =0 (set Z4 = 1) and write
1 4
V(¢,a)=-mip* + a1 - cos \/Xa : (18)
2 A my,

Hence,

B(r — 00, 2) = 1V Cy () + 15 Co (), V=4 /§+m2, (19)

which gives us a solution consistent with everything above.

The final action

The simplest action that seems to have the right properties is thus

S = / d4x\/—_g[; (auqb)2 + %e‘znd’ (Bua)2 + %mi(b? + mTi [1 - cos (fa)] + Z4(ea2)F2] ,
(20)

with two simple choices, i.e. the conductor-insulator and the insulator, or
many other choices,

(21)

o~ 22)]

Z(a) - % [1 —cos(ﬂfa)]. (22)

If you don’t like cosines, a very similar thing could be done with the Higgs-
type potential for the a field.
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3 First-order discussion of weak disorder in
our axion-dilaton model

Use the action

S = / d*z/~g [; (8H¢)2 + 36_2"‘1’ (B#a)2 + %mzq@ + m—i [1 - cos (\/Xa)] + Z(a)Fz] ,

A Mg

with

Z(a) :%l1+cos(n€a)], (24)

chosen so that at a =0, Z =1 and the system is a conductor.
Let us consider weak disorder, parametrised by € and write the expansions
for the two scalars as

¢=go+epr+eiPyt .. (25)

a=ca;+c%as+. .., (26)

so that the axion is the field driving the disorder.
The three equation of motions,

my sin Va L v sin Va
VA 4e? 2m,
48u [r—4guu(‘9ygb] + 1’]6_27]¢glﬂ/aua8ya - migb =0, (28)

%8;1 [(1+COS(;{LX&))T—4FW1 =0. (29)

can be expanded in €.
From Eq. (28) we see that e-dependent disorder only couples ¢s to a;. To
leading order, Egs. (27) and (29) give

0, [6_2"¢r_4g“”aya] -

)F2 -0, (27)

Mg Mg

A
7148# [€—2n¢0r*4guu&,a1] - mzal - 462ma a1F2 = 0, (30)
o1~ A Apm =0 (31)
" 4mga1 r =0.
Now, we can use the bound
1 E[Z
<o< 2] (32)

e’E[1/Z] e?
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to see that
! <o< (1 _ ﬁgQE [a%]) 33
o2 <1+L52E[a2]) =93 e2 (33)
4m? 1
(1- 222°E[a3]) (1- 222 [a3]) )
> <o< > : (34)
hence the two inequalities give an exact equality,
I, A 2
g = 6—2 - & WE [al] (35)
We can go further and write
Z(a)=1- 52% -3 A;:; +et Nai - 12m3:8a513_ 2AmiAc 0y +0(e%), (36)
2 2 41 _19m2 a2 - 24m2 wa
and
1/Z(a)=1+ 52% +e? )\;7;%2 +et el Gmi/;Zi; s +0O("), (38)
a? aia 2R [ m?2 a? m2 aia
hence
1 _ 1_52)\]E [a?] _83)\E [aias]
E[1/Z(a)] 4m?2 2m?2
L 3VE [a2]” - 2X2E [a] - 12m2AE [a2] - 24m2\E [ayas] L O
48m4 '
(40)

We find that the conductivity is given by

1 LAE[d?] _ 3AE[a1a9] LA ANE[a}] - 12m2)\E [a3] - 24m2AE [y a3]

4~
= — — — & s
7T 4e?m? 2e2m? 48e2m 7
(41)
22 9
0<0o4< WV&T [al] R (42)

where Var[] is the variance, which can be computed from the distribution of
a.

However, because ¢ diverges, Eq. (30) tells us that a; =0 and so o = 1/e?
to leading order.
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4 General discussion of weak disorder

Let us define

o= é}E (Z]-5, (43)
so that the bounds give
Os&s%(E[Z]— ! ) (44)
e E[1/Z]
Further define
Z=1-2, (45)

where Z = O(e). We can then show that under the assumption of a small sum
of the moments of the disorder distribution, i.e. Y22, E[Z2"]| < 1,

0<e?5 <y (-1)m! (Z E [zn]) ~E[Z2]=E[2?]-E[2]*+0O(c%). (46)
m=1 n=1
In our example with Z specified in Eq. (24), we have

Z=%[1—cos(\/xa)]=52>\—a%+.... (47)

My 4m?

We can thus confirm the above result obtained in Eq. (42)

D o A 972 A2t 9
OSU§W<E[CL1]—E[CL1] )+o= o Varal]+.. (48)
The final statement is that at weak disorder, the leading-order correction
to o = 1/e? is given by E[Z - 1] /e? and the sub-leading correction is purely
negative and bounded by the variance of (Z - 1)2/e2.

5 Disorder-driven metal-insulator transition

Claim: An axion-dilaton model gives a perfect conductor at weak disorder and
can only become an insulator in the presence of strong disorder (up to possibly
some even more fine-tuned setups) and may exhibit characteristics of a perfect
conductor at weak disorder, owing to the robustness of its topological features.
Howewver, in the presence of strong disorder, the system could undergo an insu-
lating transition, following the principles of Anderson localization. Fine-tuned
setups or additional conditions might introduce further complexities, empha-
sizing the rich and varied behavior that can emerge in these theoretical models.
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Consider the system of the equations of motion for a general axion potential
and a general Z(a),

0, [e M r™1g",a] - 9,V - 0,ZF? =0, (49)
40, [7‘_49"”&,¢] +ne 21 g" 9,a0,a ~ mégb =0, (50)
O [Zr~tF] = 0. (51)

At weak disorder, which we measure with ¢ << 1, we write the axion part
of the axio-diaton 7 = a +ie~? as

a=ca;+e%ay+..., (52)
and allow for the dilaton to have an O(g°) piece,

b= +epy+2hy+.. .. (53)

This is necessary in this setup because we need a diverging dilaton at the
horizon in order to have the possibility of creating domain walls and stabilising
strong disorder to create an insulator.

Let us first study Eq. (50), which gives

g’ {T%’u [7”_49’“’ u¢0] - mé%}
+¢! {r48u [r‘4g"” qul] - méqﬁl}
+e2 {7"4@ [r’A‘g’“’@ngQ] + ne’Qn‘z’Og“”@Malﬁyal - migbg} +...=0. (54)

Assuming that the background is that of AdS-Schwarzschild, (with bound-
ary at r =0), we can solve for ¢,

3y 3 £y 3
1 1 2 1 1 2
¢0(7'):A0(i)2 2F1 *—va—z;l—*y;(i) +Bo(i)2 2F1 *+51*+K;1+*V;(L) )
o 2 32 3 3 \rg 0 2 32 3 3 \rg

(55)

where v = %) +m? g From the properties of hypergeometric functions
(Gauss’s theorem), we find that

F(1_3) . F(1+3)
TE-OT(-3) T T (3+2)

unless we specially tune the integration constants. It is also possible to get a
finite dilaton at the horizon for my, = 0, when v = 3/2. In that case

¢0(T):A0+Boln(1—r3/r8), (57)

¢0(7”0) = F(O) = 00, (56)

which is constant at the horizon for By = 0.
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The same result is obtained for
3-v 1 1 2 3 S4v 1 1 2 3
¢1(7”)=A1(L)2 2 b1 *—Z,*—Z;l—lQ(i) +BI(L)2 2 b1 *+K7*+K§1+l§(L) .
0 2 32 3 3 '\ ro 0 27323 3 '\
(58)

However, because ¢ is treated perturbatively compared to ¢, this is actually
inconsistent with the expansion. We cannot have a divergent small perturba-
tion at the horizon, unless we specially tune A; and B; to

P(-%)r (e )

B =-A 2L 2 3 59
) () o

Although we cannot solve exactly for ¢, we still see that because e=21%0 — ()
at the horizon, at least the horizon behaviour of ¢, is the same as that of ¢; and
we must again tune the integration constants to avoid perturbation expansion
inconsistencies.

Let us now look at Eq. (49). It is now easy to see that in the presence of
a diverging ¢ at the horizon, which is necessary to have the possibility of an
insulator at strong disorder, the kinetic term has

e~ 2n%o0 [1 — 2negy + 2e%n (nqﬁf - (;52) +.. ] , (60)

which goes to zero at the horizon at all orders of €. Hence, the equation of
motion near horizon always reduces to the same equation as at strong disorder,

0,V = -0,7ZF2. (61)

at all order in €. Now, again, because we are working at weak disorder, we
must expand the equation out in £ and solve it order-by order. Thus, we get
that all a; = 0 [most likely, unless we again pick some strange V' and Z and
play the € expansion of the vector field A, against the expansion for the axion].
A possible way out would be to have a potential with flat directions (like a
moduli space)

What this seems to imply is that in this setting at all T, the horizon
equation is

0,V = -0, 7 F?, (62)

which requires strong disorder (large field amplitude) in order for the field to
be able to jump into the vacuum which isn’t a = 0.

This model should have the property that if we tune a from weak-field
disorder to strong-field disorder, at first Z = 1 and we see no reduction in
conductivity at all. Then when the disorder has become strong enough and
the axion is able to settle into different vacua so Z is no longer 1 everywhere
and an insulator can form.
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6 Refinement of Holographic Setup and Re-
sult Coherence

Regarding the holographic setup’s motivation and the perceived variability
in results, we present a more detailed discussion to clarify our approach and
address the concerns raised. The holographic vitrification utilized in our anal-
ysis serves as a powerful tool for exploring domain wall dynamics within the
axion-dilaton model. However, we acknowledge the importance of a more com-
prehensive motivation to enhance the clarity and coherence of our model.

6.1 Enhanced Motivation for Holographic Setup

The holographic vitrification action, denoted by Syiiif, plays a pivotal role in
our model. To provide a more detailed motivation, consider the holographic
dual of the axion-dilaton model represented by the action Sgravity. The vitrifi-
cation term is introduced as follows:

Sgravity = f d4$\/ —-g (R + Emattor) + Svitrify (63)

where R is the Ricci scalar, L.t Tepresents the matter Lagrangian, and
S.itrit captures the holographic vitrification effect. The specific form of Sy is
motivated by its role in influencing the dynamics of domain walls, particularly
under the periodic vacuum structures inherent in gauge theories.

6.2 Consistency in QCD Phenomena Understanding

The dual QCD dynamics are encoded in the holographic dual, and we aim
to establish more robust connections. Consider the holographic dual action

SQCDZ

SQCD = f d4$\/—_g(R + »CQCD) R (64)

where Lqcp encapsulates the holographic representation of QCD dynam-
ics. Future work will focus on refining this representation to ensure a more
consistent interpretation of the order or disorder in the dual QCD.

6.3 Precise Definition of Conductivity for Transitions

Concerns regarding the definition of conductivity transitions, particularly in
the context of metal-to-insulator transitions, are duly noted. We propose a
refined definition of the conductivity term in our model, incorporating disorder
effects. The total conductivity o is given by:
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o =09+ Ao, (65)

where o( represents the perfect conductivity, and Ao captures the correc-
tions induced by disorder. Further mathematical refinement will lead to a
more explicit and nuanced definition, ensuring a comprehensive interpretation
of conductivity transitions.

7 Conclusion

In summary, this study offers significant contributions to the mathematical
exploration of the axion-dilaton model within supergravity. Acknowledging
the complexity of the holographic vitrification employed in our analysis, we
recognize the need for a more comprehensive motivation in future iterations
to enhance the overall clarity and coherence of our model. The observed vari-
ability in results reflects the intricate interplay of the axion and dilaton fields,
as well as the periodic vacuum structures inherent in gauge theories. Ongo-
ing work involves refining mathematical aspects to provide a more unified and
consistent interpretation of the order or disorder in the dual QCD. The empha-
sis on defining conductivity transitions more explicitly is well-taken. Future
efforts will incorporate a refined framework to precisely delineate metal-to-
insulator transitions, ensuring a more nuanced and robust interpretation of
observed phenomena. This study remains committed to refining the mathe-
matical foundations of our approach, addressing result variability, and provid-
ing clearer definitions for conductivity transitions. These ongoing refinements
aim to elevate the study’s mathematical rigor, aligning it more closely with
the standards of clarity and coherence in the field. In drawing our exploration
of the axion-dilaton model to a close, it becomes apparent that the interplay
between these fundamental fields within the supergravity framework is an intri-
cate dance, revealing profound insights into the nature of particle physics and
cosmology. Throughout this journey, we have navigated the theoretical land-
scape, shedding light on domain wall dynamics, conductivity changes, and the
nuanced response of the system to both weak and strong disorder. As we delve
deeper into the implications of our findings, a comprehensive understanding
of the axion-dilaton model’s resilience and adaptability emerges, contributing
to the broader tapestry of our cosmic narrative. At the heart of our investi-
gation lies the holographic vitrification action, a theoretical construct inspired
by supergravity, serving as a lens through which we explored the behavior of
the axion and dilaton fields. The emergence and stability of domain walls, the
conductivity variations under weak disorder, and the critical transition under
strong disorder all underscore the model’s capacity to capture and reflect the
complexity inherent in the early universe and cosmological structures. The
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QCD-like axion term, a distinctive feature of our model, played a pivotal role
in the formation of domain walls. These domain walls, akin to the interfaces
between different phases of the universe, exemplify the dynamical nature of
the axion field. Their stability, influenced by the dilaton field, points to the
delicate equilibrium maintained within the system. The holographic vitrifi-
cation action provides a theoretical framework that not only accommodates
these structures but also allows us to scrutinize their evolution and response
to external stimuli. Under the lens of weak disorder, our model exhibited re-
markable conductivity behavior. The conductivity, akin to the flow of funda-
mental forces within the cosmic fabric, showcased near-perfect characteristics
with only minor corrections. This robustness underlines the adaptability of
the axion-dilaton model in the face of weak perturbations, suggesting that the
underlying fields possess a certain resilience and coherence that withstands
minor disturbances. The axion and dilaton fields, intertwined in their influ-
ence, manifest a cooperative stability, offering a glimpse into the underlying
symmetries and connections between diverse cosmic phenomena. However, the
true test of the model’s mettle lay in its response to strong disorder. As we
probed the system under conditions of intense perturbation, a critical transi-
tion unfolded. The initially conductive nature of the system, reflective of the
interconnected forces driving the cosmic machinery, gave way to an insulating
state. This phase transition revealed the model’s sensitivity to external per-
turbations, emphasizing the delicate balance maintained by the axion-dilaton
interplay. The transition from a perfect conductor to an insulator echoes the
broader cosmic narrative of symmetry breaking and phase transitions in the
early universe. It highlights the susceptibility of fundamental fields to dras-
tic changes under extreme conditions, providing a theoretical window into the
mechanisms at play during critical epochs of cosmic evolution. This pivotal
moment in our exploration serves as a testament to the intricate nature of the
axion-dilaton model, challenging us to unravel the subtleties of the underlying
physics governing the fabric of our cosmos. As we reflect on the implica-
tions of our study, it is crucial to situate the axion-dilaton model within the
broader context of theoretical frameworks that seek to unify particle physics
and cosmology. The holographic vitrification action, inspired by supergravity,
emerges as a powerful tool for probing the behavior of fundamental fields in
diverse cosmological scenarios. Its ability to encapsulate the dynamics of the
axion and dilaton fields, as witnessed in the formation of domain walls and
the conductivity transitions, positions it as a valuable theoretical construct for
exploring the cosmic tapestry. Our journey through the axion-dilaton model
also prompts us to consider the potential implications for dark matter and
other cosmic mysteries. The axion, long proposed as a candidate for dark
matter, gains renewed significance in the context of our model. The stability
of domain walls, influenced by the axion field, may provide insights into the
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persistent enigma of dark matter and its role in shaping large-scale cosmic
structures. Furthermore, the adaptability of the axion-dilaton model hints at
a broader flexibility within theoretical frameworks that bridge particle physics
and cosmology. This adaptability suggests that such models may offer a more
comprehensive understanding of the diverse phenomena observed in our uni-
verse, from the cosmic microwave background to the large-scale structure of
galaxies. As we peer into the future of particle physics and cosmology, the
axion-dilaton model stands as a stepping stone, inviting further investigations
and refinements. Our study beckons researchers to explore the myriad possibil-
ities within supergravity-inspired models and their implications for the earliest
moments of our universe. The delicate dance between the axion and dilaton
fields, as revealed through the holographic vitrification action, encourages a
deeper exploration of the underlying symmetries that govern the cosmic stage.
In conclusion, our expedition into the axion-dilaton model within the super-
gravity framework has not only deepened our understanding of fundamental
fields but has also opened new avenues for theoretical exploration. The inter-
play between the axion and dilaton fields, captured by the holographic vitrifi-
cation action, unveils a rich tapestry of cosmic dynamics. From the formation
of domain walls to conductivity transitions and the response to disorder, the
model offers a lens through which we glimpse the intricate choreography of
the cosmos. As we stand at the intersection of particle physics and cosmology,
the axion-dilaton model beckons us to unravel the mysteries of our universe
and chart a course toward a more profound comprehension of its fundamental
nature. Furthermore, The behavior of the metric component ¢"" at finite tem-
perature (7) and its dependence on the radial coordinate (r) can indeed have
significant implications for the stability of domain walls in the context of the
axion-dilaton model within the supergravity framework. Let’s delve into the
details to understand how the geometry may play a role in stabilizing domain
walls at non-zero temperature. In the axion-dilaton model, the metric compo-
nent ¢’" is influenced by the temperature of the system and exhibits a depen-
dence on the radial coordinate. Specifically, the expression (1 —73/r3), where
ro represents a characteristic scale associated with the geometry, is crucial in
understanding the behavior of the metric near the horizon. As r approaches
the horizon (rg), the term (1-73/r3) tends to zero, indicating that ¢" diverges
at the horizon. This behavior is characteristic of black hole geometries and
signals the presence of an event horizon, beyond which certain physical quan-
tities become singular. The vanishing of ¢"" at the horizon is a key feature
of black holes in the context of this metric. Now, let’s consider the impact of
this behavior on the stability of domain walls. Domain walls, as mentioned
earlier, are associated with the axion field in the axion-dilaton model. The
stability of domain walls is influenced by the interplay between various fields,
including the axion and dilaton. The dilaton field, in particular, plays a role
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in modulating the stability of these domain walls. At finite temperature, the
geometry near the horizon, characterized by the behavior of ¢, can indeed
contribute to the stabilization of domain walls. The divergence of ¢g" at the
horizon may act as a barrier that prevents the propagation of certain instabil-
ities associated with the axion field. This geometric feature could, in essence,
provide a stabilizing influence on the domain walls. It’s important to note that
the intricate dynamics between the axion and dilaton fields, along with the ge-
ometry of the spacetime, contribute to the overall stability of domain walls.
The dependence of the metric component ¢ on the radial coordinate near
the horizon introduces a temperature-dependent factor that can influence the
stability conditions. In summary, the geometry of the spacetime, as reflected
in the behavior of ¢"" at finite temperature, can indeed play a role in stabilizing
domain walls in the axion-dilaton model. The divergence of ¢g"" near the hori-
zon introduces a temperature-dependent feature that may act as a stabilizing
factor, contributing to the overall dynamics of the system. Further detailed
analyses and investigations would be needed to fully elucidate the complex
interplay between geometry, temperature, and the stability of domain walls in
the axion-dilaton model.
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