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Abstract

This paper investigates from the viewpoint of homotopy categories
in Welded Tangleoids whether superstatistics is applicable. Boltzmann-
Gibbs distributions (and Bose-Einstein for bosons or Fermi-Dirac for
fermions in the quantum case) appear as the solution of kinetic equa-
tions (Boltzmann-Gibbs are stationary solution of classical Boltzmann
equation and Fermi-Dirac or Bose-Einstein are stationary solution of
the Quantum Boltzmann equation).

Mathematics Subject Classification: 57K12, 55P10, 82B03

Keywords: Tangleoids; Superstatistics; Homotopy; Effective quantum
Field Theories



84 Cenap Ozel, Hadeel Albeladi and Patrick Linker

1 Introduction

Recently, Effective Quantum Field Theories (EQFTs) were topologically char-
acterized in terms of Welded Tangleoids. With effective quantum field theories,
composite particles like atoms (consisting of electrons, protons and neutrons)
and even macroscopic bodies can be described in the framework on Quantum
field theory (QFT). Since it remains an open question whether particles re-
garded as elementary particles in our current understanding of particle physics
might be composite, one may treat every QFT as an effective one. Theories
that try to describe particles and interactions as elementary as possible like
String theory have many open questions on its validity.

Recently, Effective Quantum Field Theories (EQFTs) were topologically
characterized in terms of Welded Tangleoids. With effective quantum field
theories, composite particles like atoms (consisting of electrons, protons and
neutrons) and even macroscopic bodies can be described in the framework
on Quantum field theory (QFT). Since it remains an open question whether
particles regarded as elementary particles in our current understanding of par-
ticle physics might be composite, one may treat every QFT as an effective
one. Theories that try to describe particles and interactions as elementary as
possible like String theory have many open questions on its validity [dHD13].

Moreover, in recent times, generalizations of Statistical mechanics are re-
quested. Traditionally, the fundamental pillar of Statistical mechanics is Boltz-
mann’s formula for entropy

S = —kplog(W) (1)

with number of microstates W and Boltzmann’s constant kg. In the last
decades a generalization of the Statistical definition of entropy (1) were pro-
posed, e.g. Tsallis entropy [Tsa09, [ KLS05]. These apply if the system has long-
ranged interactions, non-ergodicity or fractal structure of the phase space. Sev-
eral justifications of generalized statistical mechanics were proposed for system
that appear to have non-extensive thermodynamic behavior when treated with
Boltzmann’s formalism. One of them is called “Superstatistics” [HTGMI11]
Coh04]. This theory assumes that the local equilibrium state obeys the Boltzmann-
Gibbs distribution

1
f(E—=n)= e P Z(B) =) e (2)

- 5
where F, is the n-th energy state and § = kBLT with temperature 7. But due
to fluctuations of temperature over space and time, one may regard the effec-
tive energy distribution as another than the classical Boltzmann-Gibbs one.
To account for spatio-temporal fluctuations in temperature, one introduces
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a probability distribution P(/3) that denotes the probability that the inverse
temperature 8 will be observed. One gets the effective distribution f.s¢ by
taking the average with this probability distribution over (2), thus:

for(Ea) = / ) %emdﬁ 3)

If there is full certainty about the observed temperature that is denoted by
Po one has the distribution P(f) = §(5 — fy) and Boltzmann-Gibbs distribu-
tion is recovered. In case of a y2-distribution of inverse temperature, Tsallis

statistics
1 E, 2

fess(Bn) = - (1= (a 1) 5, )t (4)

with parameters ¢, 8y is recovered. This paper investigates from the view-
point of homotopy categories in Welded Tangleoids whether superstatistics is
applicable. Boltzmann-Gibbs distributions (and Bose-Einstein for bosons or
Fermi-Dirac for fermions in the quantum case) appear as the solution of kinetic
equations [Ver20](Boltzmann-Gibbs are stationary solution of classical Boltz-
mann equation and Fermi-Dirac or Bose-Einstein are stationary solution of the
Quantum Boltzmann equation). We will, for simplicity focus on Boltzmann
statistics, since it is also the limiting case of Fermi-Dirac or Bose-Einstein dis-
tribution for sufficiently high temperatures and low particle or quasiparticle
density. Also, only fluctuations in inverse temperature are addressed. Since
EQFTs form the basis of macroscopic objects which are commonly described
by classical physics, semi-classical treatments, here with the assumption that
the classical Boltzmann-Gibbs distribution is the stationary distribution for a
kinetic equation, are plausible. The derivation of superstatistics formalism (3)
from first principles will be considered in this paper.

The paper organization is as follows; In Section 2 we review the unoriented
welded tangleoid categories. Then in Section 3 we givesuplerstatistic in terms
of homotopy theory.

2 Unoriented Welded Tangle-oids

In this section we review the definition of welded tangle-oids categories de-
fined in [AIb22]. A monoidal category ( see for example [Kas12]) of unoriented
welded tangle-oids have defined by giving a presentation by using the presen-
tation of slideable -monoidal categories [AID22].

Definition 2.1. [A[b22, definition 7.2.1] Consider the monoidal graph

5 = (N>E(ﬁ)> ®0a07 51752)7
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where for allm,n € N, m ®n =m +n, and
E(B) ={X, X, X,u,n, 1,1},
the incidence maps

51X+ - 2, 52X+ - 2, (SlX_ - 27 52X_ - 2,

51X - 2, 52X - 2, (51U - 0, 62U - 2,
0N =2, 02N =0, 0j =1, d2i = 0,
51 =0, Syl = 1.

These generators can be presented geometrically as

X, > X=X x-X u-{J

naﬂ !*J. iaT

Consider the path category, see for example ([Hig71], over 5*, the extent of
the monoidal graph .

P(p*) = (N,hompg-y(n,m), e, ¢).

Therefore
Q(@) = (P(ﬁ*), X0, O7n#7 #m)

is a %—monoidal category, whose set of objects is the set of natural numbers,
where for all n,m,k € N ;

nHm(k) =n®ok®ym=n-+k+m,

and for all generating morphism (f: k — k') € E(f), we have

wm(f) =n+k+m 2220 K +m.

Then we have the free—%—monoidal category-triple
(8,62(8),9).

Definition 2.2 (Unoriented welded tangle-oids category). The unoriented
welded tangle-oids category UWTC' is the strict monoidal category formally

presented by
5(0) /)
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where Q(B) defined in [AIb22, Section 7.2] and W is the %—monoidal closure of
the congruence template W that is defined as follows.

Given m,n € N, then W, , is the relation in hompg-y(m,n), defined as (
the picture will follow)

In hompg(1,1), we have the only relations

id, ).

L] [WTQ] . (ldl X ﬁ)(X+ X ldl)(ldl X U) ~MWia 1d1 ~MWia (ldl X ﬂ)(X_ X
id;)(id; ® U).

° [WTg] . (ﬂ &® 1d1>(1d1 (024 X,)(U X ldl) ~Wia 1d1 ~Wy 1 (ﬂ X ld1)<ld1 X
X)) (U®idy).

o WTy|: (N®idy)(idy @ U) ~yy , idy ~wy, (Idy @ N)(U @ idy).
In hompg-)(2,2), we have the only relation

o (WTs|: X_X, ~vwy,, idy ~py, XX
In homp+)(3,3), we have the only relations

[ ] [WT@] . (X+®1d1)(1d1 ®X+)<X+®1d1) NW3’3 (ldl ®X+>(X+®ld1)(ld1®
X,).

o (WT7]: (X;®id))(id; @ X)(X ®@idy) ~wy, (id; @ X) (X ®@idy)(idy @ X).
o (WT;]: (X®idy)(idi®X,)(X;®idy) ~wy, (Idi®@X54) (X ®idy) (id;©X).
In homps+)(3,1), we have the only relations
o WThl: (N®idy)(id; ® X_) ~py, (idi ® N)(X4 ®@1idy).
o W : (N®idy)(id; ® X4) ~w, (idy @ N)(X- ®idy).
o WT": (N®idy)(id; ® X) ~wy, (idi ® N)(X ®1idy).
In homps+)(1,3), we have the only relations
o (WTy): (id; ® X;)(U®idy) ~wy, (Xo ®idy)(id; ® U).
o (WTy] : (id; ® X_)(U®idy) ~w,, (X4 ®idy)(id; @ U).
o (W) : (idi ® X)(U®idy) ~wy, (X ®idy)(id; @ V).
In homps+)(1,0), we have the only relation

L] [WTll] : ﬂ(1d1®') ~Wio i ~Wio ﬂ(‘ X ldl)
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In homps+)(0,1), we have the only relation:
o [WTs] : (idi®@)U ~wy, v, (1 ®1dy)U.
In hompg-)(2,1), we have the only relations
o (WTs]: (j®id)) Xy ~w,y, idi®).
(W] (1di®)) X~y i @idy.
o W :
(W]

[ ]
( ®1d1>X NW21 1d1®|

Wiy, ! (1d1®])X ~MWanl ® id;.

Note that we do not impose that in hompg)(2,1):
(| X ldl)X_ PWa 1d1®|

These relations can be present geometrically as (note we read the diagram
from bottom to top)

W] W) (W]

00! /JI\M\W

NMQ©

ER R

(WT,] (W] Wr,)"

e

n
e

=7 o F
= 5’\

= 28

= =
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]

i,
Ml
T iy

A

W

na

n2

oA X
A U

XA X

we do not impose that;

ne
ne

A

3 Justification of Superstatistics in terms of
homotopy theory

Consider a homotopy from the boundary OI' of the welded tangleoid over an
interval to the interior of the tangleoid . With tangleoids, composite particle
and quasiparticle scattering is depicted. The homotopy map has the form:

h:00 x [0,1] =T.  (5)

We choose the boundary JI" to be on one equal-time surface. We will pick this
equal-time surface as a local kinetic equilibrium state where Boltzmann-Gibbs
statistics holds. On other instants of time, the Boltzmann-Gibbs distribution is
deformed due to nonequilibrium effects e.g. viscous stress or heat conduction.
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We can pick a collection of multiple points (z, s) with x € 9" and s € [0, 1] that
satisfy Boltzmann-Gibbs statistics. Within the neighborhood of one point, de-
noted by N(x,s) we have nonequilibrium behavior. Gluing all neighborhoods
together, we cover the space OI' x [0, 1] which is the domain of the homotopy
map h. Define a functor F' from homotopy categories (with homotopy spaces
as objects, gluing and homotopies as morphisms) to function space category
(with functions as objects and linear operators as morphisms). This functor
transforms the points (z, s) to its local Boltzmann distributions and the glu-
ing operation to integration. Homotopies are regarded as homeomorphisms in
OI" x [0, 1] that are transformed into the adjustment of the support within the
function space. In total the glued space Uycar scoq)(2, s) will get the following
transformation under the action of F:

efﬁ(xat)En

F(Uzeor seo,n(,8)) = Z m7

(z,t)eQ

(6)

where (2 is the spacetime manifold with its points (x,t). Using the functor on
the homotopy operation and extending the support on the right hand side of
(6), we can write:

F(h(Uzeor,seo,y(, 8))) = F(T')
6_/B(z7t)En

:/OOO dﬁ/dtd:gx(s(ﬁ—ﬁ(l’,t))m (7>

Finally, defining [ dtd®*x6(8 — B(x,t)) = P()A with some normalization con-
stant A leads to the effective energy distribution function (3) in a way that

F(T) = fers(En). (8)

Therefore, we have identified the effective equilibrium distribution with the
physical behavior that appears during the depicted welded tangleoid and its
homotopy.
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