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Abstract

Diffraction of Schrodinger particle by single slit is considered in the
two dimensional space. Mathematically, the problem amounts to the
solution of Schrédinger equation with boundary. Due to the difficulty of
giving exact analytical solution, the study is developed by the method of
Gaussian wave packets that far from the barrier can be considered to be
exact solutions. By including also a possible interaction of the particle
with the wall, the diffraction pattern is determined by a truncation,
a confinement and a scattering assumption. The results are coherent
with previous ones and are now obtained in a form suitable for physical
application.
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1 Introduction

Diffraction by slit is possible also for massive particle. This was originally seen
experimentally [4, 9, 7]; it has been verified to be highly coherent with the
theoretical prediction [19] and more recently again verified (e., g., [5]). The
diffraction pattern has been also reconstructed by computer simulation exper-
iment [1] and, experimentally, by single incoming electron [10]. Diffraction
in time and both in space and time can also be defined theoretically [2, 8].
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Diffraction of massive particles by slits is not explainable within ordinary
classical mechanics (CM) while in Quantum Mehanics (QM) it is not unex-
pected, the Schrodinger equation been interpretable as describing motion in
dispersive medium [3].

From a theoretical point of view, in standard QM, two points are of rel-
evance: the statistical interpretation of the wave function and the superpo-
sition principle of the solutions. Accordingly, wave function solution of the
Schrodinger equation must be of class L?, and solutions that are not of class
L? (e., g, plane wave in confined space) are not physical solutions but, by their
superposition, one can represent the particle by wave packet solution that are
of class L.

From a mathematical point of view the study of the diffraction pattern
problem of Schrodinger particle by slit would require the definition of (es-
sentially) selfadjoint Schrodinger operator. This can indeed be done, but it
involves the formulation of the boundary conditions in the week sense [11]
thus preventing a simple treatment.

A study of the diffraction pattern for 1, 2, many slits was done by us-
ing Gaussian wave packet and by confinement and truncation and scattering
assumptions [14, 15, 12, 13, 18].

In the present paper the diffraction of particle by single slit with scattering
is considered by using Gaussian wave packet. Those solutions represent a
sufficiently general tool that includes both the limit of plane waves and peaked
wave packet.

The problem is formulated in a unified way by the mentioned conditions
that refer to the initial state for the time evolution after the slit. For what
concerns the effect of truncation and confinement assumptions, the results
previously obtained are reported. Instead the scattering assumption is studied
more extensively and with a different approach of the previous ones. This
allows to put in evidence further qualitative aspects that are also quantitatively
put into evidence by suitable approximations. The final results are given a form
suitable for evaluation and application to a wide class of central interaction
with the wall.

2 Assumptions and Formulation of the Prob-
lem

The diffraction by slits of Schrodinger particle is considered here in the two
Cartesian coordinate system O(x,y). The slit region S and the region S¢ not
accessible to the particle are defined by

S=A{(z,y): |zl <a, ly| < b} (1)
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S =A{(z,y) : |z <a,[yl = b >0} (2)

where a is supposed to be very small so that in the calculations it is supposed
to vanish. Within this geometry the motion of a particle of mass m in the
given geometry is then governed by the Schrédinger equation with Schrodinger
operator
2 2 2
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where V(z,y) is an infinite barrier on 05¢, the boundary of S¢. By extending
the usual consideration of Quantum Mechanics, the eigenfunctions of H are
required to vanish on the boundary 05°¢. As outlined in [11] this is in fact
possible in the weak sense. That seems a very complicated way. Here, we pro-
ceed in the following way. Far from the slit, the description of the free particle
motion is done according to H,. Near the slit, special heuristic assumptions
are required to hold.

Accordingly, the diffraction problem is schematized as follows. The free
wave solution ¢ (z, y, t) at t — —oo freely comes from remote z region. It passes
the slit being subjected to a ”truncation”, a confinement in the y direction and
to a central scattering interaction at one only extreme point of the slit:
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The choice of 9;, to be a Gaussian wave packet allows to develop the calcula-
tions and to cover a wide class of situations.
Accordingly we assume:
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AS t0 Yo We assume Yy, (2,Y), Yeons(z,y) to be of the form

//dpxdpy Upepy (prpyWo) e n(Zm)t (11)

Up,p, Suitable eigenfunctions of H.
AS t0 Ve, it is supposed the particle to have central interaction with one
only (for the sake of simplicity) edge of the slit:

1 i (pry—
[ dpadpy (0, 100) (9. 07) 507750 (12)

¢scatt($a y) = E%

were 77 = 2% + (y — b)* and f(p,0) is the 3-dimensional scattering ampli-

tude (restricted to 2 dimensions) were 6-) is the angle between p and ry,

(rl = (:E,y - b)) . In every case ¢y = Q/Jin(xayao)X[fb,b}(y)) X[—b,b] being the
characteristic function of the interval [0, b].

2.1 Truncation assumption

For what concerns y,, it is assumed v,,,, = Up,p, (x,y) plus the truncation
assumption

Py = X[fb,b](y)w@’ﬂ/a 0) = X[=b,b] (¥)¥(z,0)0(y,0) (13)

Therefore by exploiting the calculation, one has

Y = P(x, )Py, 1) (14)

where 1(x,t) is exactly the one given in (9).
In the limit of Ap, = h3/v/2, B << 1, and py, = 0 one has
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|¢tr(ya t)|2 - m
thm3/? (%y)Z

(15)

that is the standard interference pattern with the central maximum.

In the limit, Ay < b, Ay = 1/(8v2) << 1,py, = 0, the expression
(Up,p,|t0) can be calculated by extending the integral to R* thus obtaining
Y(z,y,t) = P(x)p(y) and the particle passes the slit in an undisturbed way
[17].

2.2 Confinement assumption

Passing the slit the particle moves in the y direction being confined in —b < y <
b by an infinite barriers in y = +b. According to standard Qantum Mechanics
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this give rise to discrete energy spectrum of fly of eigenvalues W,, = p2 /(2my)
and normalized eigenfunctions

1 . Pn nhm
vpn(?/) = X[-bb] (y)% sin H(y — b), Pn = Tb’

n=123,.. (16)
On account of the very small value of i the substitution v,, — v, (y) =
b=1/2sin py(y—0)/h, p, € R represents a very good approximation. Therefore,
in the present case, the calculation of (11) can be exploited by assuming

1
Upzpy = 2X[—b7b] (y) \/m

Accordingly [17], one has again the form ¢ ¢(z,y) = éc(y)y(z), with ¥ as
in (9).

In the limit of Ap, = hf/ V2, B << 1 of entering y-plane wave one gets
[17]:
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that is still an interference pattern different from (15).

In the limit of Ay = v/2/3, 8 >> 1, the entering wave packet is narrower
with respect to the slit aperture. With pg = 0 = yo one obtains
~1/2 2

exp | — Gagere
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(y* 4+ b?)| sin? mb (19)

¢C¢*C’(y7t> = th Yy

In order the Gaussian modulation to be visible it must be 8 > 23/2/b.

2.3 Scattering assumption

For what concerns .44, some basic qualitative considerations may done. The
expression (12), by identifying v,,,, with the eigenfunctions w,,,, in (6), reads:

1 1 o0 i 2
- a(p) e Pri—gmt) 2
¢scatt " 27Th 0 dp C(p) en ( O)
c(p) = /0 d sin 6 c(p,0) pf(p,0) (21)

(0 = 05) that represents a circular wave packet moving along the ry axis. If
instead one identifies v,,,, with the expression (17) one has a circular wave
packet moving as in the previous case and a second one moving along rq, in
the opposite sense with no physical meaning because it would reach negative
region of ry for t — +o00. Accordingly, V.. produces two spot on the screen
at distance z, symmetric with respect to y = b.



48 Antonio Zecca

It is possible to develop the situation in limiting cases.

i) Suppose first the incident wave packet to be narrower then the slit aper-
ture Ay, = ﬁ < 2b (8 > 5;) and has still a narrow probability distribution

of the momentum Ap, = h3/v2 < 1 (8 < v/2/h). By choosing v = u in
(12), to a good approximation, the 7 integral can be extended to R so that
(Upyp,|¥0) = c(p). Therefore the equation (12) reads:

11 i v
- - ) er(Pri—gmt)
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with ¢(p) as in (7). Moreover one can perform the substitution

(py_pOy)2 Py — Poy o
eXP[—W — V7T 2 ) = hV2m 6(py — Poy) (23)

and similarly for «, p,. Therefore from (7):

2h/7

C(p) = /_Oéﬁ 5(p - Po)e_%p“‘o (24)
1 1 PR P

¢scatt - W Ef(po’em) eh(po 1 27?1’5)6 7 PoXo (25)
Cl 1

’wscatt‘z - 7% ’f(po7(9;;/()-r\1)‘27 C, = m (26)

The last results are valid for sufficiently wide range of  values, that is by
choosing h < 1/ < 2b.

ii) Suppose now 8 < 1, 82 ~ 0. Choosing v = u in (12) one has by (9),
(10), (13):

(upftro) = (up. (@, 0)) (up, |6(y, 0)x()) (27)

b 7
=cp,) [, dn e 17 6(n,0) (28)
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By further choosing o < 1, so that again c,(p,) ~ \/% d(pz — poz), one
obtains from (12), (29):
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where now p = (pos,py), C = %(%/2) / . To perform the calculation we

further suppose the initial momentum of the incoming wave packet to vanish
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pyo = 0. The main contribution to the last integral comes then from very
small values of p,. Therefore under the approximations p, < 1, pz ~0,p=

\/m |pzo| = pPzo one has:

¢ h i
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The last result essentially describes a scattered wave packet in the limit of
incoming plane wave. According to the approximations done, it differs from
the case (26) of wave packet, narrower than the slit aperture, only for the in
front coefficient.

[Note that if one chooses, in the calculations of (28) the expression of the
confined eigen functions (17), then one obtains the result (31) doubled |.

It seems useful to note that the coefficient C, Cy have been obtained for
two different sets of values of the parameters «, 3, say C; = Ci(ay, 81), Co =
Cs(ag, f2). The previous evaluations essentially hold for a; ~ g, but 8; <

~! B2 ~ 0. One has

Cy R
a T2 b2

0 < Z 5 A< (33)
Therefore the spot on the screen in case ii) results, as expected, smaller than
in case i).

The above result is now made explicit in a simple situation. Suppose the
wall is made of conducting or isolating material. Suppose the potential inter-
action and the corresponding scattering amplitude in the Born approximation
be given by

kq® mgq’

V==L = ke 34

r’ ! 2p%sin® 0/2 (34)
(the calculation is done in the 3-dimensional case and the result restricted to
the 2-dimensional case). Then, for small angle 6§ = 6 such that sin¢ ~ y/x,

the result (32) reads

) 4m? ¢*k? 2*
22+ (y —0)? pho (y —b)*

Therefore the scattering pattern at distance z has a maximum value in corre-
spondence to y = b and decreasing lateral values. Similar results can be easily
obtained for the interaction potentials reported in [16]. As there mentioned
in case of van der Waals-like interactions (see the similar treatment [6]) the
results are coherent with the experimental data.

‘wscatt’2 = (35)
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3 Comments

The complete diffraction pattern on the screen at a fixed distance from the slit
is given by |¢,u|?. Up to interference terms, it is given by [ty |* + [teons]? +
|9scare|?. In the limit Ay < b, the wave packet passes undisturbed being sub-
jected to an ordinary potential scattering. Instead for Ay sufficiently large, the
pattern results meaningful and consists of the sum of a standard interference
pattern (15), another interference pattern (18) and a scattering like spot term,
e., g. (35), centered in y = b. The contributions of the interference terms seem
in general difficult to be evaluated quantitatively.

For what concerns the role of the truncation, confinement and scattering
assumptions they have been introduced on account of the difficulty of giving
complete explicit analytical solution of the mathematical problem, as sketched
in Section 1. A consequence is that by them it has implicitly assumed that
the time evolution of the wave packet after the slit remains factorized in the
coordinate dependence, a condition not so evident.

The final results have been obtained by analytical approximation assump-
tions, mainly in view of a qualitative description of the problem. They are
however suitable for an experimental verification, in order to test the validity
of the truncation, confinement and scattering assumptions. They could be
quantitatively refined by relaxing the approximations done, or by a numerical
evaluation.
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