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Abstract

A quantum symmetry known as entanglement assisted invariance or

envariance is introduced. It has recently been of interest in understand-

ing the process of performing quantum measurements. An apparatus

which interacts with other physical systems, the environment, exchanges

a single state with physical states equal in number to that of possible

outcomes of the experiment. Correlations between the apparatus and

environment give rise to a type of selection rule which prohibits the

apparatus from appearing in a superposition corresponding to different

eigenvalues of the pointer basis of the apparatus. Eigenspaces of this

observable make a natural basis for the apparatus and determine the

observable of the measured quantum system. It is also discussed how

statistical mechanics can be expressed in terms of this symmetry.

Keywords: probability, correlations, operator, measurements, basis, eigen-

states, envariance

1 Introduction

Understanding of the measurement process applied to quantum mechanical

systems [1-4] can be greatly increased by treating an apparatus, also thought
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of as an environment, quantum mechanically. The interaction of the system

and apparatus can be studied together quantum mechanically, including also

the presence of an environment, or other physical systems which can interact

with the apparatus [5-6]. In this process, states of the apparatus become

correlated with the system and influence what is observed. Both can become

correlated with an immediate environment. This may perhaps better thought

of as a second apparatus. Thus the apparatus should itself be described by

quantum mechanical laws [7]. Von Neumann’s approach to the problem has

a particular foundation. A correlation is established between states of the

apparatus and states of the system. Let us call the apparatus A, the system

S and the environment E. If the apparatus states |As〉 are regarded quantum

mechanically, there is nothing to prevent the state of A being presented in

terms of an alternate orthonormal basis |Ar〉 composed of superpositions of

states |As〉,
|Ar〉 =

∑
s

〈As|Ar〉As. (1.1)

The state of the combined system is described by a superposition of states

|As〉⊗ |s〉, where |s〉 describe states of the system. Then the combined system

can be given in terms of new states |Ar〉 as∑
s

τs|As〉 ⊗ |s〉 =
∑
r

〈Ar|As〉
∑
s

τs|As〉 ⊗ |s〉 =
∑
r

|Ar〉 ⊗
∑
s

τs〈Ar|As〉|s〉

=
∑
r

κr |Ar〉 ⊗ |r〉. (1.2)

In (1.2), definition κr =
∑

s τs〈Ar|As〉 provides a set of relative states {|r〉}.
These constitute normalized but not necessarily mutually orthogonal states of

system S, relative to the arbitrarily chosen basis set |Ar〉 of the apparatus. Is it

possible for the quantum system to end up in one of the states |r〉 rather than

|s〉. If all the τs are of the same magnitude, whenever |Ar〉 is orthonormal, the

collection of relative states |r〉 is as well. So the apparatus, which has to be

correlated with the state of the system, contains not only information about

observable Ŝ =
∑

s qs|s〉〈s|, but many other observables R̂ =
∑

r rr|r〉〈r| as

well. These are defined on the Hilbert space of the system [8-10].

However generally R̂ and Ŝ will not commute. Quantum mechanics does

not permit the simultaneous measurement of two noncommuting observables

with arbitrary accuracy. What then in a real world apparatus does determine

the seemingly unique pointer basis |Ar〉 which records the corresponding rel-

ative states |p〉 of the system? The new element is that interaction of the
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quantum apparatus with the environment also produces correlations. Cor-

relations with the environment impose certain kinds of selection rules which

prevent the apparatus from existing in a superposition of states corresponding

to different eigenvalues of this special apparatus basis.

The idea is to introduce a new quantum symmetry called entanglement

assisted invariance or envariance. It is studied as it applies to the measure-

ment process in quantum mechanics. It also provides a new, consistent way in

which to understand quantum statistical mechanics. Statistical mechanics has

a deep roots in thermodynamics as well. Interaction with the environment is

an important component of the concept. It distinguishes the model appara-

tus from the quantum system. Eigenspaces of the pointer observable provide

a natural basis for the pointer of the quantum apparatus and determine the

observables of the measured quantum system. The observation or monitoring

of the apparatus by the environment terminates in the apparent reduction of

the wave packet. Correlations among states of the pointer basis and those

of relative states of the system are preserved in the end mixed-state density

matrix [10]. Decay of those elements of the apparatus-system density matrix,

which are off-diagonal in the apparatus observable, is a result of the natural

evolution of the system-apparatus-environment combination. Selection rules

need not be imposed from outside [11-13].

In statistical physics the description of canonical thermal equilibria is usu-

ally derived from Boltzmann’s H-theorem, the ergodic hypothesis, or max-

imization of the statistical entropy in equilibrium [15]. However, none of

these concepts are particularly well stated for quantum systems. Statistical

physics developed when the fundamental physical theory was classical me-

chanics. Concepts such as ensembles consisting of infinitely many versions of

the same system then come up. Progress on this problem has occurred by

demonstrating that representations of microcanonical and canonical equilib-

ria can be obtained from a fully quantum mechanical analysis. This means

taking account of symmetry considerations such as entanglement and conse-

quently envariance. After studying this symmetry in detail, it is shown how

envariance can give rise to microcanonical and canonical states.
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2 Measurement Performed On Combined Two-

State Systems

2.1 Construction Of An Accurate Model

A pair of two state systems are defined in order to create a model which

emphasizes some of the main physical aspects of the model. The first two-

state system goes by the name spin and the second is referred to as atom.

The spin system has a basis denoted by the states {| ↑〉, | ↓〉}, also written

as {(1, 0)t, (0, 1)t}. It describes a state parallel or antiparallel to the z-axis.

However, there are other bases which can be formed out of linear combinations

of these states which result in orthonormal states such as(
|α〉
|β〉

)
=

1√
2

(
1 1

1 −1

)(
| ↑〉
| ↓〉

)
,

(
| ↑〉
| ↓〉

)
=

1√
2

(
1 1

1 −1

)(
|α〉
|β〉

)
. (2.1)

As well there is the basis {| →〉, | ←〉}(
| →〉
| ←〉

)
=

1√
2

(
1 i

1 −i

) (
| ↑〉
| ↓〉

)
,

(
| ↑〉
| ↓〉

)
=

1√
2

(
1 1

−i i

)(
| →〉
| ←〉

)
. (2.2)

The second two-state system is called atom in order to make a connection with

an object that may be present in an experiment. It is an object which consists

of two states {|g〉, |e〉}. These states are called ground and excited. Let us

assume the atom has the same energy no matter which of these states it is

in. Neither of these systems have self-Hamiltonians. As in the case of spin,

there are alternative bases as may be expected. They are formed out of linear

combinations of these two(
|+〉
|−〉

)
=

1√
2

(
1 1

1 −1

)(
|e〉
|g〉

)
,

(
|e〉
|g〉

)
=

1√
2

(
1 1

1 −1

)(
|+〉
|−〉

)
. (2.3)

There is the related set as well,(
|⊥〉
|>〉

)
=

1√
2

(
1 i

1 −i

)(
|e〉
|g〉

)
,

(
|e〉
|g〉

)
=

1√
2

(
1 1

−i i

)(
|⊥〉
|>〉

)
. (2.4)

The spin is regarded as the quantum system under observation. The role of the

apparatus is played by the atom. An interaction Hamiltonian is responsible

for coupling the apparatus-atom to the spin with coupling strength α. It has

the following form

ĤAS = α
(
|⊥〉〈⊥| − |>〉〈>|

)
⊗
(
| ↑〉〈↑ | − | ↓〉〈↓ |

)
. (2.5)
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In terms of Pauli matrix σ3, (2.5) it can be written as

ĤAS = α(|⊥〉 |>〉)σ3
(
|⊥〉
|>〉

)
⊗ (| ↑〉 | ↓〉)σ3

(
| ↑〉
| ↓〉

)
. (2.6)

With respect to the bases which define (2.6), it can be written as

ĤAS = α

(
σ3 0

0 −σ3

)
(2.7)

The upper block works on the |⊥〉 and the lower on |>〉 such that σ3 operates

on the spin part.

The evolution of a state vector expressed in terms of the basis states {| ↑
〉, | ↓〉, |⊥〉, |>〉} under the influence of ĤAS is determined by the evolution

operator Û defined by

Û = eiĤ
AS t/~ =

(
eiασ3t/~ 0

0 e−iασ3t/~

)
. (2.8)

Let us investigate the effect of Û on a state such as an initial state defined as

|ϕi〉 =
(
a| ↑〉+ b| ↓〉

)
⊗ |+〉. (2.9)

It is to be evolved over a time interval [0, T ] such that T > 0. Using (2.1)-(2.4)

we write (2.9) in terms of the basis vectors that define ĤAS. It will be helpful

to introduce a dimensionless time τ = α t/~ in the following

Û |ϕi〉 =
1

2
(1− i)

(
aeiτ

be−iτ

)
⊗ |⊥〉+

1

2
(1 + i)

(
ae−iτ

beiτ

)
⊗ |>〉. (2.10)

Going to the basis {|e〉.|g〉}, it is clearly seen that |ϕi〉 can be transformed into

a correlated state

Û |ϕi〉 =
1

2
(1− i)

(
aeiτ

be−iτ

)
⊗ 1√

2
(|e〉+ i|g〉) +

1

2
(1 + i)

(
ae−iτ

beiτ

)
⊗ 1√

2
(|e〉− i|g〉)

=
1

2
√

2

[(
(1−i)

(
ae−iτ

beiτ

)
+(1+i)

(
ae−iτ

beiτ

))
|e〉+

(
(1+i)

(
aeiτ

be−iτ

)
+(1−i)

(
ae−iτ

beiτ

))
|g〉〉
]

(2.11)

=
1√
2

[((a
b

)
cos τ +

(
a

−b

)
sin τ

)
|e〉+

((a
b

)
cos τ −

(
a

b

)
sin τ

)
|g〉
]
.
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It can be stated that the interaction Hamiltonian ĤAS evolving the state over

(0, τ1) where τ1 = π/4 transforms the initial product state (2.11) into a corre-

lated state vector

|ϕf〉 = Û(τ1)|ϕi〉 = a| ↑〉 ⊗ |e〉+ b| ↓〉 ⊗ |g〉 (2.12)

This is still a pure state and so correlations between system and apparatus

have already been established. However so far the measurement could not

have produced a definite outcome. First the correlated apparatus-system state

vector |ϕf〉 in (2.11) returns to the initial |ϕi〉 if the same interaction continues

for a further time t2 = 3π/4,

Û(
3

4
π) |ϕi〉 = − 1√

2

(
a

b

)
⊗ (|e〉+ |g〉) = −

(
a

b

)
⊗ |+〉. (2.13)

The apparatus could not have decided at the instant characterized by (2.12)

which outcome of the measurement was the state | ↑〉 and which | ↓〉. If the

initial direct product is to reemerge after τ1 + τ2 = π, all outcomes of the

measurement should have been present at τ1.
At the stage described by state |ϕf〉, it is as yet undetermined which pos-

sible states are distinguished by the measurement of the system. Transform
the state |ϕf〉 to the basis {|+〉, |−〉} to observe that

|ϕf 〉 = a| ↑〉⊗ 1√
2

(|+〉+|−〉)+b| ↓〉⊗ 1√
2

(|+〉−|−〉) =
1√
2

[(
a| ↑〉+b| ↓〉

)
⊗|+〉+

(
a| ↑〉−b| ↓〉

)
⊗|−〉

]
.

(2.14)

The states |+〉 and |−〉 called atom are correlated with definite states of spin

|S1〉 = a| ↑〉+ b| ↓〉, |S2〉 = a| ↑〉 − b| ↓〉. (2.15)

The two states |S1〉 and |S2〉 are distinct from | ↑〉 and | ↓〉, which is the

basis of (2.12) registered by the apparatus. When the spin state before the

measurement was least certain, corresponding to a = b = 2−1/2, the fixed

correlated state vector using (2.1) can be expressed as

|ϕf〉 =
1√
2

(
|α〉 ⊗ |+〉+ |β〉 ⊗ |−〉

)
. (2.16)

This can be done as well in many other equivalent ways.

The atom at the stage of |ϕf〉 in (2.12) and (2.16) does not contain the

information about the spin observable that was supposed to be recorded. It

is not possible to claim that the measurement in the normally used sense has

already happened. Although the argument following these equations applies
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directly to the two-state measurement interactions, it is possible to modify

them. It is concluded that in a closed apparatus-system object which evolves

unitarily, a reduction of the wave packet cannot be accomplished. Measure-

ment is supposed to be a process which produces information. It is the transfer

of information between the spin and atom that has taken place, and this infor-

mation can be quantified. The pointer basis of the apparatus which eliminates

ambiguity in the choice of the recorded variable has to be developed now [14].

2.2 Effect Of An Environment

Consider the influence of the environment E consisting of N two-level atoms.

Atom k has the Hilbert space spanned by the basis set {|eE〉k, |gE〉k}. Suppose

the self-Hamiltonians of the system taken individually, and the interaction

Hamiltonian between the atoms is zero. The only part of the Hamiltonian

which remains is the apparatus-environment interaction HAE which separates

as

ĤAE =
∑
k

HAE
k . (2.17)

Suppose the components ĤAE
k are assumed to have the form

ĤAE
k = gk

(
|e〉〈e| − |g〉〈g|

)
⊗
(
|eE〉〈eE| − |gE〉〈gE|

)
k

∏
j 6=k

⊗1j. (2.18)

The eigenstates have the special property that they are direct products. The

components of the direct product belong respectively to Hilbert spaces of the

apparatus and the environment atoms. When the environment constructed this

way interacts with the apparatus, superselection rules arise in a natural way.

They make it impossible for the apparatus to be detected in a superposition

of ground and excited states. Thus, let the interaction of the apparatus and

environment start at t = 0. Before t = 0, no correlations with the environment

exist. The combined system-apparatus-environment state vector would have

the form,

|Ψ(0)〉 = |ϕf〉
N∏
k=1

⊗[αk|eE〉k + βk|gE〉k]. (2.19)

The set of states |e〉, |g〉, |eE〉k, |gE〉k are the eigenstates of the interaction

Hamiltonian. This is the one that acts on the combined system for t > 0.

This allows state |Ψ〉 to be expressed at arbitrary time t in the form

|Ψ(t)〉 = a| ↑〉 ⊗ |e〉
N∏
k=1

⊗[αke
igkt/~|eE〉k + βke

igkt/~|gE〉k]
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+b| ↓〉 ⊗ |g〉
N∏
k=1

⊗[αke
igkt/~|eE〉k + β eigkt/~|gE〉k]. (2.20)

This follows along the same lines as the set (2.10)-(2.11) using an evolution

operator Ûk as matrix exponential of the Hamiltonian, which breaks up into

blocks of similar exponential form. The transition between |Ψ(0)〉 and |Ψ(t)〉
establishes the correlation between the state of the apparatus and the state of

the environment. The apparatus observable Λ̂ which is most reliably recorded

by the environment is usually called the pointer observable. For this interac-

tion, Λ̂ would have the form, with λ1 6= λ2 real

Λ̂ = λ1|e〉〈e|+ λ2|g〉〈g|, (2.21)

It can be said the pair of states {|e〉, |g〉} defines the pointer basis.

If simultaneously the apparent reduction of the state vector is accom-

plished, the state of the apparatus-system has to be described by the density

matrix upon tracing over E setting τ = t/~,

ρSA = TrE |Ψ(t)〉〈Ψ(t)| = TrE{|a|2| ↑〉〈↑ | ⊗ |e〉〈e| ·
N∏
k=1

[|αk|2 + |βk|2]

+ab∗| ↑〉〈↓ |⊗|e〉〈g|
N∏
k=1

⊗[αke
igkτ |eE〉k+βke−igkτ |gE〉k][α∗keigkτ k〈eE|+β∗ke−igkτ k〈gE|]

+a∗b | ↓〉〈↑ |⊗|g〉〈e|
N∏
k=1

⊗[αke
−igkτ |eE〉k+βkeigkτ |gE〉k][α∗ke−igkτ k〈eE|+β∗ke−igkτ k〈gE|]

+|b|2| ↓〉〈↓ | ⊗ |g〉〈g|
N∏
k=1

[|αk|2 + |βk|2]. (2.22)

The trace of the second line for example is

TrE

N∏
k=1

[αke
igkτ |eE〉k + βke

−igkτ |gE〉k][α∗keigkτ k〈eE|+ β∗ke
−igkτ

k〈gE|]

=
N∏
k=1

[|αk|2e2igkτ + |βk|2e2igkτ ] =
N∏
k=1

cos(2gkτ) + i(|αk|2 − |βk|2) sin(2gkτ)].

(2.23)

To summarize, it has been shown that

ρSA = TrE|Ψ(t)〉〈Ψ(t)| = |a|2| ↑〉〈↑ | ⊗ |e〉〈e|+ µ(t)ab∗| ↑〉〈↓ | ⊗ |e〉〈g|
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+µ∗(t)a∗b| ↓〉 ↑ | ⊗ |g〉〈e|+ |b|2 | ↓〉〈↓ | ⊗ |g〉〈g|. (2.24)

In (2.24), function µ(t) is the correlation amplitude,

µ(t) =
N∏
k=1

[cos(2gkτ) + (|αk|2 + |βk|2) sin(2gkτ)]. (2.25)

The quantity (2.25) depends on the initial conditions of the environment via

the various probabilities of finding the system in one of the eigenstates of the

interaction Hamiltonian

p(|eE〉k) = |αk|2, p(|gE〉k) = |βk|2. (2.26)

Property (2.26) is important. It gives an indication that the ability of µ(t) to

dampen correlations is the same for a mixture where only (2.26) may be given.

In fact, the correlation amplitude µ(t) can also be found from the scalar

product

µ(t) = 〈Ee(t)|Eg(t)〉. (2.27)

The two states in (2.27) are defined to be

|Ee(t)〉 =

N∏
k=1

⊗[αke
igkτ |eE〉k+βke

−igkτ |gE〉k], |Eg(t)〉 =

N∏
k=1

⊗[αke
−igkτ |eE〉k+βke

igkτ |gE〉k].

(2.28)

The two distinct records made by the environment of two alternative outcomes

of the measurement are represented by (2.28). The time dependence of µ(t) is

very important to successful damping of the off-diagonal correlation terms. It

is clear that |µ(t)|2 ≤ 1 as well µ(0) = 1 and

〈µ(t)〉 = lim
T→∞

1

T

∫ T

0

µ(t) dt = 0, 〈|µ(t)|2〉 = 2−N
N∏
k=1

(1 + (|αk|2 − |βk|2)2).

(2.29)

The last result in (2.29) implies that unless the initial state of the environment

coincides with one of the eigenstates of the Hamiltonian, the expected absolute

value of the correlation amplitude |µ(t)|2 is much less than the initial value.

Relatively small environments are quite effective in giving rise to an exact

definition of the pointer variable.

As long as N is finite, a theorem from the theory of periodic functions

implies the absolute value of µ(t) will return arbitrarily close to one. An almost

periodic function attains any value in its range infinitely many times. There is

a close analogy between the problem of recurring correlations exemplified by
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the existence of translation numbers Tε requiring 1− |µ(t)|2 < ε for given ε at

both t = 0 and Tε, but not in (0, Tε).

This example shows how the interaction of the apparatus and the envi-

ronment can cause an effective reduction of the state vector. Correlations

established between the apparatus and the environment have taken place at

the expense of the previously attained correlations between the apparatus and

the system. Putting the final density matrix in a form such that the appa-

ratus contains information about some arbitrary two states of the spin is not

possible when all off-diagonal terms in ρAS vanish even when a = b = 2−1/2.

It is important to stress that through the interaction of the apparatus with

the environment, simultaneously both the apparent reduction of the pure state

density matrix into a mixture and the determination of the observable recorded

by the apparatus is achieved. The dual role of the environment is therefore

equivalent to imposition of superselection rules. In this way they make a very

natural appearance [7].

3 The Pointer Basis

Observers who look at the pointer of the ideal apparatus are made aware that

the system is in one of the eigenstates of the observable, and not in some

relative state chosen arbitrarily. Quantum mechanics alone when applied to a

composite made up of an apparatus and a system cannot in principle determine

which observable has been measured, as we have seen. It will become clear

that the choice of what has been measured comes about when one realizes

two things. First the apparatus interacts with its environment by means of a

specific interaction Hamiltonian ĤAE. Secondly the observer consults only the

pointer of the apparatus and the state of the environment.

The apparatus-environment interaction may be regarded as an additional

measurement in its own right which can establish measurable correlations be-

tween the apparatus and the environment. Information about the environment

destroys the information about the premeasured quantum system S. Commu-

tation of the Hamiltonian ĤAE with the observable of the apparatus Π̂ ensures

this variable will not be perturbed. Only the basis made up of the eigenstates

of operator Π̂ called the pointer basis, contains nothing but the information

about the quantum system itself. The combined apparatus-system is now rep-

resented by a mixture which is diagonal in a product basis consisting of the

eigenvectors of the pointer basis of the apparatus and corresponding relative

states of the system. In fact the pointer basis of the apparatus is chosen by the
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form of the apparatus-environment interaction. This is the basis which con-

tains a reliable record of the states of the system. This has to determine the set

of relative states of the system in a unique way correlated with the apparatus.

As well the apparatus-environment correlations prevent the observation of the

AS system combination in a superposition. It becomes a mixture diagonal in

the basis assembled from the pointer basis eigenstates and the corresponding

relative states of the system. The exact details of the environment state itself

are not to obtain the pointer basis; the form of the apparatus-environment

interaction suffices for that.

If the three systems are described by a combined density matrix ρ̂SAE of

these systems the density matrix is the solution to the evolution

−i~ρ̂SAE = [ρ̂SAE, ĤS + ĤA + ĤE + ĤSA + ĤAE + ĤSE]. (3.1)

To get (3.1), it has been assumed that all the interactions are pairwise so

ĤSAE = 0 and the environment can be considered a quantum system. The

last point should be clarified as to what is meant by the term environment, that

is, which degrees of freedom must be considered in determining the mixture

to which the wavefunction collapses.

The environment is defined as being made up of all those degrees of freedom

which contribute greatly to the evolution of the state of the apparatus. If it

is agreed that the environment may in principle be regarded as isolated, a

basis |E〉 spanning its Hilbert space can be introduced. It should be possible

to formulate a criterion that excludes those degrees of freedom whose total

contribution to the total apparatus-environment interaction may be ignored.

It can also be assumed the quantum system itself remains isolated from

the environment. If this is violated after the premeasurement has occurred,

the apparatus will contain the information about which state the quantum

system was, but not necessarily is any more. Suppose ĤSA acts only for a very

short time during which ĤSA dominates ĤAE and a correlation of the form

|A0〉 ⊗ |ψ〉 is established, where |ψ〉 pertains to S. After this the interaction

between system and apparatus is nonexistent. All the vectors of the pointer

basis correspond to a common, degenerate energy eigenstate ĤA|Ap〉 = E|Ap〉,
where the eigenvalue does not depend on p. Physically, this is the case where

no energy is exchanged between the system and the apparatus.

Right after the correlation between the system and apparatus has been

established, the density matrix for the SAE combination evolves as

−i~ ˙̂ρSAE = [ρ̂SAE, ĤS+ĤA+ĤE+ĤAE] = [ρ̂SAE, ĤS+ĤA+ĤE]+[ρ̂SAE, ĤAE].

(3.2)
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The first commutator bracket can be ignored, which follows as the time evo-

lution of the time evolution of the states |Ap(t)〉 leaves invariant the diagonal

entries of the density matrix. Therefore, evolution of the apparatus due to ĤA

does not destroy information about the system.

The second commutator in (3.2) introduces correlations between the ap-

paratus and the environment. Diagonal terms of the density matrix remain

left-invariant only if it commutes with the projection operators that appear on

the diagonal. This means that if states |Ap〉 are to remain correlated with the

relative state of the quantum system, operator ĤAS must satisfy the commu-

tation relation,

[ ĤAE,
∑
p

γp|Ap〉〈Ap| ] = 0, (3.3)

for any choice of coefficients γp. Define the pointer observable for a real γp as

Π̂ =
∑
p

γp|Ap〉〈Ap|. (3.4)

So (3.4) can be rewritten by stating that the pointer basis {|Ap〉} is a com-

plete set of eigenfunctions of the operator Π̂ that commute with the pointer

Hamiltonian ĤAE,

[Π̂, ĤAE] = 0. (3.5)

The interaction Hamiltonian then depends only on one apparatus observable,

Π̂, so any interaction Hamiltonian which has the form

ĤAE =
∑
p

∑
σ>η

|Ap〉〈Ap| ⊗
(
ζ(p)σ η |η〉〈σ|+ ζ(p)η σ |σ〉〈η|

)
(3.6)

does have a form that satisfies (3.5). As well the states and ζ
(p)
η σ in (3.6) may

depend explicitly on time due to the interaction with the remote environment.

If the interaction remains diagonal in the pointer basis, it will not disturb

correlations of the apparatus with the states of the system relative to the

pointer basis.

It is then the environment-apparatus interaction that allows for the exis-

tence of the pointer basis. However it is not sufficient for the actual, successful

functioning of the apparatus. The action that actually correlates the quantum

state of the apparatus with that of the system state plays an important role.

Immediately after the premeasurement the AS wave function should appear as∑
p bp|Ap〉 ⊗ |p〉, where p is an orthonormal basis composed of the eigenstates

of the particular variable P̂ . Upon measurement, the measured system should

transform into one of the mutually orthonormal eigenstates of the operator P̂ .
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It was intended to show that when the environment, thought of as taking

the additional role of an apparatus, is taken into account, a definite answer

can be provided to the question: what mixture does the wave packet transform

into. To describe the given world, there ought to be two distinguishable types of

evolution. There is the reversible, deterministic kind, which has been confirmed

in the 2, as well as the irreversible, random one which must be the source of

what is experienced by consciousness.

4 Environment Induced Selection

The interaction Hamiltonian which couples system S to the environment E

may commute with subspaces of the Hilbert space of the system. As a result

of such interaction, the state vector of the system can remain pure only if it is

entirely limited to one of these subspaces Hn. Arbitrary superpositions with

components spanning two or more subspaces decay into mixtures which are

diagonal in the state vectors belonging to the individual, disjoint subspaces.

The decay originates in the establishment of correlations between quantum

system S and its environment E. Moreover, as long as the environment-

system coupling remains stronger than the coupling introduced by the observer

conducting a measurement, the set of the observables that can be measured

on S is limited to those that leave the subspaces invariant.

Systems which forbid the existence of groups of pure states and restrict

the possible observables in a way such as discussed here is said to admit su-

perselection rules. Consequently, the idea is to see how interaction with the

environment can impose such rules on S. The superselection rules once in

place makes the system behave classically. Environment induced superselec-

tion rules can be used to justify the classical nature of the apparatus reading,

but as well apply to an even greater class of classical observables of systems

which are inherently quantum.

Suppose the combined Hilbert space of system S and environment E is of

the form

HC = Hs ⊗HE. (4.1)

The evolution is given by a Hermitean operator defined on the Hilbert space.

Let us suppose it breaks up into a self-Hamiltonian of the system ĤS, of the

environment ĤE and an interaction Hamiltonian ĤSE written as,

ĤS + ĤE + ĤSE =
∑
i

χi|si〉〈si|+
∑
i

εj|ej〉〈ej|+
∑
i,j

γij|si〉〈si| ⊗ |e〉〈ej|
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+λ
∑
i,j,i′,j′

σii′,jj′ |si〉〈si′| ⊗ |ej〉〈ej′ |. (4.2)

When only the evolution of the diagonal part of the interaction Hamiltonian

is considered, it is written as Ĥ0
SE and given by

Ĥ0
SE =

∑
i<j

γij |si〉〈si| ⊗ |ej〉〈ej|. (4.3)

Setting λ = 0 in (4.2) is equivalent to this case, and is somewhat of an

idealization, where the diagonal Ĥ0
SE is much greater than the off-diagonal

part of the interaction. Both ĤS and Ĥ0
SE are likely to be highly degenerate,

which leaves additional freedom in the choice of the basis. Physically, λ << 1

is equivalent to stating interactions 0 in real world physical systems destroy

phase coherence between the system states on a time scale much shorter than

the time scale of relaxation to thermal equilibrium.

Evolution of the combined system-environment state vector, which at t = 0

was represented by a direct product state

|Φ(0)〉 = |ϕS〉 ⊗ |ψE〉 =
∑
i

αi|si〉 ⊗
∑
j

βj|ej〉. (4.4)

is evolved by a unitary Û as done in section 2.1, it gives

|Φ(t)〉 =
∑
i,j

αiβj exp[−i(χi + εj + γij)t/~] |si〉 ⊗ |ej〉. (4.5)

To provide an idea as to exactly how the superselection rules are manifested,

trace the density matrix over E

ρS(t) = TrE |Φ(t)〉〈Φ(t)|. (4.6)

The matrix elements of ρS(t) given in the representation ρij are

ρS(t) =
∑
i,j

ρij(t) |si〉〈si|. (4.7)

In (4.7), the ρij(t) are given as

ρii(t) = |αi|2
∑

k |βk|2 = |αk|2,

ρij(t) = αiα
∗
j exp(−i(χi − χj)t/~) ·

∑
m |βm|2 exp(−i(γim − γjm)t/~).

(4.8)

The diagonal elements are time-independent when the off-diagonal part of the

perturbing Hamiltonian is not present.
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They can rotate on account of the factor exp(−i(χi−χj)t/~), or more im-

portantly they can decay as a result of a decrease in the correlation amplitude

µij(t) =
∑
k

|βk|2 exp(−i(γik − γjk)t/~). (4.9)

The net result of this second type of time dependence is to lower the absolute

value of the correlation amplitude from one at time zero to a value much less

than this for large t. The average of the correlation amplitude determined over

a sufficiently long time interval approaches zero 〈µij〉T → 0 as T → ∞ unless

the frequencies ωijm = γim − γjm are equal to zero.

Demanding that all the ωijm = 0 would be equivalent to the statement

that interaction Hamiltonian H0
SE has diagonal part zero. Let the correlation

amplitude be expressed as

µij(t) =
∑
k

pk exp(−iωijmt/~), pk = |βk|2. (4.10)

When the environment is a mixture before to the interaction with the

system, {pk} gives probabilities for finding the environment in the states cor-

responding to distinct eigenvalues of Ĥ0
SE. Then (4.10) stays valid regardless

of whether E is initially in a pure state or is in a mixed state. Since µij(t) is

given by (4.9), the average absolute value is computed as

〈|µij(t)|2〉 =
1

T

∫ T

0

|µij(t)|2 dt→
∑
k,m

pkpm δ(ω
ij
k − ω

ij
m). (4.11)

Assuming all the ωijk are distinct, the standard derivation of correlation ampli-

tude from average value is given as
∑N

k=1 p
2
k. Hence environments can cause

correlations to damp out between those states of the system which diagonalize

Ĥ0
SE.

It has been proved the environment will remove correlations between states

which correspond to different eigenvalues of Ĥ0
SE. Many eigenvectors may

correspond to the same eigenvalues γij of Ĥ0
SE and they span a subspace Hn of

the system Hilbert space of the system. The entire Hilbert space of the system

can be reconstructed from the individual subspaces. Pure states which belong

to more than one subspace Hn at a single instant are not admitted. This

is the fundamental source of environment-induced superselection rules, and

HS is a direct sum of these basic subspaces ⊕nHn, with all the pure states

in one and only one of the Hn. As long as the coupling with some external

apparatus is not too far in excess of the γ, the system may not be prepared
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as measured in the state which does not remain invariant under the influence

of the interaction with the environment. Only these observables which leave

every Hn invariant are admitted. Thus B̂ is an observable with respect to

a system S in interaction with the environment E if and only if |ψn〉 ∈ Hn

implies that

B̂ |ψn〉 ∈ Hn. (4.12)

These two conditions can be thought of as equivalent to a more formal defini-

tion of the superselection rules.

The pointer observable Λ̂ can now be defined as any observable measure-

ment which allows us to precisely determine the subspace Hn which contains

the state of the system. If πn are a set of projection operators which project

onto subspaces Hn and λn are all real and distinct, by the spectral theorem,

the pointer observable can be expressed as

Λ̂ =
∑
n

λn πn. (4.13)

The projection operators can be constructed so that they are diagonal in the

basis |sk〉, which diagonalizes Ĥ0
SE and Λ̂ commutes with Ĥ0

SE,

[Λ̂, Ĥ0
SE] = 0. (4.14)

5 Envariance And Statistical Mechanics

Traditionally thermodynamic equilibrium states are characterized by extremes

of physical properties such as maximal thermodynamic entropy or randomness.

The microcanonical equilibrium can be defined as the quantum state that is

maximally envariant. This means it is envariant under all unitary operators

on system S. By a theorem, a composite state |ΨSE〉 can be written in the

form of a Schmidt decomposition as

|ΨSE〉 =
∑
k

αk|sk〉 ⊗ |εk〉, (5.1)

where {|sk〉} and {|εk〉} are orthocomplete sets in S and E, respectively. The

procedure is to identify the special state that is maximally envariant.

In fact, |ΨSE〉 is invariant under all unitary operators if and only if the

Schmidt decomposition is even, so that the coefficients satisfy |αm| = |αn| for

all m,n so |ΨSE〉 can be expressed as

|ΨSE〉 = C
∑
k

eiϕk |sk〉 ⊗ |εk〉, (5.2)
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and the ϕk are phases. The classical concept of equilibrium ensembles trans-

lates into an equilibrium state that is envariant under the maximal number,

that is, all unitary operations present.

The microcanonical state is usually identified as the state that is fully

degenerate in terms of energy. Denote the Hamiltonian of the composite system

by

HSE = H ⊗ IE + IS ⊗HE. (5.3)

The internal energy of S is given by the quantum mechanical average

E = 〈ΨSE|H ⊗HE|ΨSE〉 =
1

Z

∑
k

〈sk|H|sk〉. (5.4)

In equation (5.4), Z is the energy-dependent dimension of the Hilbert space

of S. This is often called the microcanonical partition function. Since |ΨSE〉
is envariant under all unitary maps, let us suppose, without loss of generality,

that {sk} represents the energy eigenbasis corresponding to H. Then the

matrix elements are given by 〈sk|H|sk〉 = ek where E = ek = em for all k,m ∈
{1, · · · , Z}. The fully quantum representation of the microcanonical state has

been identified by using two conditions. The microcanonical equilibrium is

not represented by a unique state, but by an equivalence class of maximally

envariant states all with the same energy. Thus the microcanonical equilibrium

of system S is a state that is envariant under all unitary operations on S.

It is fully degenerate in energy with respect to H. In this approach, only

this quantum symmetry is is required and induced at a very basic level by

entanglement or envariance.

The canonical state can also be determined this way. Suppose the total

system S can be separated into a smaller subsystem S and its complement, a

heat bath B. The Hamiltonian of S is

H = HS ⊗ IB + IS ⊗HB +HSB, (5.5)

where the contribution HSB is an interaction term which makes possible en-

ergy exchange between S and B. Suppose it is sufficiently small so that its

contribution to the total energy can be neglected so E = ES+EB and its effect

on the composite equilibrium state neglected. This is usually called ultra-weak

coupling in classical terms. In this case, every composite energy eigenstate |sk〉
can be written as a product

|sk〉 = |ŝk〉 ⊗ |bk〉. (5.6)
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and |ŝk〉 and bk〉 are energy eigenstates in S and B. Now all orthonormal bases

are equivalent under envariance so |sk〉 may be chosen as energy eigenstates of

H.

For the canonical formalism, it is the number of states accessible to the

total system S under the condition total internal energy E is constant. When

S happens to be in a particular energy eigenstate |ŝk〉, the internal energy of

the subsystem is given by the corresponding energy eigenvalue êk. For the

total energy E to be constant, the energy of the heat bath EB has to obey

EB = E − êk. (5.7)

To satisfy this, the energy spectrum of the heat reservoir must be at least as

dense as that of the subsystem. The number of states N accessible to system

S is then

N (ε̂k) =
NB(E − êk)
NS(E)

. (5.8)

In (5.8), N (E) is the total number of states in S consistent with (5.4) and the

numerator is the number of states available to bath B determined by (5.7).

Suppose B consists of N non-interacting subsystems with identical eigen-

value spectra {eBj }mj=1. The initial energy (5.7) is

E = êk + n1e
B
1 + n2e

B
2 + · · ·+ nme

B
m,

m∑
j=1

ej = N. (5.9)

The degeneracy takes the form

N (êk) =
N !

n1!n2! · · ·nm!
. (5.10)

This is a quantum envariant formulation of Boltzmann’s counting formula for

the number of energy states involved.

To obtain the Boltzmann-Gibbs result, consider the limit N >> 1. Then

by Starling’s formula

log(N (êk))
.
= N log(N)−

n∑
j=1

nj log(nj).

In the case of microcanonical equilibrium, this was satisfied by the state that

is envariant under all unitary maps. Let us identify canonical equilibrium by

the configuration of the reservoir B for which the maximal number of energy

eigenvalues are occupied subject to the constraints

m∑
j=1

nj = N, E − êk =
m∑
j=1

nje
B
i . (5.11)
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Introducing Lagrange multipliers τ , β, it is required that

δ
(∑

j

nj log(nj) + µ
∑
j

nj + β
∑
j

nje
B
j

)
= 0. (5.12)

The solution to this variational constraint is the Boltzmann-Gibbs relation

nj = c eβ e
B
j . (5.13)

This represents the number of states in bath B with energy eBj for S and B to

be in thermodynamic canonical equilibrium. The temperature enters through

the Lagrange multiplier β. This result is exact up to use of 1 approximation

and depends only on the fact that the total S be in microcanonical equilibrium

as defined already by using the envariance concept.

6 Conclusions

The interaction of the environment with the system generates a correlation sim-

ilar to that between the system and the apparatus. The environment can then

be thought of as a higher-order apparatus which performs a 0 measurement

on the state of the system destroying coherent superpositions. The eigenbasis

of the pointer observable which is determined up to the coherent degeneracy

of Λ̂ has been called the pointer basis.

When the eigenvalues of the self-Hamiltonian are highly degenerate. The

eigenspaces Hτi which correspond to the distinct eigenvalues τi, may contain,

or be identical with or even be a subset of the eigenspaces of the observable

Λ̂, Hn. These possibilities are exhaustive as long as [HS, Ĥ
0
SE] = 0. This

follows from the commutation relation [Λ̂, Ĥ0
SE] = 0. In the first instance, the

interaction with the environment will remove part of the degeneracy in the

spectrum of ĤS, similar to the splitting of levels observed in atomic physics.

The energy levels of the system are shifted in the second case. In the last, the

state may rotate under the influence of the self-Hamiltonian in Hn without

loss of coherence. What is most important in this is the redundancy of the

record concerning the observable which is imprinted on the correlations. The

interaction with the environment forces the system to be in one particular

eigenstate of the pointer observable rather than in a superposition of such

states. Thus the super selection rules need not be imposed from outside.

This fact gives rise to rules which are induced by the environment [16-18].

Finally, envariance offers the possibility of establishing thermodynamics on a

well defined set of ideas originating at a fundamental quantum level.
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