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Abstract

Two exact solutions to Einstein equations, which differ because of its
type of initial expansion, are obtained to a nonlinear scalar field with

a potential type V = Λ
(

1− tanh(
√

6φ
2 )4

)
. It is determined that the

energy density of solutions is not singular for any time value and for
which at the beginning in t = 0, the space-time is a vacuum of Kasner
type (a1 = a2 = −2a3 = 2/3) for one solution and the flat world for
the other. By having studied the temperature, it is established that
it is null at the beginning and that once it increases up to a maximum
value, it stops increases and asymptotically goes down to zero in respect
to time. The Hubble and deceleration parameters were studied, it is
showed that the Hubble parameter is indefinite in t = 0 and tends to
have a constant value as time increases; then, the deceleration parameter
indicates an initial process of a decelerated expansion that continuously
changes into an accelerated one as time increases. By the study of the
Jacobi stability of the solutions, it is obtained that the solutions are
initially unstability but cease to be so in a determined time. The space-
time of both solutions transforms into the equivalent of dark energy for
FRWL as time increases.

Keywords: cosmology, exact solution, Einstein, scalar field, dark energy,
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1 Introduction

Currently, Cosmology is a topic of great interest. Since the beginning of the
century and thanks to the data obtained by COBE, WMAP, and PLANCK
satellites as well as the discovery of the universe acceleration, some concerns
have arrived and have been discussed all together with other aspects and its
respective literature in [1]. On the other hand, some recent works state that
considering the universe as isotropic and homogeneous may be an issue [2].
Moreover, some findings from the James Webb telescope, please see [3], might
help to promote the interest towards new cosmological models.
The study of scalar fields and the Jacobi stability of solutions in a homogeneous
anisotropic symmetry of the Petrov D type has been discussed in [4], as well
as other aspects of interest and their respective literature. The present work
studies a nonlinear scalar field that represents the type of substance necessary
for a universe to begin from a vacuum and, continuously, to be transform into
dark energy. The stability of the solutions is studied, as well as the parameters
of Hubble, deceleration and temperature.

2 Symmetry and the Nonlinear Scalar Field

2.1 The Anisotropic Symmetry of Space-time of Petrov
Type D and the Einstein Tensor

The symmetry used in this work is anisotropic and homogeneous of Petrov
type D and has the form [1]

ds2 = Fdt2 − t2/3K(dx2 + dy2)− t2/3

K2
dz2, (1)

where F and K are functions of t.
Einstein tensor components (Gβ

α = Rβ
α − 1/2δβαR) different from zero, of (1),

are

G0
0 =

4K2 − 9 t2K̇2

12t2K2F
, (2)

G1
1 = −

3KtK̇
(

2F − Ḟ t
)

+ 3Ft2
(

2KK̈ − 5K̇2
)

+ 4K2
(
Ḟ t+ F

)
12t2K2F 2

, (3)

G2
2 = G1

1 = −G
3
3

2
+

9Ft2K̇2 − 4K2Ḟ t− 4K2F

8t2K2F 2
, (4)

where the points on the functions represent derivatives by time.
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2.2 The Scalar Field

The scalar field of this work is determined by the following Lagrangian:

Lsc =
1

2
φ,αφ

,α − V (φ) (5)

where it is considered that V (φ) = Λ
(

1− tanh(
√

6φ
2

)4
)

and where Λ > 0.

This represents the scalar potential of interaction and φ, the function of the
scalar field.
By noticing that due to the spatial homogeneity (see Gµ

µ), the only components
of the stressenergy tensor different from zero are T 0

0 , T 1
1 = T 2

2 and T 3
3 . It is

stated that the scalar function φ = φ (t) and that the stressenergy tensor of
(5) has the form

T βα =
φ̇2

F
δβ0 δ

0
α − δβαLsc (6)

where the point on φ represents the partial derivative by t.

2.3 Einstein Equations and its Solutions

Einstein equations have the form Gβ
α = κT βα (considering for its convenience

κ = 1). From (2-4 and 6), the following system of equations independent of
each other is obtained

G0
0 −

φ̇2 + 2V (φ)F

2F
= 0, (7)

G1
1 −
−φ̇2 + 2V (φ)F

2F
= 0, (8)

G3
3 −
−φ̇2 + 2V (φ)F

2F
= 0, (9)

By subtracting the equality (8) with (9), the result is

K̇K
(

2F − Ḟ t
)
− 2Ft

(
−KK̈ + K̇2

)
= 0 (10)

where

K = K0e
C1

∫
F1/2

t
dt (11)

Without loss of generalities, it is possible to take it in (11) to K0 = 1 and
the constant C1 = ±2/3 what offers two possible situations as it can be seen
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below.
Einstein equations (7, 8 and 9) when considering (11) take the form

−1

3

F − 1

Ft2
− φ̇2 + 2V (φ)F

2F
= 0, (12)

1

3

−Ḟ t+ F 2 − F
F 2t2

− −φ̇
2 + 2V (φ)F

2F
= 0. (13)

The scalar field equation gets the form

V,φ −
Ḟ φ̇t− 2φ̇F − 2Ftφ̈

2F 2t
= 0, (14)

which can also be obtained from T νµ;ν = 0 in which V,φ is the derivative of V
by φ. Volumetric energy density of the scalar field and pressure are given by

µ =
φ̇2 + 2V F

2F
, P =

φ̇2 − 2V F

2F
. (15)

By adding (12)+(13), it is obtained that

V (φ) =
−Ḟ
6F 2t

(16)

and by subtracting (12)-(13)

2F 2 − 2F + 3Ft2φ̇2 − Ḟ t = 0. (17)

By considering in (16) that V (φ) = Λ
(

1− tanh(
√

6φ
2

)4
)

, it is established that

φ(t) = ±i
√

2

3
arctan

( Ḟ

6tΛF 2
+ 1

)1/4
 , (18)

or

φ(t) = ±
√

2

3
arctanh

( Ḟ

6tΛF 2
+ 1

)1/4
 , (19)

The analysis of this case will take place when φ(t) is given by (18).
By placing φ from (18) in (17), it shows that

2F 2 − 2F − 2Ft2Ġ2

(1 +G2)2
− Ḟ t = 0, where G = (

Ḟ

6ΛtF 2
+ 1)1/4. (20)
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The solution of (20) has to be one different from the solution of Ḟ +6ΛF 2t = 0

and of
√

6ΛtF+
√

(Ḟ + 6ΛF 2t)Λt = 0. The equation (20) can be also obtained

from the equation of the field (14). The solution of interest, in this work, of
the equation (20) is

F =
1 + 12t2Λ

(1 + 6t2Λ)2
. (21)

When placing (21) in (18), the result is

φ(t) = ±i
√

2

3
arctan

(
1√

1 + 12t2Λ

)
(22)

and of (22) in V (φ) = Λ
(

1− tanh(
√

6φ
2

)4
)

,

V (φ(t)) = V (t) = Λ

(
1− 1

(1 + 12t2Λ)2

)
. (23)

The K function of (11) is equal to K = e±2σ/3 by considering that (21), σ is

σ = −arctan
(

1√
1 + 12t2Λ

)
− arctanh

(
1√

1 + 12t2Λ

)
. (24)

2.4 Analysis of Solutions

2.4.1 Singularities and Tendencies

For the study of the singularity when t→ 0, the Kretschman invariant is used
(Krest = RαβγσRαβγσ). For the used symmetry and by considering (11), two
possible invariants are obtained in relation to the positive or negative value of
C1 = ±2/3 (see [4]) and which take into account (21) have the form

Krets± =
64

3

Λ2 (585 t4Λ2 + 2808 t6Λ3 + 1 + 2592 t8Λ4 + 36 t2Λ)

(1 + 12 t2Λ)4 +

+
32

27 t4

(
1± 6 t2Λ + 1√

1 + 12 t2Λ

)
.

(25)

From (25), it is established that when t→ 0,

Krest+ ≈
64

27t4
(26)

and for Krets−, the result demonstrates that

Krest− ≈ 0. (27)
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The solution with a positive sign in (11) is singular when t → 0; this is a
singularity of the solution of the Kasner vacuum ED1 (see ([1])), and with a
negative sign, the solution is not singular because it represents the flat world.
What has been said is denoted in the metric (1) by placing the respective
functions when t→ 0, of F → 1 and K → e∓2π/3(3Λ)±1/3t±2/3 and by changing
e∓π/3(3Λ)±1/6x = x

′
, e∓π/3(3Λ)±1/6y = y

′
and e±2π/3(3Λ)∓1/3z = z

′
, the metric

(1) tends to

ds2 → dt2 − t2/3±2/3(dx
′2 + dy

′2)− t2/3∓4/3dz
′2, (28)

The solutions of the metric (1) not only tend to a solution of the Kasner
vacuum and of the flat world, but also are the Kasner vacuum or the flat
world. Because T µν = 0 when t = 0; then, the Riemann curvature tensor, when
t → 0, is not null if it takes K+, and agrees with the Kasner solution analog
ED1 , but is null in t=0 when is considered K− .
The Kretschmann invariant of the two solutions tends to Krets± → 8Λ2/3
when t → ∞ similarly to the dark energy model (see [1]). This can also be
appreciated in (15) since

µ =
12Λ2t2

(1 + 12Λt2)
, P =

−36Λ2t2(1 + 4Λt2)

(1 + 12Λt2)2
, (29)

that tends to µ→ Λ and P → −Λ when t→∞, so Λ represents dark energy.

2.4.2 Hubble Parameters and Deceleration

The Hubble parameters H and deceleration q have been studied and used
previously (for example [4]). In this work, they are defined and equal to

H =

(
(g11g22g33)1/6

).
√
g00(g11g22g33)1/6

=
6 t2Λ + 1

3 t
√

1 + 12 t2Λ
(30)

and

q = −(1 +
Ḣ

√
g00H2

) = 2
18 t2Λ + 1− 36 t4Λ2

(1 + 12 t2Λ)(1 + 6 t2Λ)
. (31)

When t → 0, Hubble parameters and deceleration tend to H → ∞ and
q → 2, and when t → ∞, they tend to H →

√
Λ/3 and q → −1 which

indicates that a change in the process of expansion of the universe exists and
which initially decelerates and then, accelerates passing through a moment

where it does not accelerate either decelerate in tq=0 =
√

3(12+4
√

13)

24
√

Λ(3+
√

13)
.
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3 Temperature

The temperature for the fluid type studied is obtained as in [5], so

dP

µ+ P
=
dT

T
, (32)

where T is the fluid temperature. From the solution (29) for µ and P , and of
(32), it is obtained that temperature depends on the time form

T =
128 Λ3/2Tmaxt

3

(1 + 12 t2Λ)2 , (33)

where Tmax > 0 is an integration constant which represents the maximum
temperature. From (33), it is stated that when t → ∞ and when t → 0,
temperature tends to zero. The first limit is due to the scalar field tendency to
behave as a dark-energy fluid for high values of t, and the second limit because
it has, in the beginning, a vacuum of Kasner type ED1 or a flat space-time.
Temperature has a maximum value in tTmax = (2

√
Λ)−1. Accordingly, a uni-

verse that is cold in its beginning Tstart = 0 gets heated up to a maximum
value of T = Tmax in tTmax , and it turns cold again asymptotically as time
increases T ≈ (8Tmax)/(9

√
Λt)→ 0.

4 Jacobi Stability

The Jacobi stability in solutions, where the symmetry (1) has been used, has
been studied in [4] and it is based on [6] where more details about this pro-
cedure can be found. In this work, the key elements from [4] will be used in
order to establish the Jacobi stability in the solution.
As per the order in the Kosambi-Cartan-Chern theory (KCC) [6], it will be de-
fined x1 = F , y1 = Ḟ , x2 = φ, y2 = φ̇, so the local coefficients of the semispray
G1 = G1 (x1, x2, y1, y2) and G2 = G2 (x1, x2, y1, y2) take the form

G1 = −V
′y2y1

2V
+ 3V (x1)2 − (y1)2

x1
, G2 =

x1V ′

2
− y2y1

4x1
− 3(x1)2V y2

y1
, (34)

where V ′ is the partial derivative of V by x2.
For the study of the Jacobi stability or the KCC theory and according to
Routh-Hurwitz’s criterion, it is established that if

Neg = P 1
1 + P 2

2 < 0, Pos = P 1
1P

2
2 − P 1

2P
2
1 > 0, (35)
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the system is Jacobi stable and on the contrary it is not, where P i
j is the second

KCC-invariant or deviation tensor of the curvature which can be defined as

P i
j = −2

∂Gi

∂xj
− 2GlGi

jl + yl
∂N i

j

∂xl
+N i

lN
l
j, (36)

in turn, the nonlinear coefficients of connection N i
j and the Berwald connection

Gi
jl are defined in the form

N i
j =

∂Gi

∂yj
. (37)

The relations Neg and Pos in (35) by taking into consideration the solutions
(21), (16) and by obtaining φ̇ from (22) have the form

Neg = − 3(432t4Λ2 + 98t2Λ− 1)

4t2(1 + 12t2Λ)2(1 + 6t2Λ)
(38)

and

Pos =
36Λ(1728t6Λ3 − 552t4Λ2 − 162t2Λ− 7)

t2(1 + 12t2Λ)4(1 + 6t2Λ)2
, (39)

from (38) and (39) and when considering (35), as a result, the solution is Jacobi
stable for any value of

|t| >
√

3(36 + 4
√

249)

48
√

Λ(9 +
√

249)
. (40)

The absolute value of time |t| in (40) has been considered, so if the symmetry
in (1) is changed to

ds2 = Fdt2 − (t2)1/3K(dx2 + dy2)− (t2)1/3

K2
dz2, (41)

if the change of t → −t does not take place, changes in the whole solution
will not be present, so it ends up being symmetric in respect to time. An
interpretation of this type of solution has been discussed in [7].
From the study of the Jacobi stability, it is established that the solution is not
Jacobi stable for times that do not meet (40), so the universe goes through a
no-stable beginning (”chaotic”) and after a period of time, it turns stable. In
regards to the analyzed case within this work, what has been stated previously
can be interpreted by considering the scalar field as a fluid in such a way that:
1. Changes in F so u0 =

√
F that is the component 0 of the four-dimensional

covariant velocity vector and for which is supposed that uν = {u0, u1, u2, u3} =
{
√
F , 0, 0, 0}. It distances from this state causing motion in uν as the stability

assumes that with a little motion it should come back to its original state,
but during certain interval, this does not happen (although, it becomes stable
afterwards). It means that in time when it is not stable, it can lead to relative
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velocities in parts of the flux which were initially very close and which possibly
create chaos by means of an ”attractor’s type” or a deterministic chaos. 2. The
primary instability of the field φ implies that the field initially represents a type
of scalar matter that starts ”filling up” the vacuum and as time (absolute value
of time) increases its material sense changes. In other words, in any determined
time, similar substances (or particles) can change or transform differently with
time until they turn stable and keeping their previously acquired differences.
A similar situation, although less satisfactory from the Jacobi stability point
of view, happens for a Higgs-like field V (φ) = V0 + M2φ2/2 + λφ4/4 in a
FRWL symmetry and for which the stability is met, in the best-case scenario,
in different time intervals interspersedly [6] in which the stability concentrates
in the scalar field and in the ”volume” (scalar factor). In the case of symmetry

(1) and the scalar potential V (φ) = Λ
(

1− tanh(
√

6φ
2

)4
)

with the increase of

t→∞, φ→ 0 and V (φ)→ Λ− 9Λφ4/4 and similarly to the Higgs-type field,
it is a potential of quartic interaction that turns out stable.

5 Conclusions

In this work, two exact solutions from a nonlinear scalar field with a potential

equal to V (φ) = Λ
(

1− tanh(
√

6φ
2

)4
)

were obtained and represent cosmolog-

ical models very close to each other for high-time intervals and different in
relation to the form in which the universe expands and to what they initially
represent. In both cases, the universe becomes equivalent to dark energy as
time increases but when it is close to t = 0, one of them goes through a sin-
gularity, a Kasner vacuum ED1 [1]. This generates a greater expansion in the
axis z. The other solution nearby t = 0 (at that point) generates a greater
expansion in the plane xy, and the space-time is flat in t = 0; in both cases, the
stress-energy tensor is null in t = 0, so vacuum appears in the models. After
studying the Jacobi stability of the solutions, the result showed that they were
Jacobi stable from a preset time value in (40). Previously, from |t| = 0, it is
Jacobi unstable which implies a chaotic start but very active in relation to the
increasing volumetric density of the field µ. As a result of the study of Hubble
parameters and deceleration, the Hubble parameter is indefinite in t = 0 but
asymptotically tends to a constant value when t increases and as H →

√
Λ/3

does it. Meanwhile, the deceleration parameter initially tends to q → 2 and for
higher time intervals, it tends to q → −1 which represents that in both models

the universe initially decelerates up to a time lower than tq=0 =
√

3(12+4
√

13)

24
√

Λ(3+
√

13)
; as

of this time, the universe starts an asymptotic accelerated expansion process
to a constant value of q = 1. In the study of the scalar field temperature in
which the field was considered a fluid, in both models, the universe is cold in
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the beginning; it is vacuum. Then, it increases its temperature until it gets a
maximum value in a time equal to tTmax = (2

√
Λ)−1 after which it decreases

its value to zero asymptotically. The solutions have temporal symmetry if the
metric is given by (41).
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