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Abstract

Equilibrium statistical mechanics is now a well established theory.
The area of physics of nonequilibrium and open quantum systems, known
as quantum thermodynamics, is less well known and investigated here.
A set of results which arises in the area of nonequilibrium processes and
work fluctuations in quantum mechanics is the development of Jarzyn-
ski relations. Several novel approaches to producing these relations in
the quantum case is studied here.
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1 Introduction

A number of results have appeared recently which can be broadly classified as
fluctuation theorems and Jarzynski relations [1-3] in various dynamical sys-
tems. They relate nonequilibrium quantities with equilibrium free energies
and contribute to the study of open quantum systems. Crooks has pointed
out possible relations between Jarzynski’s results and the fluctuation theorem
for steady state nonequilibrium systems [4-5]. These turn out to be powerful
results pertaining to the case of nonequilibrium statistical mechanics [6-10]
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that can hold far from equilibrium. Jarzynski originally produced his initial
work within the context of classical mechanics. This relation has been further
extended in other directions, for example, to the area of stochastic mechanics.
Roughly speaking the result relates the distribution of the work done by a
driving force of arbitrary rate on a system which is initially at equilibrium to
the free energy difference between the initial and final states of the system,
which is an equilibrium property. The ensemble average of the trajectory en-
tropy production is the macroscopic entropy production of the system whereas
the distribution gives rise to collection of fluctuation theorems.

The purpose ahead is to attempt to understand the nature of these kinds of
relations within the rules of quantum mechanics. The entropy average of the
trajectory entropy production is the macroscopic entropy production of the
system whereas its distribution gives rise to various fluctuation theorems. It
is the hope that one can understand the development and nature of Jarzynski
relations that are produced by means of the physics of quantum mechanics.
The understanding of such fundamental relations in the quantum case is not
fully established as is the study of open quantum systems. Quantum Jarzyn-
ski relations have been studied and fluctuation theorems have been developed
in a few restricted instances. One reason this is important is that physical
quantities defined on classical trajectories are conceptually clear and can be
tested experimentally. For these reasons we start by postulating a path inte-
gral formulation of the correlation function. The measurement of quantities
associated with quantum processes remains open as it is closely related to the
topic of quantum measurement [11-13].

2 Correlation Functions from Path Integrals

It is known that quantum mechanical states evolve by means of unitary oper-
ators. This is equivalent to evolution under the Schrodinger equation repre-
sented in the following way

[0(8)) = U(t, t0)[¢(t0))- (2.1)

The operator U is called the evolution operator, and can be written as a time
ordered exponential. In the Heisenberg picture, states do not evolve, it is the
observables that evolve as

A(t) = U®)AU(®). (2.2)

Due to path dependence that occurs in thermodynamics, for certain variables
in general, it is useful that the concept of correlation function should be devel-
oped explicitly in terms of path integrals. It is known that the path integral
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provides a representation of the evolution operator U
((O[U0)|2(0)) = / Da 65/, (2.3)
z(t)=xz,z(0)=z0

The converse of this is also true. If (2.3) is used as the definition of the evo-
lution operator, Schrodinger’s equation may be derived. In the coordinate
representation, where U(x, xg,t) = (x|U(¢)|z(0)), by linearity the density ma-
trix evolves according to

plx, 2’ t) = (x[U(t) pUT(t)[2") = / D D SIS/ p(3(0), 2(0), 0).
z(t)=z,x(t')=z'
(2.4)

Considering cyclic permutations under the trace operation it follows that
Trp(t) = Tr p(0) = 1 as expected.

A correlation or characteristic function can be defined as a sum over paths
which join the specified initial state to a final state for one general type of
evolution which in a certain limit can be used to produce a Jarzynski relation.
The explicit value of the histories at these two preferred times can be stated
explicitly,

G(r,7) =

Dr eiS(r)/h) ez‘(T—T/)Hp/h (/ Dr eiS(r)/h)

T/ <t<t

/dx(())dx’(O)dx(r’)dx(T)dx(t) (/

0<t<r!

oo [ ppsom)( [ Dm0, 2010). (2
T<t<t

Assume that 7 > 7’ and let us make explicit the value of the histories based
on these two different selected times

G(r,7) = / dz(0)dx'(0)dz(7")dx(7)dz(t) (/ Dx eis("’”)/h) e T—T M /h

0<t<r’

(/ Da S 1 efi('rf'r')HI/h(/ Da ¢iS@)1/m) (/ Da’ e SE/M (2(0), (0), 0).
T/ <t<t T<t<t

(2.6)
Each integral in brackets can be identified with a matrix element related to
evolution operator U as in (2.3), so (2.6) is put in the form,

G(r,7) = / dz(0)da' (0)da(r")dx(t) (x(t)[U(L, 7)]x(0))elT—) He/h

(@(D)[U(r, 7)]a(r')) T TN (7) U (', 0)]2(0)) (2(0)]pl2’ (0)) (' (0)[U(0, 1) |2 (1)).
(2.7)

A particular limiting case of this process is very useful to continue the analysis,

which amounts to taking a limit which produces a G in one variable. To this
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end, let 7, t approach zero, then G(7) reduces to one variable. The last matrix
element collapses to unity and G(7) simplifies to

G(r) = Tr[U(T)e’”H(O)p(O) UT(T) e”H(T)]. (2.8)

For a system that evolves under the exclusive influence of a time dependent
Hamiltonian H(¢) from an initial equilibrium state, the density matrix in (2.8)
can be selected to have the Gibbs form
1
p(0) = — ¢ PHO (2.9)
Z
at ¢ = 0 and ending at a final time 7. The work which is performed on
the system is a randomly distributed quantity and G(7) can be related to it.
Its statistical properties follow from a probability density p(¢), which can be
related to the function in (2.8) by means of a Fourier transform

6(r) = [ dce™p(o) (2.10)

The averaged exponential work (exp(—pW)) is obtained by putting (2.10) in
G(7) to obtain

1

G(r) = Z00)

Tr[e™OU (1)e~T+HAROUT (1)), (2.11)

Using this form for the correlation function and (2.9), the Jarzynski equation
is obtained immediately in the explicit form

(e™PWy = 222 (2.12)

where Z(7) = Tr(e ") is the partition function of a hypothetical system
with Hamiltonian H in a Gibbs state at inverse temperature S. By replacing
the quantum correlation function by the corresponding correlation function of
a classical Hamiltonian the characteristic function of the work performed on
the classical system results.

When a classical system in thermal equilibrium is driven from that equi-
librium by an external perturbation, the irreversible work of that process is
related to the free energy of the system by Jarzynski’s inequality.

3 Quantum Dynamics of Open Systems

To a quantum system a density matrix p can be assigned which describes the
mixed state of the system that is capable of interacting with an environment.



Nonequilibrium Jarzynski relations related to quantum systems 53

For an equilibrated system with Hamiltonian H which interacts weakly with
a thermal bath at temperature 7', the equilibrium density matrix is
—BH —BH
e e
_ _ _ _BFI-BH
. = = =e ) 3.1

P Tr(e—AH) Z (3:-1)
In (3.1), Z the partition function and F' is the Helmholtz free energy and
p=1/kgT.

The dynamics of an open quantum system can be accounted for in terms
of quantum operator which maps p’ = S p. This is a linear tracing preserving
complete positive map of operators. Any such complete positive superoperator
has a represntation as a sum of operators known as a Kraus representation

Sp=>Y_ AupAl. (3.2)

Conversely, any operator-sum represents a complete positive superoperator.
The collection {A,} is trace preserving and hence conserves probability ac-
cording to Y, Al A, = I, where I is the identity operator.

The objective is to study the dynamics of a quantum system accounted
for by a time-dependent Hamiltonian which is coupled weakly to an extended
thermal environment. The total combined system has Hamiltonian

H=Ht) 1% +1° @ H? + ¢ H™, (3.3)

where I¥ and I” are system, bath and identity operators, H® is the time
dependent Hamiltonian of the system, H is the bath Hamiltonian and H™* is
the bath-system interaction Hamiltonian, € a small coupling constant. Initially
the system and environment are uncorrelated and have initial combined state
p°® pgl, such that pfq is the thermal equilibrium density matrix of the bath.

Suppose the system and environment are uncorrelated at the beginning.
The combined state is p° ® pg, where pg is the thermal equkibrium density
matrix of the bath. A quantum operator description of the system dynamics
can be developed by allowing the combined total system to undergo unitary
dynamics for some finite time. At that point, the final state of the environment
is reached,

e BE?
S(z,t)p° = Trp U[p® @ pPJUT = Z (bs|U(p° Z 75 1b:) (b:) U [by)
f i
e PEP <

i?f
The unitary evolution operator of the total system is

U= oxp (- %/ H(r) dr). (3.5)
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The partial trace Trp acts over the bath degrees of freedom which have energy
eigenvalues {EP}. As well {|b;)} are the orthonormal energy eigenvectors of
the state with ZZ the bath partition function. It may be assumed the bath
energy states are non-degenerate. It follows from (3.4) that for this kind of
dynamics

e_%ﬁEzB

=
Suppose the environment is large and has a characteristic relaxation time which
is short compared with the bath-system interactions with € real and small. The
environment stays very close to thermal equilibrium, which is unentangled and
uncorrelated with the system. The system dynamics of each consecutive time
interval is then described by operators (3.4) which can then be linked together
to generate the transformation

A (b,[U]b,). (3.6)

p(t) =St —1,t)---S(T'+1,54+2)S(s,s+ 1) p(s). (3.7)

4 Sequential Measurements arising from Her-
mitian maps

A collection of measurement operators characterizes the measurement of a
quantum system by means of measurement results {a,}. A Hermitian op-
erator H = H' of a von Neumann measurement can be decomposed into
a set of eigenvalues )\, and orthonormal projection operators 7, such that
H =}, A\ym. This can be generalized to positive operator valued measure
and need not be projectors nor orthonormal. The probability of observing the
a-th outcome is

Pa = Tr(AapAl). (4.1)

The state of the system after this interaction is described by

/ A.pAl

= —. 4.2
pa TI'(AapAL) ( )

Overall this averaging over different interactions is the full quantum operation
(3.2). It is common to represent the effect and result of the measurement using
a Hermitian map operator, sometimes called a superoperator B,

Bp=) baB,pBi. (4.3)

This type of operator-sum cannot, in general, be cast as an operator-sum, since
the measurement values {b,} may be negative. An operator valued sum maps
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Hermitian operators to Hermitian operators

BH]' = (3" 0.B,HB})" = BH' = BH. (4.4)

Conversely any Hermitian map has an operator-value sum representation.

The main point as far as this is concerned is that it makes for a com-
pact and convenient representation of sequential measurements and correlation
functions. Let A be a Hermitian map representing a measurement at 0 and B
a different measurement of the same system at time ¢. The expectation value
of a single measurement is,

Tr(Ap) = ba Tr(AupAT) = p(a) b (4.5)

«

A correlation function (b(t)a(0)) may be expressed as

(b(t) a(0)) = Tr(BS.Ap(0)) = Y _ pla, ) aabs. (4.6)
B

Just as every Hermitian operator represents some measurement on the Hilbert
space of pure states, every Hermitian map can be associated with some mea-
surements on the Liouville space of mixed states.

5 Heat Flow Measurement

A representation of heat flow by means of Hermitian maps exists. This holds
under the assumptions that the bath and system Hamiltonians are constant
during the measurement procedure and that the bath-system coupling is small.
A measurement has to be constructed on the whole system, so the bath degrees
of freedom are projected out. What is left is a Hermitian map operator that
acts on the system density matrix alone. This process is outlined step by
step after which it is expressed in mathematical form. Start with the bath
in thermal equilibrium and weakly coulped to the system. The initial energy
eigenstate of the bath is measured, then allowed to evolve for a time interval.
The final energy eigenstate of the bath is then measured. The trace Trg over
the bath degree of freedom produces the last unrenormalized system density
matrix. Its trace Trg gives the probability of observing the given and final
bath energy eigenstates. For the final step, one multiplies by the Boltzmann
weighted heat, then it is summed over all initial and final bath states to obtain
the average Boltzmann weighted heat flow. Stated explicitly as an equation,

(") =3 e PE T EDTrg Teg [15 @ [ (0| U TS @ [b:) (] [0° @ pP 4]
if
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1% @ [0:) (bl UT [17 @ [by) by ] (5.1)

The sums over initial and final states can be split into separate sums on the
right and left. Then (5.1) can be rewritten just with the bath Hamiltonian

<65Q> — TI"STI'B [IS®€_§HB} U [IS®€§HB} ) [pB®p§J i [IS@)G%HB} UT [IS®6_§HB} ‘

(5.2)
If the bath Hamiltonian is substituted with I"@ H? = H—H%(t) @ I” —e H"™.
Total Hamiltonian H commutes with the unitary dynamics and drops out of
the picture, so when € is very small, that term can be neglected

(€79) = TrgTrp [e2™ @I?]U[e 7™ 1P [p°0p?] [e~ 2™ 17| U [27° 017

= Trges ™’ [TrpU( [e’gHSpSengs] ® p2)UT] eH° (5.3)

Bys _8Qys s _8ys
= Trg g e A e 2B e AT o721
e}

The second line of (5.3) comes from collecting terms acting on the bath or

system alone to yield the Kraus operators in the last line. The last line comes

out using the operators {A,} to reach the reduced dynamics of the system.
The average Boltzmann weighted heat flow can be presented in terms of

the reduced system dynamics S of the system and a Hermitian map operator
R which is defined as

(BP9 = Tr RIS Rp®, Rip= e_gH(t)p e~ 3H(), (5.4)

These Hermitian map operators act at the beginning and end of a time interval
and measure the change in the system energy over that interval.

To obtain the quantum Jarzynski identity this way, divide the total ex-
perimental time into a series of discrete intervals indexed by an integer n.
The system Hamiltonian is fixed within each time interval and changes at the
ends of an interval. Over each time interval, heat flow is measured by taking
the time evolution operator §; with the corresponding Hermitean map mea-
surements, R; 'S;R;. The measurement of the Boltzmann weighted change in
energy with exp(—BAFE) = Tr(R,SRy1).

The averaged Boltzmann weighted work of a driven dissipative quantum
system is expressed

(™) = Te[R- (][ R;'SR) Ry pial, (5.5)

where p¢ is the equilibrium density matrix with system Hamiltonian HY. This
product collapses on account of the structure of (5.4) and equilibrium density
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matrix (3.1). After this we are left with only the free energy difference between
initial and final equilibrium ensembles,

(") = Tr (R, (RIS, R] -+ [Ry' SRRy S1RAIR )

— TH(R RS R+ [RaSeRal R 00 (5.6)
_ Z(1) _ o BAF
Z(0) ‘

6 Jarzynski Inequalities and the Second Law

A Jarzynski relation is derived in the form of an inequality and shown it has ap-
plications to the second law of thermodynamics. Suppose H(t) is an arbitrary
time-dependent Hamiltonian with t;,; < ¢ < t4;, and denote its normalized
eigenstates |p;); and |p;)p. of Hf = H(t;n) and Hr = H(ty;,), respectively,
with eigenvalues e/ and ef”. Let U be the unitary operator producing time
evolution over the whole time interval.

Let the system be in the Gibbs state at ¢t = t;,;; with inverse temperature
[ described by the density matrix

—BH N
nit = Z(B) = e (6.1)
Pinit Z(B), £
Define variables p;; as
—Bel
e i
pij = m|F(¢j|U|90i>1!2- (6.2)

This can be interpreted as the probability that the system is found in the i-th
cigenstate of H at ¢t = ¢;,;; and then in the j-th eigenstate of H at t = ty,
and this is normalized. For any function y(FE, E’) of two energy variables, its
classical average is defined as

X(E,E) Z pi; F (6.3)

3,0=1

In a general situation in which H? and U"*H!U do not commute, the classical
average (6.3) does not correspond to quantum mechanical expectation in a
direct way. The averaging brackets are defined by setting (-)inie = Tr[(*) pinit]
the expectation at t = t; and () yin = Tr[(-)Upins U] at ¢ = t44,. For x an
identity function, the following hold

B = (M), BF = (H) . (6.4)
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For the definitions of (6.3) and (6.5), for any real 3*

* €; * Fe e 1 —p*el Z,(/B*
T _ 3 el L e DR X
i,j=1 '

Unitarity gives rise to the third term and Z'(*) = Zjvzl e 7"¢. Then
is another form of Jarzynski equality. B
Recalling Jensen’s inequality, exp(£) > exp(&), it follows from (6.5) that

wT_gmF _ 2 (6Y)
7

Using (6.4), inequality (6.6) produces an inequality for quantum mechanical
expectation values for any (*

BMHL) it — B*<HF>fm <log Z/(@*) —log Z(), (6.7)

Note that the basic Jarzynski equality can contain much stronger information
than the corresponding inequality.

Let pinir be any density matrix, U an arbitrary unitary operator with ps;, =
Upini:U™L, then we have

(6.6)

Tr [pinit 108 pinit) = Tr[prin 108 prinl. (6.8)

This is just stating that von Neumann entropy is invariant in ¢. Suppose p’ is
an arbitrary density matrix. The relative entropy satisfies,

S0 |psin) = Tr [prin(log prin — log p')] > 0. (6.9)

Combining the last two relations (6.8), and (6.9), the following inequality is
obtained

Tr [pinit 108 pinit] > Tr[psin log p']. (6.10)

A Jarzynski inequality results if both the initial density matrix and reference
density matrix are chosen to be Gibbs states.

A fundamental application of these results to quantum thermodynamics
exists. Suppose the quantum system is macroscopic in size and the time depen-
dent Hamiltonian H(#) describes an adiabatic operation in thermodynamics.
Suppose further H(t) stays at Hp for a sufficiently long time at the end of the
operation such that the system reaches macroscopic equilibrium. Set 5* = (3
at first to yield an inequality for the expectation value of the work W (i) done
by the external agent on the system which has control of the Hamiltonian,
hence

—(log Z(B) —log Z'(B)). (6.11)
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For the case of a thermodynamic system whose energy is known to be U,
the entropy can be determined by means of a Legendre transformation in the
following way

S(U) = min fU — F(B)) =BU - F(B)). (6.12)

In (6.12), F(B) is the Helmholtz free energy and (3 is the unique tempera-
ture at which the minimum is attained. In other words, it is the equilibrium
value of the inverse temperature. From the basic inequality (6.7) the following
inequality must hold for any g*,

s (H) - FI(B) < B ((H") = FF(5)). (6.13)

Here F1(8) = =7 log Z(B) and F¥(8*) = —3*! log Z*(*). Now the left-
hand side of this is just the entropy of the initial state S’ and the minimum
over 3* on the right-hand side is the entropy S* of the final state. Then (6.14)
implies the inequality which enforces the law of entropy increase for Gibbs

states
st < st (6.14)
Not to say this proves the second law, but there is clearly a deep connection

between these relations that have been studied here and the second law of
thermodynamics.

7 Conclusions

It is apparent that the approach explored here can yield a lot of knowledge with
regard to quantum thermodynamics and systems not at equilibrium. The path
integral approach at the start could incorporate processes that may violate
the second law over very small time scales. There are other factors at work
however which keep this from getting out of control. These factors may come
from quantum mechanics itself, and may even lead to new developments in
this area of physics.
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