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Abstract

The magnitudes are scaled with the aid of mean values by the initial
wave function. Main scaling parameter is λ, which denotes the angular
momentum in units of ~. In order to achieve compact analytic results,
the dimensionless time τ is limited by the condition 0 ≤ τ � λ. Then, as
it is shown by means of a theorem on the method of stationary phase, the
propagator has the structure of Hostler’s Green’s function [6], but with
dressed magnitudes. For instance, the potential strength parameter Q0

is replaced by Qeff0 which now depends both on the Lambert variables
and on time. Basically, Hostler’s Green’s function is the product of
the two Whittaker functions. By applying the saddle-point method,
the product, which now depends on dressed variables, is asymptotically
approximated for large λ in terms of elementary functions. A numerical
example gives agreement between the asymptotic expression and the
original product in the interval 15 ≤ λ ≤ 36, without visible deviations
in the graphical plot. The approximated propagator, defined in the
restricted time interval, now is in a feasible form for docking to the
initial state of a rectilinear orbit, for instance.

PACS: 02.70.Wz, 31.15.-p

Keywords: Stationary phase theorem, rectilinear orbits, Kustaanheimo-
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1 Introduction

The present paper deals with the quantum mechanics of the Coulomb-Kepler
problem, and tries to go beyond successful applications of the Kustaanheimo-
Stiefel transformation (KST) [7], e.g. by Gerry [4] and by [8], [9]. The KST
transforms the non-relativistic Hamiltonian into a Hamiltonian of four har-
monic oscillators, and offers ”time” dependent solutions in terms of coherent
states. Time is set in quotation marks since, by the transformed Hamiltonian,
the wave function actually evolves by the eccentric anomaly w as a curve pa-
rameter rather than by the Schrödinger time t. The requirement that w and
t have to be in 1-1 correspondence is quite restrictive. As is demonstrated in
[10], the condition dw/dt > 0 can break down in the quantum regime at a
finite time tc > 0, which, in particular, is the case for initially rectilinear orbits
[11].

The propagator is derived by means of Fourier transformation in complex
energy space E from the Green’s function G of the Coulomb-Kepler problem.
G is available in a compact analytic form as derived by Hostler [6]. After a
transformation of the integration path, the task is to calculate the following
integral, which was shown in [12]:

K(r1, r2, t) =
i

π
lim
η→0

{∫ A2

A1

dAA exp[iA2 t/~]GE(r, r′)

}
, (1)

E = −A2, A1 = 1/η, A2 = −i /η, t > 0, η > 0.

As it is observed from the integrand in (1), near the integration boundaries,
the exponential factor is of the form exp[±i t/(η2~)] which exhibits unbounded
variation in the limit η → 0. The η limit is dealt with by a theorem on the
method of stationary phase [12]; actually, the theorem will be extended in Sec.
IV. The integration path now goes through a stationary point which depends
on physically meaningful magnitudes, and produces finite principal values of
the integral (1).

The stationary phase integration is simplified by assuming finite times t
which, after scaling t→ τ , obey the condition 0 ≤ τ � λ. As an example, in
the case of an artificial satellite of 1000 kg in an Earth orbit, we listed in [11]
the value λ = 4×1048 (in [11] notation was κ instead of λ). In this example, the
time intervals allowed by the inequality are much larger than the life time of
the solar system. By the bounded time, the integrand is concentrated near the
stationary point with the consequence, that, essentially, the integral is given
by Hostler’s Greens’s function, but with dressed entries. E.g., the potential
strength parameter Q0 is replaced by Qeff

0 which depends both on time t and
the Lambert variables x, y, where x = r1 + r2 + r12 and y = r1 + r2 − r12

with r12 = |r1 − r2|. The approximated propagator inherits from the Green’s
function the product of the two Whittaker functions Mν,1/2(z)×Wν,1/2(z′). For



On the method of stationary phase in calculating the propagator of ... 135

large λ, two of the three entries, namely ν and z or z′, both increase linearly
with λ. For lack of useful asymptotic formulas in the literature, we will take
advantage of a product formula given by Buchholz [1], and determine the con-
stituting integral of the product formula by the saddle-point method; the result
appears in terms of elementary functions, exponential and logarithm functions,
and by square root factors. In Fig.1 of Sec.VII., we will plot exemplarily real
and imaginary parts of the Whittaker product as a function of λ from the
built-in formulas of Mathematica [14]. Each of the two curves shows about 30
extrema in the adopted interval λ ∈ {15, 36}. As it turns out, the correspond-
ing product which is approximated by the saddle-point method, graphically
coincides with the primary curves in all details, without visible deviations.

As an exact property, the approximated propagator attains the well known
free-particle limit. Due to the restrictive condition on time, the unitary prop-
erty should be valid only approximately, most likely. If necessary, normaliza-
tion of an evolving time dependent wave function has to be enforced by an
additional normalization factor.

2 Basic definitions

Hostler’s Green’s function [6], which has to be inserted in the integrand of (1)
for GE, reads

GHo(r, r′, E) = i
Γ(1− i ν)

4πr12

1

k

(
∂

∂x
− ∂

∂y

)
Wi ν,1/2(−i kx)Mi ν,1/2(−i ky), (2)

where Γ denotes the Gamma function, M,W are the Whittaker functions
and (x, y) the Lambert coordinates defined in the Introduction; k is the wave
number related to the energy E; together with ν and γ, the definitions are [12]

k = γ
√
E, γ2 = 2m/~2, 2i ν = i γ2α/k, (3)

where (−α) = Ggravm1m2 is the coupling constant in the Kepler problem, in
the Coulomb case, α = ±|e1e2|/(4ε0π). We will confine ourself to attractive
potentials with α > 0. The potential-free limit of GHo comes out as [12]

GHo → − exp (i kr12) /(4πr12). (4)

The Green’s function in (1) has the dimension of its spectral representation,
namely [E−1r−3]. Its connection to GHo is given by

GE = −γ2GHo γ2 = 2m/~2. (5)
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3 Scaling by mean values of the initial wave

function

We introduce the following mean values from any initial wave function ψ0,
together with units of time and energy, T0 and E0, respectively,

R0 = |〈ψ0 rψ0〉|, V0 =
1

m
|〈ψ0 pψ0〉|, T0 =

R0

V0

, E0 =
m

2
V 2

0 . (6)

In the macroscopic limit, R0 is the mean initial distance of the orbiting mass
point from the force center, and V0 the mean initial speed. We mark, at first,
dimensionless magnitudes by a tilde as

A ≡ i
√
E =

√
E0 Ã, r = R0r̃, r′ = R0r̃′, λ =

mR0V0

~
, (7)

γ2 ≡ 2m

~2
=

λ2

R2
0E0

, τ ≡ t

2T0

=
t̃

λ
, R0k = k̃ ≡ iλÃ, K =

K̃

R3
0

,

G =
G̃

E0R3
0

, A2 t

~
= Ã2t̃, T0 =

R0

V0

, Ẽ =
E

E0

.

The number λ, classically, refers to the initial angular momentum in units of
~; it was the main order of magnitude parameter in [11] and [13] ( where λ was
denoted by κ). The scaled equation (1) now reads with the multiply scaled
time t̃

K̃(r̃, r̃′, t̃) = lim
η̃→0

{
i

π

∫ Ã2

Ã1

dÃ Ã exp[i Ã2 t̃ ]G̃Ẽ(r̃, r̃′)

}
, Ẽ = −Ã2. (8)

In the expression of Hostler’s Green’s function (2), which has the unit R−1
0 ,

the Lambert coordinates x, y, and r12 have dimension R0. After the substi-
tution GHo → R−1

0 G̃Ho, the scaled G̃Ho is given by (2) in terms of the scaled
variables, whereby the dimensionless parameter i ν, defined in (3), depends on
the integration variable Ã, and has to be replaced by νA:

i ν = νA = i
γ2α

2k
, νA =

ν0

Ã
, ν0 =

λ

2
Q0, Q0 =

(
α

R0

)
/

(
mV 2

0

2

)
> 0. (9)

Classically, Q0 is the quotient of the negative potential and kinetic energy at
initial time; Q0 is positive for our assumed positive α; generally, it is of order
1, whereas ν0 can get large through the factor λ in mesoscopic or macroscopic
cases. One obtains the following scaled function

G̃Ho = −Γ(1− νA)

4πr̃12

1

i k̃

(
− ∂

∂ỹ
+

∂

∂x̃

)
WνA,1/2(−i k̃x̃)MνA,1/2(−i k̃ỹ). (10)
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According to (5), we make use of GE = −γ2GHo which implies

(E0R
3
0)−1G̃E = −γ2(R0)−1G̃Ho, or G̃E = −λ2G̃Ho. (11)

In (8), we replace G̃E by −λ2G̃Ho, and from (7) we set in (2) (−i k̃) = λÃ;
moreover, we denote t̃ ≡ c and will elsewhere omit the tilde marks to write
the propagator as follows

K(r, r′, c) = i
λ

4π2 r12

lim
η→0

{∫ A2

A1

dA exp[iA2 c ]Γ(1− νA)× (12)(
− ∂

∂y
+

∂

∂x

)
PνA,1/2(A, x, y)

}
, PνA,1/2 = WνA,1/2(λAx)MνA,1/2(λAy),

where in terms of the original time t one has c = λ t/(2T0) with η = 0.

The scaled propagator K is tested by the potential-free limit νA → 0 which
according to [3] reads

K(0) = exp(−3π i /4)
( m

2π~t

)3/2

exp

[
im(r− r′)2

2~t

]
, t ≥ 0. (13)

The above K(0) has dimension R−3
0 ; it is consistent with the path integral result

obtained for the 1-dimensional configuration space by Eq.(3.3) in [2], which
can easily be extended to three dimensions. Details of deriving (13) from (12)
are given in Subsec.1. of Appendix B.

4 Integration with the method of stationary

phase

We apply a theorem on the method of stationary phase. It is based on the
following lemma, which was proved in [12] for non-negative integers n; in
Appendix A the lemma is extended to negative integers. One defines the
integrals

Bn = lim
η→0

∫ −i /η
1/η

dAAn exp[i cA2 − sA], η > 0, n ∈ Z, (14)

adds a small negative imaginary part to c, and formulates the
Lemma

Bn = (−i ) exp[−i cA2
s]

∫ ∞
−∞

da (As − i a)n exp[−i c a2], n ∈ Z, (15)

As =
−i s

2c
, s = λ

x− y
2

> 0, c = λ τ − i η3/2, τ =
t

2T0

> 0,



138 Alexander Rauh

where As is the stationary point of the exponent of the integrand in (14). It
should be noticed that the particular form of the small imaginary part of c is
useful in the proof of the stationary phase theorem, see Appendix A and [12].
With the aid of the lemma, one immediately infers the
Theorem
If the amplitude f(A) is analytic in the half plane Re(A) > 0, then

lim
η→0

∫ −i /η
1/η

dAf(A) exp[i cA2 − sA] = (16)

(−i ) exp[−i cA2
s]

∫ ∞
−∞

da f (As − i a) exp[−i c a2]. (17)

By the theorem, the integration interval of the highly oscillating integrand of
(16) is concentrated around the physically meaningful stationary point As.

Let us apply the theorem to the Fourier transformation of the propagator
(12). In the exponent of the integral (16), we need the linear term (−sA); so
we insert the unit 1 ≡ exp[−sA] × exp[sA]. Furthermore, we introduce the
abbreviation γK by

γK = − λ

4π2 r12

exp
(
−i cA2

s

)
(18)

to write

K(r, r′, c) = γK

∫ ∞
−∞

da exp(−i c a2)fK (A) , A = As − i a, (19)

fK(A) = exp[sA] Γ(1− νA)

(
− ∂

∂y
+

∂

∂x

)
PνA,1/2(A, x, y).

In Subsec.2. of Appendix B, we show that the free particle limit of (19), with
νA = 0, restores (R3

0K
(0)) provided that one chooses

s = λ(x− y)/2 = λ r12. (20)

As is implied by (B5), after scaling, the free particle propagator K(0) can also
be written as

R3
0K

(0) =
λ2As exp (−i cA2

s)

4π3/2r12

√
i c

= (−1)5/4λ3 exp

(
i
s2

4c

)
(4π c)−3/2 (21)

which allows for writing the pre-factor of the propagator in (19) as follows

γK = γ0

(
R3

0K
(0)(r, r′, c)

)
, γ0 = − 1

λAs

√
i c

π
. (22)
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5 Restriction to a bounded time interval

Due to the factor exp(−i c a2), the effective integration interval in (19) is con-
fined to a finite range −b < a < b, where b is of order 1/

√
c. When the function

fK(A) ≡ fK (As(1 + as)) is Taylor expanded with respect to as = −i a/As, it
is seen that, by parity, only even powers in as survive the a integration. So,
if we approximate fK(A) by fK(As) (1 + Eerr)), the error term is expected to
be of order

Eerr = O
(
| 1

A2
sc
|
)

= O
(

4

r2
12

τ

λ

)
, τ =

t

2T0

, λ =
mR0V0

~
, (23)

which implies that Eerr � 1, if the scaled time τ is small compared with λ,
provided that the distance r12 stays away from zero:

τ � (1/4)r2
12 λ. (24)

In Appendix C, we give examples which support the estimate for Eerr in (23).
In Tab.1 of [11], we listed two-body examples with the corresponding λ

values (there denoted by κ). For an electron - proton scenario we wrote the
number λ = 4.5, for a proton-proton case λ = 139, for an artificial satellite
of 103 kg in an Earth orbit we stated λ = 4 × 1048. Thus, in mesoscopic
und macroscopic examples, the condition (24) generally allows for large time
intervals τ = t/(2T0), even beyond physically reasonable limits (e.g. life time
of the solar system).

In conclusion, we assume that we obtain a reasonable approximation of the
propagator when we replace in the integrand (19) fK(A) by fK(As). For the
remaining a integral, we take into account the small negative imaginary part
of c

c = λτ − i η3/2, As = −iλ (r12/2)
(
λτ − i η3/2

)−1
, η > 0 (25)

to obtain

a0 =

∫ ∞
−∞

da exp[−i c a2) =
√
−i π/c, (26)

and so we propose the approximation K → Kλ with

Kλ(r, r
′, c) = γKa0fK (As) , fK(As) = exp[sAs] Γ(1− νAs)×(

∂

∂x
− ∂

∂y

)
PνAs ,1/2

(As, x, y) . (27)

For the potential-free test, with Q0 = νA = 0, we use (22) for γK , (26) for
a0, and from (B1) the relation

W0,1/2(λAs x)M0,1/2(λAs y) = 2 exp[−λAsx/2] sinh[λAsy/2], (28)

and immediately find the exact potential-free property (21), namely

lim
Q0→0

Kλ = R3
0 K

(0)(r, r′, c). (29)
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6 Asymptotics for large λ

The approximated propagator Kλ has the structure of the Green’s function
(2). But, one now has ”dressed” magnitudes: the first entry of the Whittaker
functions in (2), νAs = λ(Q0/2)/As, which is related to the potential strength
parameter Q0, is replaced by

νAs = λQ
(eff)
0 , Q

(eff)
0 = i

4τ

x− y
Q0, τ =

t

2T0

; (30)

in the third entries of the Whittaker functions, the Lambert coordinates x and
y, respectively, are dressed by the factor As = −i (x− y)/(4τ):

k x→ λX(eff), X(eff) = Asx, k y → λY (eff), Y eff = Asy. (31)

It should be noticed that both the first and the third entry of the Whittaker
functions increase linearly with λ. For this case, we could not find useful
asymptotic formulas in the literature.

However, we will succeed with the aid of a product formula by Buchholz,
see p. 86 of [1]. One defines the product

PνA,µ/2(z) = WνA,µ/2(a1z)MνA,µ/2(a2z) (32)

to write the Buchholz formula as follows

PνAµ/2(z) =
z
√
a1a2 Γ(1 + µ)

Γ[(1 + µ)/2− νA]
× (33)∫ ∞

0

dv exp

[
−z cosh(v)

a1 + a2

2

]
Iµ(z
√
xy sinh(v))

tanh2νA(v/2)
.

The integral exists under the conditions

Re[(1 + µ)/2− νA] > 0, Re(µ) > 0, and a1 > a2. (34)

As compared to the original equation in [1], we replaced the regularized Whit-
taker function M by the common function M , according to Eq.(7) in §2 of
[1] MνA,µ/2 = MνA,µ/2/Γ(1 + µ). In view of the approximated propagator Kλ

defined in (27), we identify parameters as follows

νAs =
ν0

As
, ν0 =

λ

2
Q0, µ = 1, z = λAs, a1 = x, a2 = y, (35)

and write

PνAs ,1/2
=

λAs
√
xy

Γ(1− νAs)

∫ ∞
0

dv exp

[
−λAs cosh(v)

x+ y

2

]
I1(λAs

√
xy sinh(v))

tanh2νAs (v/2)
.

(36)
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As to the conditions (34), the last one implies x > y which is fulfilled if r1 6= r2,
the condition Re(µ) > 0 is obvious, and Re(1 − νAs) > 0 holds true since νAs

is purely imaginary in the limit η → 0.
As is needed for the propagator, we apply the differential operator (∂x−∂y).

After some simplifications and the substitution v → u = cosh(v), the modified
first order Bessel function I1 is replaced by the zero order Bessel function J0

as follows

(∂x − ∂y)PνA,1/2 = dALA, dA = −λ
2A2(x− y)

2Γ(1− νA)
, k = iλA, (37)

LA =

∫ ∞
1

du exp[−λAu(x+ y)/2]J0

(
iλA
√
xy
√
u2 − 1

)(u+ 1

u− 1

)νA
. (38)

By (12) and (38), the scaled, exact propagator K (r, r′, t) can be written as

K(r, r′, c) = i
λ3

4π2
lim
η→0

∫ A2

A1

dA exp[i cA2]A2 LA, (39)

where we made use of x− y = 2r12; the factor Γ(1− νA) has dropped out. As
is shown in Subsec.2. of Appendix B, the potential-free limit of the above K,
reproduces K(0) as stated in (13), after multiplication by R3

0.
For the approximated propagator Kλ, given in (27), we need the function

LA of (38) at the stationary point A = As. In Appendix D, the corresponding
integral is asymptotically calculated for large λ by the saddle-point method.
To represent the result, we introduce the following abbreviations

ξ = 32Q0
τ 2

(x− y)2
, Ξ = iλ

(x− y)ξ

16 τ
, Wu,v =

√
u(v + ξ), (40)

Ξ1 =
−x+ y −Wx,x +Wy,y

x− y −Wx,x +Wy,y

, Ξ2 =
x− y +Wx,x +Wy,y

−x+ y +Wx,x +Wy,y

,

where one can show that Ξ1,2 > 1, if x > y; , Ξ is purely imaginary. The result
of the saddle-point integration (abbreviated by sp) is now written as follows

LspAs
= β Lsp, Lsp = (Λ1 + i Λ2) (Wx,xWy,y)

−1/2 , β =
4τ

λ(x− y)2
,

Λ1 = exp

[
iλ

(x− y)(Wx,x +Wy,y)

8τ

]
(Wx,y −Wy,x) (Ξ1)Ξ,

Λ2 = exp

[
iλ

(x− y)(Wx,x −Wy,y)

8τ

]
(Wx,y +Wy,x) (Ξ2)Ξ. (41)

In the potential-free limit, which amounts to ξ → 0, we find

lim
ξ→0

LspAs
=

exp (−λAsr12)

λAsr12

lim
ξ→0

Lsp =
1

β
lim
ξ→0

LspAs
, As = −i

r12

2 τ
, (42)
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which according to (B14) agrees with the corresponding limit, L
(0)
As

, of the exact
integral LAs . Eventually, we approximate in (27) the factor FK(As) in terms
of the saddle-point calculation. With the aid of (27), (38), and (41), we get

FK(As)→
λ

8τ
(x− y) exp

(
−i

(x− y)2λ

8τ

)
Lsp, (43)

which, by (27), leads to

Kλ → Ksp
λ = −i

(
R3

0K
(0)
)

2
exp

(
−i

(x− y)2λ

8τ

)
Lsp. (44)

In view of (42), the potential-free limit of Ksp
λ →

(
R3

0K
(0)
)

comes out correctly.

 λ



LAs

20 25 30 35

-0.5

0.5

1.0

Figure 1: Plots of the real (black curve) and imaginary (blue curve) parts of the
function LAs which is defined by Eq.(45) in terms of the Whittaker functions.
The Lambert coordinates are chosen by x = 2 and y = 1; time parameter is
τ ≡ t/(2T0) = 2, and the potential strength parameter Q0 = 3/2.

7 A numerical check of the saddle-point inte-

gration

By (37), the function LA is expressed in terms of the product of Whittaker
functions:

LA =
1

dA
(∂x − ∂y)PνA,1/2 ≡

1

dA
(∂x − ∂y)WνA,1/2(λAx)MνA,1/2(λAy), (45)

whereA has to be replaced byAs. By Mathematica [14], the differentiations are
rendered analytically in terms of Whittaker functions, partially, with shifted
first entry. We take advantage of the built-in functions
WhittakerM[...] and WhittakerW[...], and choose parameters as follows: x = 2,
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y = 1, τ = 2, η = 0, and Q0 = 3/2. Then, with νAs = 2iλτQ0/(x − y), the
function LAs depends on λ only. In Fig.1, the real and imaginary parts of
LAs are plotted in the interval 15 ≤ λ ≤ 36. For larger λ values, numerical
instabilities emerge with standard setting of Mathematica precision.

How do the two curves of Fig.1 compare with those obtained from LspAs
,

given in (41), derived by the saddle-point method? A graphical representation
is redundant, since the corresponding curves graphically coincide with those
of Fig.1 in all details, without visible deviations. The computing time for
rendering Fig.1 took about 20 seconds, whereas the graphical representation
from (41) is faster by about a factor thousand. In Tab.1, we list root-mean-
square deviations (RMSD) in different λ intervals.

RMSD of LA curves

λ ∈ {3,8} {8,13} {13,18} {18,23} {23,28} {28,33}
Re(LAs) 0.0192 0.00376 0.0015 0.00077 0.00050 0.00037
Im(LAs) 0.0170 0.0034 0.00142 0.00082 0.00057 0. 00040

Table 1: Root-mean-square deviations (RMSD) of LAs curves calculated in two
different ways: directly from the product of Whittaker functions, and from the
Buchholz formula [1], whose integral is calculated by the saddle-point method.

8 Summary

As compared to a previous result [12], the theorem on the method of station-
ary phase is extended to include negative powers of A in the integrand. The
theorem is applied to the representation of the Coulomb-Kepler propagator by
means of a, suitably modified, Fourier transformation of the exactly available
Green’s function [6]. By the theorem, the Fourier integral is determined by a
path, which goes through a stationary point As. The latter is a function of
the two Lambert coordinates x, y and of time t. The stationary phase inte-
gral leads to an elementary compact form Kλ of the propagator, provided that
the time interval is restricted by a condition which is physically reasonable in
mesoscopic or macroscopic cases. Kλ has the structure of the Green’s func-
tion, and thus, essentially, is the product of the two Whittaker functions, but
depending on ”dressed” coupling constant and Lambert variables. Asymptot-
ically, for large λ, the Whittaker product is brought into an elementary form
by means of a saddle-point integration. The approximated propagator is in a
compact analytical form and should be suitable for docking to any initial wave
function.

Acknowledgement The author expresses his gratitude to Jürgen Parisi for
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A Proof of stationary phase lemma for nega-

tive powers

In [12], the following lemma was proved for non-negative integer powers An:
Lemma

jn = lim
η→0

∫ −i /η
1/η

dAAn exp[i cA2 − sA] (A1)

= (−i ) exp[−i cA2
s]

∫ ∞
−∞

da (As − i a)n exp[−i c a2], n = 0, 1, 2, .. (A2)

where As is the stationary point of the exponent in (A1) with

As = −i s/(2c), s = λ r12, c = λτ−i η3/2, τ = t/(2T0) > 0, η > 0. (A3)

We prove that the lemma is also true for negative integers n. To this end, we
set r=(-n) and define the integrals

Jr = lim
η→0

∫ −i /η
1/η

dA
1

Ar
exp[i cA2 − sA], r = 0, 1, 2, ... (A4)

Rr = lim
η→0

[
(−i ) exp[−i cA2

s]

∫ ∞
−∞

da
1

(As − i a)r
exp[−i c a2]

]
. (A5)

By means of partial integration, one gets the following difference equations
which are the same, up to possibly different initial values (J0, J1) and (R0, R1);
the free terms vanish in view of c = λτ − i η3/2 and s > 0:

Jr =
2i c

r − 1
[Jr−2 − AsJr−1] , r = 2, 3, . . . (A6)

Rr =
2i c

r − 1
[Rr−2 − AsRr−1] , r = 2, 3, . . . (A7)

It remains to show that J0 = R0 and J1 = R1. Then, recursively Jr = Rr for
r = 2, 3, ..., and the Lemma is extended to negative integers n.

From Eq.(50) in [12], we have

R0(s) ≡ J0(s) = (−1)5/4

√
π

c
exp

(
−i cA2

s

)
= (−1)5/4

√
π

c
exp

(
i
s2

4c

)
. (A8)
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For r = 1, we use the auxiliary integral transforms

1

A
=

∫ ∞
0

du exp[−Au], Re[A] > 0 and (A9)

1

As − i a
=

∫ ∞
0

du exp[−(As − i a)u], Re[As − i a] =
s η3/2

c c∗
> 0, (A10)

and obtain

J1 =

∫ ∞
0

du lim
η→0

∫ −i /η
1/η

dA exp[i cA2 − (s+ u)A] =

∫ ∞
0

du J0(s+ u)

= −i πErfc[As
√

i c]; (A11)

R1 = −i exp[−i cA2
s] r1, r1 =

∫ ∞
−∞

da
exp[−i c a2]

As − i a
= (A12)∫ ∞

0

du exp[−Asu] ρ1(u), ρ1(u) =

∫ ∞
−∞

da exp[−i c a2 + iu a] = (A13)√
π

i c
exp

[
i
u2

4c

]
, r1 = π exp[i cA2

s] Erfc[As
√

i c],

which gives rise to the desired result

R1 = −i π Erfc
[
As
√

i c
]
≡ J1. (A14)

B Tests of potential-free case

B.1 Test of expression (12) of the propagator K

Zero coupling with Q0 = νA = 0 implies elementary Whittaker functions as
follows

M0,1/2(z) = 2 sinh(z/2), W0,1/2(z) = exp(−z/2). (B1)

Using the explicit Lambert variables defined in the Introduction, we obtain(
− ∂

∂y
+

∂

∂x

)
PνA,1/2(A, x, y) = −λA exp[−sA], s = λ (x− y)/2. (B2)

From (12) and Γ(1) = 1, one obtains, introducing the notationK0 = limνA→0K,

K0 = +i
λ2

4π2 r12

(−∂sB0), B0 = lim
η→0

{∫ −i /η
1/η

dA exp[iA2 c − sA]

}
. (B3)

B0 = (−i ) exp(−i cA2
s)

∫ ∞
−∞

da exp(−i c a2) = (−1)5/4

√
π

c
exp

(
i
s2

4c

)
. (B4)
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After inserting B0 into K0, given in (B3), we find

K0 = (−1)5/4λ3 exp

(
i
s2

4c

)
(4π c)−3/2 . (B5)

We remind that K0 is dimensionless and depends on the scaled variables. In
order to arrive at the textbook formula (13), we have to invert the substitutions
(7) as

K0 = R3
0K

(0), s→ λr12/R0, r12 → r12/R0, c→ (λ/2)(R0/V0)t. (B6)

Eventually, we use λ = mR0V0/~ to arrive at the desired result (13).

B.2 Test of expression (19) of the propagator K

With the aid of (B1) and (B2), after setting νA = 0 and A = As − i a, one
obtains

fK(As) = exp[sAs]

(
∂

∂x
− ∂

∂y

)
P0, 1

2
(As, x, y) = −λ (As − i a). (B7)

With the aid (22) for γK and (26) for a0, one immediately gets

K0 = −γKλAsa0 = R3
0K

(0). (B8)

B.3 Test of expression (39) of the Propagator K

The potential-free case, with νA = 0, leads to the integral LA → L
(0)
A , which

can be found from formula 6.645 2. in [5] as

L
(0)
A =

∫ ∞
1

du exp[−λAu(x+ y)/2]J0

(
iλA
√
xy
√
u2 − 1

)
(B9)

=
√

2/π
(
α2

1 + β2
1

)−1/4
K1/2(

√
α2

1 + β2
1), (B10)

α1 = λA(x+ y)/2, β1 = iλA
√
xy,

where K1/2 is a modified Bessel function of the second kind; it is elementary.
We get, taking the plus sign of the square root,

Z =
√
α2

1 + β2
1 = λA(x− y)/2, (B11)

K1/2(Z) =
√
π/(2Z) exp[−Z] =

√
π

2

exp(−Aλr12)√
Aλr12

, r12 = (x− y)/2, (B12)

and, thus,

L
(0)
A =

1

λA r12

exp(−λA r12). (B13)
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According to (39), we are left with the following A integral

K0(r, r′, t) = i
λ2

4π2r12

B1, s = λr12, c = λ τ − i η3/2, (B14)

B1 = lim
η→0

∫ A2

A1

dAA exp[iA2 c − sA]. (B15)

The integral B1 is calculated by the theorem of stationary phase (16), (17).

B1 = − s

2c

√
π

i c
exp

(
i
s2

4c

)
. (B16)

To recover the propagator K(0), see (13), from (B14) and (B16), we invert the
scaling according to (7) and use the standard principal value (−1)5/4 exp[i 3π/4]
= 1.

C Examples for the error term in (23)

In the theorem (16) and (17), we choose four special amplitudes f(A):

f1 = A3, f2 = A5, f3 =
1

A
, f4 =

1

A3
, A = As − i a, (C1)

and define the integrals

Fj = (−i ) exp(−i cA2
s)

∫ ∞
−∞

da exp(−i c a2) fj(As − i a), (C2)

F
(0)
j = (−i ) exp(−i cA2

s) fj(As)

∫ ∞
−∞

da exp(−i c a2), j = 1, 2, 3, 4, (C3)

where c has the small negative imaginary part (−i η3/2). The quotients qj :=

Fj/F
(0)
j should tend to 1 in the limit τ/λ → 0. In the first two cases, one

rigorously obtains

q1 = 1− i
6

r2
12

τ

λ
, q2 = 1− i

20

r2
12

τ

λ
− 60

r4
12

(τ
λ

)2

. (C4)

As to q3 and q4, we use the recurrence equation (A7) which leads to

F4 ≡ R3 = c
(
cAsR0 + iR1 − 2cA2

sR1

)
. (C5)

From (A8) and (A14), we have the explicit expressions

R0 = (−1)5/4

√
π

c
exp

(
−i cA2

s

)
and F3 ≡ R1 = −i π Erfc

[
As
√

i c
]
. (C6)
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Furthermore, we make use of

F
(0)
3 = −i a0 exp

(
−i cA2

s

) 1

As
, F

(0)
4 = −i a0 exp

(
−i cA2

s

) 1

A3
s

, (C7)

where a0 =
√
−i π/c. In the argument of Erfc, the factor As does not depend

on λ, which implies that z = As
√

i c is proportional to
√
λ. So, we approximate

Erfc(z) asymptotically for large λ as

Erfc(z)→ 1

z
√
π

exp(−z2)

[
1− 1

2z2
+

3

4z4
− 15

8z6
+O(z−8)

]
. (C8)

Eventually, we obtain

q3 → 1− i
2

r2
12

τ

λ
+O

(
τ

r2
12λ

)2

, q4 → 1− i
12

r2
12

τ

λ
+O

(
τ

r2
12λ

)2

. (C9)

D Application of the saddle-point method

The integral for LA defined in (38) is calculated by the saddle-point method
for large λ. To this end, we start from the asymptotic approximation of the
Bessel function J0(z) for large |z|:

J0(z) =
1√
2πz

[exp (i (π/4− z)) + exp (−i (π/4− z))]
{

1 +O(z−1/2)
}
,

z ≡ z(u) = iλA
√
x y
√
u2 − 1, u ≥ 1. (D1)

With

LA =

∫ ∞
1

du l(u), (D2)

l(u) = exp[−λAu(x+ y)/2]J0

(
iλA

√
xy(u2 − 1)

)(u+ 1

u− 1

)νA
, (D3)

we approximate the integrand l(u) as

l(u)→ lasy(u) =
1√
2πz
{exp(Z1) + exp(Z2)} , (D4)

Z1 = −λAu(x+ y)/2 + i (z − π/4) + νA [ln(u+ 1)− ln(u− 1)] ,

Z2 = −λAu(x+ y)/2− i (z − π/4) + νA [ln(u+ 1)− ln(u− 1)] . (D5)

We need LA at the value A = As = −i (x−y)/(4τ), where νAs = 2iλQ0τ/(x−
y), which implies that both exponents Z1,2 increase linearly with λ. So, for
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large λ, we Taylor expand Z1,2(u) at the stationary points Us to second order
in (u−Us). To simplify expressions, we use the abbreviations defined in (40).
One observes the property

Wx,y −Wy,x ≥ 0 for x ≥ y and ξ ≥ 0 (D6)

with the consequence that√
2xy + (x+ y)ξ ± 2Wx,xWy,y = Wx,y ±Wy,x. (D7)

The condition ∂Z1,2(u)/(∂u) = 0 leads to the equation

x+ y− ξ

u2 − 1
+ σ

2u
√
x y

√
u2 − 1

= 0, σ = (+1) for Z1, σ = (−1) for Z2. (D8)

At first, the zero condition (D8) has 4 solutions, which are the same for both
signs of σ:

U1 = −Wx,x −Wy,y

x− y
, U2 = −U1, U3 = −Wx,x +Wy,y

x− y
, U4 = −U3. (D9)

Only two of them are genuine solutions: (U2, U3) and (U1, U4) in the case σ = 1
and σ = (−1), respectively. We remind that x > y, which implies that the two
stationary points U2 > 1 and U4 > 1 lie on the integration path u > 1. So we
approximate Z1 near u = U2 and Z2 near u = U4 as follows

Z1(u) = Z1(0) + ζ1(u− U2)2, Z2(u) = Z2(0) + ζ2(u− U4)2, (D10)

Z1(0) = −i
π

4
+

iλ

8τ
[(x+ y) (Wx,x −Wy,y) + 2

√
x y (Wx,y −Wy,x)] +

Ξ ln (Ξ1) . (D11)

ζ1 = i
λ(x− y)4

8τ

{√
xy (x− y)2 + (Wx,x −Wy,y) [

√
xy (Wy,y −Wx,x)+

ξ(Wx,y −Wy,x)]} × [Wx,y −Wy,x]
−5 . (D12)

Z2(0) = i
π

4
+

iλ

8τ
[(x+ y)(Wx,x +Wy,y)− 2

√
x y (Wx,y +Wy,x)] +

Ξ ln (Ξ2) . (D13)

ζ2 = i
λ(x− y)4

8τ
{√xy (Wx,y +Wy,x) + ξ(Wx,x +Wy,y)} ×

[Wx,y +Wy,x]
−4 . (D14)
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The saddle-point integration of lasy(u), is conventionally carried out (with-
out error estimate). The integration path, in each of the two terms of (D4),
is deformed such that it goes in the direction of steepest descend. In the first
term of (D4), we apply the transformation u → v with u = U2 + v exp(iφ),
v ∈ R, with the result

Z1(u)→ Z1(0) + exp
(
i (θ + 2φ)|ζ1| v2

)
, θ = arg(ζ1) = π/2. (D15)

The condition of steepest descent amounts to θ + 2φ = π, i.e. φ = π/4. We
get the Gaussian integral

exp(iφ)

∫ ∞
−∞

dv exp
(
−|ζ1|v2

)
= exp(i π/4)

√
π/|ζ1|. (D16)

The amplitude factor in (D4), 1/
√

2πz, is taken at the corresponding stationary
point z1 = z(U2) and z2 = z(U4), where

z1 = iλAs
√
xy
√
U2

2 − 1 =
λ

4τ

√
xy (Wx,y −Wy,x) , (D17)

z2 = iλAs
√
xy
√
U2

4 − 1 =
λ

4τ

√
xy (Wx,y +Wy,x) . (D18)

The integration of the Z2 term works analogously. Combining results, the
saddle-point integral, which corresponds to the integrand l(u) → lasy(u) in
(D2), is given by

LspAs
=

exp(i π/4)√
2z1|ζ1|

exp (Z1(0)) +
exp(i π/4)√

2z2|ζ2|
exp (Z2(0)) . (D19)

It takes some efforts to bring LspAs
of (D19) into the simplified form LspAs

as
given in (41). As a test, we form the difference, use the definitions in (40) for
Ξ and Wu,v, and choose the integer parameters x = 2, y = 1, ξ = 1. By the
command FullSimplify, Mathematica renders the exact zero result identically
in λ > 0 and τ > 0:

FullSimplify[(D19)− (41),Assumptions→ λ > 0 AND τ > 0] = 0. (D20)
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