
Advanced Studies in Theoretical Physics

Vol. 18, 2024, no. 4, 203 - 221

HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/astp.2024.92138

Stabilization Responses of an Infinite Porous

Flow Channel Containing Ferrofluids

Azizah Alrashidi and Sameh A. Alkharashi ∗

Department of Laboratory Technology

College of Technological Studies, PAAET, Kuwait
∗ Corresponding author

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2024 Hikari Ltd.

Abstract

This paper investigates the effect of a magnetic field on the stabil-

ity of two interfacial waves propagating between three infinite layers

of viscous fluids. The flow propagates saturated in porous media so

that liquids have distinct physical properties and are immiscible. The

principal purpose of this study is to examine the impact of the porosity

outcome and fluid viscosity on the growth rate in the existence of a mag-

netic field. In the horizontal axis direction. Fluid stability results from

the amplitude of the waves and the extent to which they are affected by

the interference between magnetic features and the effect of the media’s

porosity. The stability conditions are realized theoretically in which

stability diagrams are achieved. The influence of the various quantities

of the problem on the interface stability is thoroughly evaluated.

Keywords: Linear Stability; Normal Mode; Viscous Fluids; Magnetic

Field; Porous Media

1 Introduction

The performance of moving films under certain circumstances has at-

tracted many researchers due to their conceptual simplicity, rich dynamical
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phenomenology, and technological relevance and has fascinated considerable

interest since the pioneering experimental and theoretical reviews. The pre-

sentation of various pertinent studies that provide a useful summary of hydro-

dynamic stability is provided below. In paper [1], the stability investigation

of a two-layer system in the presence of a normal electric field was analyzed.

According to the authors, the electric field plays a dual role in the stabilization

process. The method proposed in [2] was restricted to studying the dynamics

of an interface separating two liquids in a vertical channel. In one of the layers,

coupled non-linear evolution relations for the interface form and flow rate are

obtained.

In article [3], the linear stability investigation of pressure-driven flow un-

der viscous heating effect via a channel is carried out. A modified coupled

OrrSommerfeld equation was obtained with a linearized energy equation. It

was mentioned that viscous heating has a destabilizing impact. In light of

the linear stability theory, the effects of the density ratio, liquid viscosity and

surface tension on the instability of the planar sheet are discussed in [4]. It

is noted that the greater velocity difference across each interface has a desta-

bilizing effect on the liquid sheet, but the extent of the increased can vary.

DiCarlo [5] has theoretically investigated the stability of the standard multi-

phase flow equations. However, he has demonstrated experimentally that the

instability is associated with saturation or pressure overshoot occurrences in

1-D infiltrations.

Awasthi [6] investigated the linear Rayleigh-Taylor instability of two viscous

electrically conducting liquids. The viscous potential flow theory, which states

that viscosity only contributes through normal stress balance is used. In terms

of growth rate and wave number, a quadratic dispersion equation is obtained.

Zakaria et al. [7] have analyzed the effect of an externally applied electric field

on the stability of a thin fluid film over an inclined porous plane, using linear

and non-linear stability analysis in the long wave limit. Wray et al. [8] have

investigated the evolution and stability of a wetting viscous fluid layer flowing

down the surface of a cylinder, and surrounded by a conductive gas.

Alkharashi and Alotaibi [9] have investigated the effect of periodic velocity

on the stability of two interfacial waves propagating between three layers of im-

miscible incompressible fluids. The flow propagates saturated in porous media

under the influence of an electric field. This paper uses the viscous potential

theory to simplify the mathematical procedure, by which viscosity is accu-

mulated on the separating surface rather than in the bulk of fluids. Recently,

Alrashidi and Alkharashi [10] have examined the electrohydrodynamic instabil-

ity of three porous-bounded liquid films with two interfaces in the presence of



Stabilization responses of an infinite porous flow channel 205

stream periodicity and an electric horizontal field. It is considered that liquids

have distinct physical characteristics and are immiscible. Applying the linear

theory to the equations of motion and the associated boundary conditions led

to two coupled Mathieu-type equations with complex periodic coefficients.

In this article, the considered system is composed of a viscous fluid layer

of finite thickness embedded between two semi-infinite fluids. The system is

influenced by horizontal magnetic field. The objective of the present work is

to investigate the mechanisms of stability of three porous layers of fluids in the

presence of horizontal magnetic field. The plan of this work is as follows:

The structure of this paper is as follows. The theoretical framework is clearly

stated in the following section, and the basic equations of motion and related

boundary conditions are surveyed. The third section deals with the stabiliza-

tion of the problem, while the fourth section considers the derivation of the

characteristic equation. Numerical applications for stability configuration are

the subject of section five. The conclusion and main findings are discussed in

the final section.

2 Theoretical framework

This article considers a two-dimensional system of an infinite horizontal

viscous liquid sheet of vertical height 2d restricted between two semi-infinite

superposed incompressible viscous fluids. The coordinates system is chosen

as x-axis is parallel to the direction of the fluid sheet flow, and the y-axis is

normal to the fluid sheet with its origin located at the middle plane of the

fluid sheet as shown in Fig. 1. The top fluid occupies the region y ∈ (d,∞)

the inner fluid is limited in the region demonstrated by y ∈ (−d, d) while the

range y ∈ (−∞,−d) characterizes the lower fluid. The system is considered

to be influenced by the gravity force g(0, g) in the negative y-direction. The

two interfaces between the fluids are assumed to be well defined and initially

flat and form the interfaces y = −d and y = d. The two interfaces are parallel

and the flow in each phase is every where parallel to each other. The surface

deflections are expressed by y = ξ1(x, t) at y = −d and y = ξ2(x, t) at y = d,

where y = ± d are the equilibrium positions of the two interfaces, i.e. the

positions without disturbances, ξl, (l = 1, 2) is the size of the disturbance at a

point.

To better understand the dynamic stability of the current problem, the

governing equations and their associated boundary conditions are placed in

the non-dimensional form. Depending on the geometry of the shape, half the
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thickness of the middle layer d can be chosen as the characteristic length.

Figure 1: Sketch of problem geometry.

From the above, speed and time can be put in a dimensional form employing√
dg and

√
d/g. While the magnetic field and its potential take the non-

dimensional form through
√
dgρ2/µ2 and d

√
dgρ2/µ2, respectively. In addition

the pressure dgρ2, the stream function
√
d3g, and the viscosity ρ2

√
d2g, as well

as the permeability of the porous medium d2Q.

Furthermore, in the equations of motion, we use the symbols: the fluid

density ratio ρ̂j = ρj/ρ2 (j = 1, 2, 3) the dynamic viscosities ratio η̂j = ηj/η2,

and the magnetic permeability ratio µ̂j = µj/µ2. Also the Weber number Wl

= Tl/d
2gρ2, ( l = 1, 2), where Tl is the surface tension coefficient.

2.1 Governing equations

Assuming a quiescent initial state, therefore the base state velocity in the

fluid layers is zero in which the flow is steady and fully developed. Thus the

fundamental nondimensional equations governing the motion of the magnetic

fluids are coming out from the ordinary hydrodynamic equations and Maxwell’s

relations of magnetic field [8-12].

ρ̂jRe

{
∂t + (u.∇)

}
uj = −Re∂xΠj + η̂j(∇2uj +

uj
Qj

), j = 1, 2, 3, (1)

ρ̂jRe

{
∂t + (u.∇)

}
vj = −Re∂yΠj + η̂j(∇2vj +

vj
Qj

), (2)

associated with the continuity equation which expresses the conservation of

mass:

∂xuj + ∂yvj = 0, (3)

where Re = ρ2

√
d3g/η2 denotes the Reynolds number of the middle layer and

Qj represents the permeability parameter and Πj = pj + ρjgy stands for the
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total hydrostatic pressure. In addition ∂t is the partial derivative with respect

to the time t, and ∇ ≡ (∂x, ∂y) is the horizontal gradient operator.

In formulating Maxwell’s equations for the problem, we supposed that the

electro-quasi-static approximation is valid for the problem, i.e. the effects

of the magnetic fields due to the slow variations in the magnetic fields are

negligible. This assumption requires the magnetic field to be both curl and

divergence free and consequently we have

∇. (µj Ej) = 0, (4)

∇× Ej = 0. (5)

Here, Hj is the magnetic field intensity vector, the notation × refers to the

vector product of two vectors and µj refers to the magnetic permeability. The

construction of a potential function ϕj, can be representable as the gradient

of the scalar potential such that

Hj = (H0j − ∂xϕj)ex − ∂yϕjey, (6)

automatically satisfies zero curl for a constant permittivity and therefore the

electrostatic potential satisfies the Laplace equation

∂2
xϕj + ∂2

yϕj = 0, (7)

where ex and ey are unit vectors in x− and y− directions. It is to be noted here

that the divergence of the Maxwell stress tensor in the bulk fluid is zero because

the bulk of the fluid is free of net charge, and the magnetic permeability are

independent of spatial position in the fluid. Thus, the Maxwell stress tensor

not appear in the momentum equation above, but will affect the flow only

through the conditions at the interface.

2.2 Boundary conditions

The boundary conditions that allow completing the solution of the above sys-

tem of governing equations have to be specified. Since at the boundaries among

fluids, the fluids and the magnetic stresses must be balanced. The components

of these stresses consist of the hydrodynamics pressure, surface tension, poros-

ity effects and magnetic stresses [13-16]. The boundary conditions represented

here are prescribed at the interface y = ξl(x, t), where ξl is the height of the

disturbed interfaces away from its initial position (y = ±1) which is defined

in the next section. As the interface is deformed all variables are slightly per-

turbed from their equilibrium values. Because the interfacial displacement is
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small, the boundary conditions on perturbation interfacial variables need to be

evaluated at the equilibrium position rather than at the interface. Therefore,

it is necessary to express all the physical quantities involved in terms of Taylor

series about y = ±1.

The flow field solutions of the above governing equations have to satisfy the

kinematic and dynamic boundary conditions at the two interfaces, which can

be taken as y ≈ ±1 (the first order approximation for a small displacement of

the interfaces due to the disturbance). The normal component of the velocity

vector in each of the phases of the system is continuous at the dividing surface.

This implies that

nl · (ul − ul+1) = 0, y = (−1)l, l = 1, 2, (8)

where nl is the outward normal unit vector to the interfaces which are given

from the relation, nl = ∇Sl/ | ∇Sl | and Sl(x, y, t) is the surface geometry

defined by Sl = y − ξl(x, t) = ±1.

The condition that the interfaces are moving with the fluids (DtSl = 0) lead

to

vl,(l+1) + ∂tξl = 0, y = (−1)l, l = 1, 2. (9)

In addition the jump in the shearing stresses is zero across the interfaces, this

gives ∣∣[η̂l (∂yul + ∂xvl
]∣∣l+1

l
= 0, y = (−1)l, l = 1, 2, (10)

where, the notation |[X]| is used here to signify the difference in some quantity

X across the interfaces.

Furthermore, Maxwell’s conditions on the magnetic field where no free surface

charges are present on the interfaces. The continuity of the normal component

of the magnetic displacement at the interfaces reads:

nl · (µ̂l Hl −Hl+1) = 0, y = (−1)l, l = 1, 2, (11)

which gives

∂yϕ2 − µ̂1∂yϕ1 = (µ̂1 − 1)H01∂xξ1, y = −1,

∂yϕ2 − µ̂3∂yϕ3 = (µ̂3 − 1)H01∂xξ2, y = 1.

The tangential component of the magnetic field is zero across the interfaces,

this requires that

nl × (Hl −Hl+1) = 0, y = (−1)l, l = 1, 2, (12)

from this equation, we have

∂xϕ2 − ∂xϕ1 = 0 at y = −1 and ∂xϕ3 − ∂xϕ2 = 0 at y = 1.
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The completion of the mathematical description of the problem requires an

additional interfacial condition determine the shape of the interface between

the fluids, which is the dynamical equilibrium boundary condition in which

the surface traction suffers a discontinuity due to the surface tension:∣∣[nl. τ .nl]∣∣l+1

l
= Wl ∇. nl, y = (−1)l, l = 1, 2. (13)

The stress tensor, τ , is composed of a fluid component (isotropic pressure and

deviatoric viscous stresses for the Newtonian fluid), τ (f) , and a magnetic com-

ponent, τ (e), whose expressions are given by the formulas

τ
(f)
l = −plI + η̂l(∇ul +∇uTrl ), (14)

τ
(e)
l = µ̂l

(
HlHl −

1

2

(
Hl ·Hl

)
I
)
, (15)

where the symbol I denotes the identity tensor, while the superscript Tr indi-

cates the matrix transpose. Thus the dynamical condition becomes∣∣[− p+ 2η̂
∂v

∂y
+ µ̂(E2

n −
1

2
E2)

]∣∣l+1

l
= Wl ∇ · nl. (16)

3 Stabilization of the problem

In order to investigate the stabilization of the present problem, the inter-

faces between the fluids will be assumed to be perturbed about its equilibrium

location and will cause a displacement of the material particles of the fluid

system. This displacement may be described by the equation

ξl(x, t) = ξ̂l e
ikx+ωt + c.c, l = 1, 2, (17)

where ξ̂l is the initial amplitude of the disturbance, which is taken to be much

smaller than the half-thickness d of the middle sheet, k is the wave number of

the disturbance, which is assumed to be real and positive (k = 2π/λ, where λ

is the wavelength of the disturbance), ω is a complex frequency (ω = ωr + iωi,

where ωr represents the rate of growth of the disturbance, ωi is 2π times the

disturbance frequency), the symbol i denotes
√
−1, the imaginary number and

c.c represents the complex conjugate of the preceding terms.

The equations of motion and the boundary conditions mentioned previously

will be solved under the assumption that the perturbations are small, so, all

equations of motion and boundary conditions will be linearized in the per-

turbed quantities.
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The solution of the above system of governing equations and boundary con-

ditions can be facilitated by defining a stream function, ψ of the time and

space coordinates, which automatically satisfies Eq. (3), where

u = ∂yψ, v = −∂xψ. (18)

Using the normal mode approach we write the perturbations in the form

ψ = ψ̂(y) eikx+ωt + c.c. (19)

Eliminating the pressure term from Eqs. (1) and (2) and using (18) and (19),

we obtain the following equation

D4
yψ̂j − (`2

j + k2)D2
yψ̂j + k2`2

j ψ̂j = 0, (20)

where Dy = d/dy and

`j =
{
k2 +

ρ̂j Re ω

η̂j
+

1

Qj

} 1
2
.

It is obvious that the analytical solution of Eq. (20) is of the form

ψ̂j(y) = A1j e
ky + A2j e

−ky + A3j e
`jy + A4j e

−`jy. (21)

Since the boundary conditions require that the disturbances vanish as y → ±∞
(i.e. A21 = A41 = A13 = A33 = 0). Thus we have the stream function in the

three layers:

ψ1 = (A11 e
ky +A31 e

`1y) eikx+ωt + c.c, y < −1,

ψ2 = (A12 e
ky+A22 e

−ky+A32 e
`2y+A42 e

−`2y) eikx+ωt+c.c, −1 < y < 1, (22)

ψ3 = (A23 e
−ky +A43 e

−`3y) eikx+ωt + c.c, y > 1.

Using the normal mode solution we can obtain the pressure from Eqs. (1) and

(2):

pj =
1

ik

{ η̂j
Re

[
∂3
yψj + ∂2

x∂yψj −Q−1
j ∂yψj

]
− ρ̂j∂x∂tψj

}
. (23)

The solution of the magnetic potential, in view of Eqs.(6) may be taken the

form

ϕ1 = B11 e
ikx+ky+ωt + c.c, y < −1,

ϕ2 =
(
B12 e

ky +B22 e
−ky) eikx+ωt + c.c, − 1 < y < 1, (24)

ϕ3 = B23 e
ikx−ky+ωt + c.c, y > 1.



Stabilization responses of an infinite porous flow channel 211

4 Characteristic equation

In this section, we will derive the dispersion relation controlling the stability

behavior of the system. When the obtained solutions of the stream function,

magnetic potential and surface tension are inserted into Eqs. (8-16), we have

a linear homogeneous system of algebraic equations of the fourteen unknown

coefficients Apj, Blj, ξ̂l, (p = 1, 2, 3, 4). This homogeneous system of equations

can be expressed in matrix form as

AX = 0, (25)

where 0 is a null vector, X is a vector of unknown coefficients defined as

XTr =
(
A11, A31, A12, A22, A32, A42, A23, A43,

B11, B12, B22, B23, ξ̂1, ξ̂2

)
. (26)

The coefficient matrix A is given in Appendix. A non-trivial solutions of the

unknown coefficients Apj, Blj, ξ̂l, of the system (27) exists if and only if the

determinant of the 14 × 14 matrix A must be equal to zero, which yields a

dispersion relation between the wavenumber k and the perturbation frequency

ω for specified values of other parameters, given by

F (ω, k;Re, H01, η̂j, Qj,Wl, ρ̂j, µ̂j) = 0, (27)

which represents the linear dispersion equation for surface waves propagating

through a viscous layer embedded between two other fluids with the influence

of constant horizontal magnetic field. This dispersion relation controls the

stability in the present problem. That is, each negative of the real part of

ω corresponds to a stable mode of the interfacial disturbance. On the other

hand, if the real part of ω is positive, the disturbance will grow in time and

the flow becomes unstable.

It is clear that the eigenvalue relation (28) is somewhat more general and

quite complex, since `j involves square roots and so one can obtain other

characteristic relation as limiting cases. For an inviscid fluid, we get the char-

acteristic equation as a special case from Eq. (28) when ηj = 0. Thus by

collecting the real and the imaginary terms in power order of ω with the help

of symbolic computation software Mathematica, Eq. (28) can be transformed

into a polynomial algebraic equation of fourth order in the frequency ω. Sim-

ilar relations were obtained in the literature [13, 17] Also, in the special case

when the effect of the magnetic forces is absent and for the fluids flow through
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no-porous media, we get `j =
√
k2 +

ρ̂j Re ω

η̂j
and in this case, the dispersion

relation (28) is reduced to a non-polynomial algebraic equation for the fre-

quency ω which coincides with that obtained by Kwak and Pozrikidis [18].

Another case is the limiting case of one interface between two continuum lay-

ers ( non-porous medium), in which highly viscous fluids are considered. Thus

we obtain a polynomial equation of fifth order in ω, which is obtained before

by Kumar and Singh [14] and Sunil et al. [18].

In the following, numerical applications are carried out to demonstrate the

effects of various physical parameters on the stability criteria of the system.

In the present work, we will numerically solve the implicit dispersion relation

by means of the Chebyshev spectral tau method [19].

5 Numerical applications

In order to discuss the stability diagrams, Eq. (28) is used to control the

stability behavior, which requires specification of the parameters: the magnetic

field, the magnetic permeability, the porosity effect, the density, the viscosity.

In the calculations given below all the physical parameters are sought in the

dimensionless form as defined above. The stability of fluid sheets corresponds

to negative values of the disturbance growth rate (i.e. ωr < 0), and the dis-

turbance growth rates of different fluids can be gained by solving the above

corresponding dispersion relation numerically.

To screen the examinations of the magnetic field H01 and the magnetic

permeability ratio µ̂3 on the stability criteria, numerical calculations for the

dispersion relation (28) are made. The results for calculations are displayed in

Fig. 2 in the plane (ωr − k). The graph displayed in this plane is evaluated

for a system having the parameters given in the caption of Fig. 2. Before, we

discuss the stability of this graph we firstly define the critical wave number

(also called the cutoff wave number) as given in [22] the value of the wave

number at the point where the growth rate curve crosses the wave number

axis in the plots of wave growth rate versus wave number. In other words the

critical wave number is the value of the wave number, which separates the

stable motions from the unstable ones and conversely, and can be obtained

from the corresponding dispersion relations by setting ωr = 0.
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Figure 2: Effects of the magnetic field H01 and magnetic permeability µ̂3 in the

plane (ωr − k) at µ̂1 = 1.2, ρ̂1 = 5, ρ̂3 = 2, Re=0.4, η̂1=0.2, η̂3=0.4, Q1=0.1,

Q2 =0.2, Q3 = 0.3, W1 = 2, W2 = 1 on the wave growth rate: part (a) at

H01=0.4 (solid), 0.8 (dashed), 1.2 (dotted) with µ̂3=1.5, and part (b) at µ̂3 =1.0

(solid), 1.5 (dashed),2.0 (dotted) with H01=0.8.

In Fig. 2(a) the stability arises according to the negative sign of the real part

of the complex frequency ω. Thus when the wave number is over the cutoff

wave number, the fluid sheet is stable. In this figure the solid curve is plotted

at the value H01 = 0.5, and the value H01 = 1 corresponds to the dashed line,

while the dotted curve represents the value H01 = 1.5. The inspection of Fig. 2

part (a) indicates that as the magnetic field is increased both the growth rates

and the cutoff wave numbers reduced, on other meaning the unstable regions

under the curves are decreased. Therefore, it is concluded that the magnetic

field effects has a stabilizing influence in the fluid sheets.

The influence of changes of the magnetic permeability ratio µ̂3 (= µ3/µ2),

on the stability behavior in the plane (ωr − k) is illustrated in Fig. 2(b).

In the graph 2(b) the values 1.0, 1.5 and 2 are selected for µ̂3 correspond

to the continuous, dashed and dotted curves respectively. It is apparent from

the inspection of Fig. 2(b), under the influence of the magnetic permeability

µ̂3, the growth rates with different magnetic permeability ratio keep almost

identical for the wave numbers less than 0.25, but increase correspondingly at

higher values of the wave number, further the plane (ωr − k) is divided into

two regions. The first is 0 < k < 0.25, which represents a stabilizing effect for

increasing the parameter µ̂3. The second region lie in the range 0.25 < k < 1,

since in this range, we notice that, when the magnetic constant is increased,

both the growth rates and the cutoff wave numbers of fluid sheets decrease.

A general conclusion of the graph 3 reveals that the phenomenon of the dual

(irregular) role is found for increasing the magnetic permeability ratio µ̂3,

which there are two roles one is a stabilizing influence in the range k < 0.25,
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and the other is a destabilizing in the range 0.24 < k < 1.2.

The examination of change of the lower to the middle fluid density ratio ρ̂1

in the stability criteria is illustrated in Fig. 3(a). The graphs are constructed

for ωr versus k, are achieved for three values of the ratio ρ̂1 =2, 4 and 6, corre-

spond to the continuous, dashed and dotted lines respectively, where the other

quantities are held fixed. In this figure, the areas lie under k−axis and above

the curves are stable and may be called stability regions (corresponding to the

negative values of ωr), while the areas above the horizontal axis are unstable.

The inspection of the stability diagram of Fig. 3(a) reveals that the increase

of the density ratio ρ̂1 leads to increase in the width of unstable regions. The

result that may be made here is that the ratio ρ̂1 has a destabilizing influence

on the stability behavior of the waves. This result confirmed the fact that

when the lower fluid is more heavier than the upper, thus the system is stable.

Fig. 3(b) exhibits the effects of the permeability parameter Q1 on the

stability behavior of the fluid layers.

Figure 3: The graph is constructed for ωr versus k, part (a) with ρ̂1=1, 2, 3 and

against Re part (b) with Q1=0.4, 0.6, 0.8.

In this graph the solid, dashed and dotted curves represent the values 0.4,

0.6 and 0.8 in the plane (ωr − Re) of the parameter Q1 respectively. Having

noted the stability chart of this diagram, it is observed that the increase of the

permeability in the range 0 < Re < 0.5, leads to a contraction in the width

of the instability regions (the regions under the curves and above the wave

number axis correspond to the positive sign of the disturbance growth rate).

On the other hand, through the interval 0.5 < Re < 1.2 the growth rates of

instabilities with different Q1 are increased. In general view of the graph 3(b),

it is noticed that there are two roles of the variation of the porous parameter

Q1, the first one is a stabilizing when the Reynolds number Re less than the

value 0.5, and the other role is a destabilizing when Re lies between the values
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0.5 and 1.2. Hence the phenomenon of the dual role is found for increasing the

permeability parameter Q1.

Figure 4: Three dimensions top interface elevation at y = 1, so that the viscosity

ratio η̂3= 0.3, 0.5, and 0.7 are chosen for (a), (b), and (c), respectively.

Fig. 4 was produced in a three-dimensional system from the perspective

of the height of the surface wave, where the horizontal direction of the waves’

movement and the elevation of the upper interface were drawn versus time.

The parts of this figure represent three different values of the viscosity ratio

η̂3 for comparison while preserving the values of other variables as mentioned

in the previous figure. A general inspection of this figure demonstrates that

increasing the viscosity ratio η̂3 to a value of 0.5 in Fig. 4(b) leads to a

contraction of the crests and troughs of the waves. However, another increase

in η̂3 to become 0.7 in the third part of this graph leads to more contraction

and shorter height of the crests and troughs. Hence, we conclude that the

viscosity ratio of the top interface has a stabilizing effect on the shape of the

interfacial wave elevation. From a physical point of view, we can justify the

system’s stability or not, that the greater the surface viscosity of the lower

layer matched its higher counterpart. This leads to damping in the frequency
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of the waves accordingly helping stabilize the fluid. In the opposite case, i.e.,

the surface viscosity in the upper layer is greater than the lower one, we get

an unstable system.

Through images of instantaneous streamlines of the stream function [23-26],

the impact Reynolds number is beginning to be realized in various portions of

Fig. 5. All physical amounts are fixed to draw the streamlines contour, with

the exception of the Reynolds number, which has three values (0.4, 0.6, and

0.8) that correspond to the parts (a)-(c).

Figure 5: Streamlines contours for a system having the same parameters

considered in Fig. 2, with k = 0.5, t = 0.2, ξ̂1 = 0.02 and ξ̂2 = 0.06, where Re =

0.5, 1 and 1.5 of the parts (a), (b), (c) and (d), respectively.

An examination of the individual components of this figure reveals that the

streamlined contours shift and speed up to (more than two cells) in the direc-

tion of the wave movement, as the Reynolds number increases. A conclusion

that can be drawn from the similarity of the portraits (a-c) in Fig. 5, is that

the destabilizing effect was caused by the crowding of the streamlines in the

fluid movement’s trend due to the enlarging Reynolds number. This behavior

is consistent with the findings reported in the literature [27-29].

6 Conclusions

The current analysis considers the influence of a magnetic field on the stability

of two interfacial waves propagating between three infinite layers of viscous
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fluids. The flow propagates saturated in porous media so that liquids have

distinct physical properties and are immiscible. Fluid stability results from

the amplitude of the waves and the extent to which they are marked by the

interference between magnetic features and the consequence of the media’s

porosity. The dispersion equation is obtained by solving the linear equations

with the boundary constraints governing the problem under study. The disper-

sion formula depends on the growth rate and the wavelength and is an implicit

relationship.

The stability of the fluid layers was examined analytically and numerically,

by drawing some diagrams in which the physical scales are set in the dimen-

sionless formula. Several outcomes can be drawn as realized based on the

numerical survey, subject to certain constraints.

It is shown that the lower to the inner fluid density ratio develops both the

growth rate and the instability range of the liquid sheet, which has a destabi-

lizing effect. This result leads to the fact that when the upper fluid is lighter

than the lower liquid, the system is in a stable state.

The dual role of both the porosity of the medium and the permeability of the

magnetic field was observed. As a result of absorbing part of the kinetic energy,

the viscosity coefficient and the magnetic field work to dampen the motion and

thus lead to the stability of the system. Finally, both the Reynolds number

and the density ratio work to expand the amplitude of the disturbance, which

stimulates the instability of the liquid layers.

Appendix

The values of the coefficients of matrix A appearing in Eq. (25) are



ike−k ike−`1 0 0 0 0 0

0 0 ike−k ikek ike−`2 ike`2 0

0 0 ikek ike−k ike`2 ike−`2 0

0 0 0 0 0 0 ike−k

2η̂1k2e−k η̂1(k2 + `21)e−`1 −2k2e−k −2k2ek −(k2 + `22)e−`2 −(k2 + `22)e`2 0

0 0 2k2ek 2k2e−k (k2 + `22)e`2 (k2 + `22)e−`2 −2η̂3k2e−k

ke−k `1e−`1 −ke−k kek −`2e−`2 `2e`2 0

0 0 kek −ke−k `2e`2 −`2e−`2 ke−k

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Â11 2ik`1η̂1e−`1 Â12 Â22 −2ik`2e−`2 2ik`2e`2 0

0 0 Ǎ12 Ǎ22 2ik`2e`2 −2ik`2e−`2 Ǎ23
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0 0 0 0 0 ω 0

0 0 0 0 0 ω 0

0 0 0 0 0 0 ω

ike−`3 0 0 0 0 0 ω

0 0 0 0 0 0 0

−η̂3(k2 + `23)e−`3 0 0 0 0 0 0

0 0 0 0 0 0 0

−`3e−`3 0 0 0 0 0 0

0 kµ̂1e−k −ke−k kek 0 ik(µ̂1 − 1)H01 0

0 0 kek −ke−k kµ̂3e−k 0 ik(µ̂3 − 1)H01

0 −ike−k ike−k ikek 0 0 0

0 0 −ikek −ike−k ike−k 0 0

0 −ikµ̂1H01e−k ikH01e−k ikH01ek 0 ξ̌1 0

2ik`3η̂3e−`3 0 −ikH01ek −ikH01e−k ikµ̂3H01e−k 0 ξ̌2


(28)

where

Â11 = Q−1
1 e−k{Q1(2iη̂1k

2 − ρ̂1ω)− 1},

Âl2 = Q−1
2 e(−1)lk{ Q2(ω + 2(−1)lik2) + 1}, l = 1, 2,

Ǎ12 = e−k(2ik2 − ω −Q−1
2 ), Ǎ22 = −Q−1

2 e−k{Q2(ω + 2ik2) + 1},

Ǎ23 = −Q−1
3 e−k{Q3(2iη̂3k

2 + ρ̂3ω) + 1}, ξ̌1 = 1− ρ̂1 + k2W1,

ξ̌2 = −1 + ρ̂3 + k2W2.
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