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Abstract

Holding a Morris-Thorne wormhole open requires a violation of the null
energy condition, calling for the need for so-called exotic matter near
the throat. Many researchers consider exotic matter to be completely
unphysical in classical general relativity. It has been shown, however,
that the existence of an extra macroscopic dimension can resolve this
issue: the throat could be lined with ordinary matter, while the extra
dimension is then responsible for the unavoidable energy violation. The
purpose of this paper is to show that the extra dimension can be micro-
scopic, a result that is consistent with string theory.

PACS numbers: 04.20.-q, 04.20.Cv, 04.20.Jb, 04.50.+h

Keywords: traversable wormholes, exotic matter, small higher dimen-
sions

1 Introduction

This paper is concerned with a number of fundamental issues in the study of
Morris-Thorne wormholes, even raising the question whether a basic wormhole
structure can even be hypothesized. Moreover, while they may be just as
good a prediction of Einstein’s theory as black holes, wormholes are subject
to severe restrictions from quantum field theory, in particular, the need to
violate the null energy condition, calling for the existence of “exotic matter”
to hold a wormhole open. It has been shown, however, that this requirement
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can be met via the existence of an extra macroscopic spatial dimension. It is
proposed in this paper that the extra dimension can be extremely small, an
appoach that is consistent with string theory. Furthermore, the existence of
the extra dimension would allow the throat of the wormhole to be lined with
ordinary matter, while the unavoidable violation of the null energy condition
can be attributed to the higher spatial dimension.

The other issue to be addressed is the enormous radial tension at the throat
of any moderately-sized wormhole, a problem that is usually ignored.

2 Wormhole structure

Wormholes have been a subject of interest ever since it was realized that the
Schwarzschild solution and therefore black holes can be viewed as wormholes,
albeit nontraversable. More recently, the problem of entanglement has drawn
attention to a special type of wormhole, the Einstein-Rosen bridge, to explain
this phenomenon. Accordingly, we will assume that a basic wormhole structure
can be hypothesized.

While there had been some forerunners, what came to be called a Morris-
Thorne wormhole was first proposed by Morris and Thorne [1], who proposed
the following static and spherically symmetric line element for a wormhole
spacetime:

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2θ dφ2), (1)

where

e2λ(r) =
1

1− b(r)
r

. (2)

(We are using units in which c = G = 1.) The terminology introduced in Ref.
[1] has become standard: Φ = Φ(r) is called the redshift function; this function
must be finite everywhere to prevent the occurrence of an event horizon. The
function b = b(r) is called the shape function since it determines the spatial
shape of the wormhole whenever it is depicted in an embedding diagram [1].
The spherical surface r = r0 is called the throat of the wormhole. In a Morris-
Thorne wormhole, the shape function must satisfy the following conditions:
b(r0) = r0, b(r) < r for r > r0, and b′(r0) < 1, called the flare-out condition
in Ref. [1]. In classical general relativity, the flare-out condition can only be
met by violating the null energy condition (NEC), which states that for the
energy-momentum tensor Tαβ

Tαβk
αkβ ≥ 0 for all null vectors kα. (3)

Matter that violates the NEC is called “exotic” in Ref. [1]; the term is borrowed
from quantum mechanics. To see the effect on wormholes, consider the radial
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outgoing null vector (1, 1, 0, 0), which yields

Tαβk
αkβ = ρ+ pr < 0 (4)

whenever the NEC is violated. Here T t t = −ρ(r) is the energy density, T r r =
pr(r) is the radial pressure, and T θ θ = T φ φ = pt(r) is the lateral (transverse)
pressure. Another requirement is asymptotic flatness:

limr→∞Φ(r) = 0 and limr→∞
b(r)

r
= 0. (5)

For later reference, let us now state the Einstein field equations in the
orthonormal frame:

Gα̂β̂ = Rα̂β̂ −
1

2
Rgα̂β̂ = 8πTα̂β̂, (6)

where

gα̂β̂ =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 . (7)

In the orthonormal frame, we can simply write T00 = ρ and T11 = pr.

3 The exotic-matter problem

As noted in the Introduction, holding a wormhole open requires a violation
of the NEC, thereby calling for the existence of exotic matter, at least in the
vicinity of the throat. The problematical nature of exotic matter in classical
general relativity has led to a certain skepticism: many researchers consider
such wormhole solutions to be completely unphysical, thereby ruling out the
existence of macroscopic traversable wormholes in Einstein’s theory. This has
suggested solutions beyond the classical theory. For example, it was proposed
by Lobo and Oliveira [2] that in f(R) modified gravity, the wormhole throat
could be lined with ordinary matter, while the violation of the NEC can be
attributed to the higher-order curvature terms. Another possibility is to invoke
noncommutative geometry, an offshoot of string theory [3, 4].

In this paper, we are going to be more interested in the effects of an extra
spatial dimension, an example of which is the induced-matter theory by P.S.
Wesson [5, 6, 7]: what we perceive as matter is merely the impingement of the
higher-dimensional space onto ours. The relationship between the energy vio-
lation and the existence of extra dimensions is taken up in Ref. [8], where the
extra dimensions are assumed to be macroscopic. String theory, on the other
hand, assumes the existence of extra small dimensions; these are sometimes
referred to as “compactified” or “curled up.” So it makes sense for us to follow
suit and assume the existence of at least one small extra dimension.
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4 A small extra dimension

If we are going to assume the existence of an extra dimension, we must first
decide on the line element. With Eq. (1) in mind, let us consider the form

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2θ dφ2) + e2µ(r,l)dl2, (8)

where l is the extra coordinate. This choice was motivated in part by symmetry
considerations: all the exponential terms have the same form.

Our next step is to list the components of the Ricci tensor from Ref. [8] in
the orthonormal frame:

R00 = −1

2

dΦ(r)

dr

rb′ − b
r2

+
d2Φ(r)

dr2

(
1− b

r

)
+

[
dΦ(r)

dr

]2(
1− b

r

)
+

2

r

dΦ(r)

dr

(
1− b

r

)
+
dΦ(r)

dr

∂µ(r, l)

∂r

(
1− b

r

)
, (9)

R11 =
1

2

dΦ(r)

dr

rb′ − b
r2

− d2Φ(r)

dr2

(
1− b

r

)
−
[
dΦ(r)

dr

]2(
1− b

r

)
+
rb′ − b
r3

− ∂2µ(r, l)

∂r2

(
1− b

r

)
+

1

2

∂µ(r, l)

∂r

rb′ − b
r2

−
[
∂µ(r, l)

∂r

]2(
1− b

r

)
, (10)

R22 = R33 = −1

r

dΦ(r)

dr

(
1− b

r

)
+

1

2

rb′ − b
r3

+
b

r3
− 1

r

∂µ(r, l)

∂r

(
1− b

r

)
, (11)

and

R44 = −dΦ(r)

dr

∂µ(r, l)

∂r

(
1− b

r

)
− ∂2µ(r, l)

∂r2

(
1− b

r

)
+

1

2

∂µ(r, l)

∂r

rb′ − b
r2

−
[
∂µ(r, l)

∂r

]2(
1− b

r

)
− 2

r

∂µ(r, l)

∂r

(
1− b

r

)
. (12)

The Ricci tensor plays a key role in analyzing the wormhole solution. Upon
closer examination, it turns out that the function µ(r, l) never occurs as an
exponent or as a factor, but only as a derivative. So the magnitude of µ(r, l)
does not have an effect: what matters is the rate of change of µ(r, l) with
respect to r. As far as the Ricci tensor is concerned, µ(r, l) can have any
magnitude and either algebraic sign.

Returning to line element (8), it now follows that if µ(r, l) is negative and
large in absolute value, then eµ(r,l) can be extremely small or even compactified
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(in the language of string theory). So our basic assumption, the existence of an
extra small spatial dimension, is consistent with string theory. The reason is
that the small size is the only property from string theory that we are making
use of. This is going to lead to our main conclusion.

5 The large radial tension

Before continuing, let us to return to Ref. [1] to consider another problem, the
radial tension at the throat. First we need to recall that the radial tension τ(r)
is the negative of the radial pressure pr(r). According to Ref. [1], the Einstein
field equations can be rearranged to yield τ(r). Temporarily reintroducing c
and G, we obtain

τ(r) =
b(r)/r − 2[r − b(r)]Φ′(r)

8πGc−4r2
. (13)

The radial tension at the throat therefore becomes

τ(r0) =
1

8πGc−4r2
0

≈ 5× 1041 dyn

cm2

(
10 m

r0

)2

. (14)

As noted in Ref. [1], for a throat size of r0 = 3 km, τ(r) has the same magnitude
as the pressure at the center of a massive neutron star. This is enough to
suggest that moderately-sized wormholes are actually compact stellar objects
[9]. According to Eq. (14), however, wormholes with low tidal forces could
only exist on very large scales, i.e., such wormholes require very large throat
sizes.

6 The main result

We know from Sec. 2 that the NEC states that for the energy-momentum
tensor Tαβ, Tαβk

αkβ ≥ 0 for all null vectors kα. We also recall that an
ordinary Morris-Thorne wormhole [line element (1)] can only be maintained if
the NEC is violated. In particular, for the outgoing null vector (1, 1, 0, 0), the
violation reads

Tαβk
αkβ = ρ+ pr < 0. (15)

Returning to Eq. (6), observe that

8π(ρ+ pr) = 8π(T00 + T11) =

[
R00 −

1

2
R(−1)

]
+

[
R11 −

1

2
R(1)

]
= R00 +R11.

(16)
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Since we are primarily interested in the vicinity of the throat, we assume that
1− b(r0)/r0 = 0. So it follows immediately from Eqs. (9) and (10) that

8π(ρ+pr)|r=r0 =
rb′ − b
r3

+
1

2

∂(µ(r, l)

∂r

rb′ − b
r2

∣∣∣∣
r=r0

=
b′(r0)− 1

r2
0

[
1 +

r0

2

∂µ(r0, l)

∂r

]
.

(17)
Recalling that b′(r0) < 1, we obtain

ρ+ pr > 0 at r = r0 (18)

provided that
∂µ(r0, l)

∂r
< − 2

r0

. (19)

So, thanks to the extra dimension, the NEC is satisfied at the throat, which
can therefore be lined with ordinary matter. It is interesting to note that if
µ(r, l) is independent of r, so that ∂µ(r, l)/∂r = 0, we get

ρ+ pr|r=r0 =
1

8π

b′(r0)− 1

r2
0

< 0, (20)

the usual condition for a Morris-Thorne wormhole.
Condition (19) also plays a key role in maintaining the wormhole. To show

this, consider the null vector (1, 0, 0, 0, 1). Assuming that the Einstein field
equations hold in the five-dimensional spacetime, we now have

G00+G44 = 8π(T00+T44) =

[
R00 −

1

2
Rg00

]
+

[
R44 −

1

2
Rg44

]
= R00+R44 (21)

and given that 1− b(r0)/r0 = 0, we get from Eqs. (9) and (12) that

R00 +R44 =
1

2

rb′ − b
r2

[
−dΦ(r)

dr
+
∂µ(r, l)

∂r

]
. (22)

Since ∂µ(r0, l)/∂r < −2/r0, the second factor on the right side of Eq. (22) is
positive if

dΦ(r0)

dr
= −A <

∂µ(r0, l)

∂r
< − 2

r0

, (23)

which is similar to Condition (19). It follows that ρ+pr|r=r0 < 0. We conclude
that the NEC is satisfied at the throat in the four-dimensional spacetime but
violated in the five-dimensional spacetime.

To finish the discussion, we need to return to Sec. 5 and recall that the
wormhole we are considering can only exist on a very large scale, i.e., with
a very large throat radius r = r0. Inequality (19) therefore implies that
∂µ(r0, l)/∂r is close to zero, and hence

∂

∂r
eµ(r0,l) = eµ(r,l) ∂µ(r, l)

∂r

∣∣∣∣
r=r0

< eµ(r0,l)

(
− 2

r0

)
(24)
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is also close to zero. So from the perspective of the four-dimensional spacetime,
the extra dimension is not only nonincreasing, the small absolute value of
the derivative in (24) actually implies that the extra dimension is essentially
constant. In summary, a sufficiently large throat size ensures that the radial
tension remains low and that the size of the extra dimension remains fixed.

Remark: For the NEC to be met near the throat in the four-dimensional
case, the shape function has to meet the condition b′(r0) > 1/3. [See Ref. [8]
for details.]

7 Conclusion

It has been argued that wormholes are just as good a prediction of Einstein’s
theory as black holes, but they are subject to severe restrictions from quan-
tum field theory. In particular, to hold a wormhole open requires a violation
of the NEC, which means that the throat of the wormhole has to be lined with
“exotic matter.” The problematical nature of exotic matter has led many re-
searchers to conclude that such wormhole solutions are completely unphysical
in classical general relativity, thereby ruling out the existence of macroscopic
traversable wormholes. It has been shown, however, that the existence of an
extra macroscopic spatial dimension can account for the unavoidable violation
of the NEC, while allowing the throat of the wormhole to be constructed from
ordinary matter. The purpose of this paper is to show that the extra dimension
can be microscopic. This result is consistent with string theory which assumes
that the extra dimensions are “compactified” or “curled up.” Since the small
size is the only property from string theory that we are making use of, our
result suggests that string theory is able to support traversable wormholes.

Regarding the redshift function Φ = Φ(r), in the original Morris-Thorne
wormhole, this function can be freely assigned. In our situation, however,
the need to violate the NEC has led to Condition (22), implying that Φ(r)
and µ(r, l) have to meet similar conditions, namely Inequalities (19) and (23),
respectively. Here the throat radius r = r0 is very large, thereby implying that
traversable wormholes can only exist on very large scales.

References

[1] M.S. Morris and K.S. Thorne, Wormholes in spacetime and their use for
interstellar travel: A tool for teaching general relativity, Am. J. Phys., 56
(1988), 395-412. https://doi.org/10.1119/1.15620



48 Peter K. F. Kuhfittig

[2] F.S.N. Lobo and M.A. Oliveira, Wormhole geometries inf(R) modified
theories of gravity, Phys. Rev. D, 80 (2009), 104012.
https://doi.org/10.1103/physrevd.80.104012

[3] P.K.F. Kuhfittig, Macroscopic noncommutative-geometry wormholes as
emergent phenomena, Letters in High Energy Physics (LHEP), 2023
(2023) 399. https://doi.org/10.31526/lhep.2023.399

[4] P.K.F. Kuhfittig, Noncommutative-geometry wormholes without exotic
atter, Adv. Stud. Theor. Phys., 14 (2020), 219-225.
https://doi.org/10.12988/astp.2020.91468

[5] P.S. Wesson and J. Ponce de León, Kaluza-Klein equations, Einstein’s
equations, and an effective energy-momentum tensor, J. Math. Phys., 33
(1992), 3883-3887. https://doi.org/10.1063/1.529834

[6] P.S. Wesson, Astronomy and the fifth dimension, arXiv: 1301.0033.

[7] P.S. Wesson, The status of modern five-dimensional gravity, Int. J. Mod.
Phys. D, 24 (2015), 1530001. https://doi.org/10.1142/s0218271815300013

[8] P.K.F. Kuhfittig, Traversable wormholes sustained by an extra spatial
dimension, Phys. Rev. D, 98 (2018) 064041.
https://doi.org/10.1103/physrevd.98.064041

[9] P.K.F. Kuhfittig, A note on wormholes as compact stellar objects, Fun-
damental J. Mod. Phys., 17 (2022), 63-70.

Received: January 5, 2024; Published: February 27, 2024


