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Abstract

The scalar field equation is studied in Lemâitre-Tolman-Bondi cos-
mological model. The equation is solved by variable separation. This
is possible within a suitable class of LTB cosmological models char-
acterized by a single arbitrary integration cosmological function. The
separated angular equation integrates exactly. The separated time equa-
tion is such that the associated Wronskian equation has a simple form.
The separated radial equation strictly depends on the choice of the ar-
bitrary cosmological integration function. It can be recast into the form
of eigenvalue problem of a Weyl Stone operator that results to be es-
sentially self adjoint in a suitable non void class of LTB cosmological
models. In turns this finally ensures the existence of complete set of nor-
mal modes that are the basis for a canonical quantization of the scalar
field. A time contiguous set of normal modes is then constructed. By
the calculation of the corresponding Bogolubov coefficients the instan-
taneous rate of particle creation is then obtained in complete agreement
with analogous results.
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1 Introduction

Particle creation in curved space time was originally considered and studied by
L. Parker in [7, 8], and in references therein, in the context of flat Robertson
Walker (RW) space time. The result, that was obtained by the canonical
quantization scheme for general spin field, has been both widely developed
and extended to general space time. The procedure is now treated in books
and reviews devoted to field quantizatin in curved space time (e.g. [1, 4, 9, 2];
for a review of the particle creation problem see also [3]).

Recently it has been noted that the particle production rate can be instan-
taneously calculated in RW space time. It results proportional to Ṙ/R, R(t)
being the radius of the Universe. The result was given for spin 0, 1/2, 1 field
[13, 15, 14]. Similar studies have been performed for spin 0, 1 fields in the
context of Lemâitre Tolman Bondi (LTB) space time [16]. Generalized expres-
sion of the particle production rate has also been used to propose extension of
both the Standard Cosmology and of the LTB cosmological model to include
particle creation [19, 17]. In the mentioned studies the quantization procedure
is based on the knowledge of a complete set of normal mode solutions of the
field equation. Such normal modes were not always explicitly given in previous
studies nor their existence proved in general. In case of the scalar field, there
form is explicitly known in the RW space time (results have been collected in
[10]), while in LTB space time and LTB cosmology the completeness of the
normal modes has been proved only for special cases of the cosmological inte-
gration function, while are only supposed to exist in a general LTB cosmology
(see e. g., [12]).

The object of the present paper is to fill that lack in case of scalar field. To
that end it is useful to recall that the equation defining the LTB cosmological
model can be solved exactly. It depends on two arbitrary integration function
of the radial coordinate.

Under a suitable relation between the two cosmological integration func-
tions, the scalar field equation results to be separable (as well as those of
arbitrary spin field [11, 12, 23]). The separated angular equation is exactly
integrable. The separated time equation is such that its Wronskian equation
easily integrates. Instead the separated radial equation still depends on the
arbitrary cosmological integration function. The separated radial equation can
be put into the form of a differential operator eigenvalue problem that, by the
general Weyl Stone theorem, results , under suitable assumptoins, to be es-
sentially selfadjoint . The corresponding complete set of eigenvector, finally
ensures the existence of a complete set of normal modes that is the basis for
the canonical quantization of the scalar field.

The form of the normal modes allows the definition of a set of “time contigu-
ous” normal modes. By those states, the Bogolubov coefficients are calculated.
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In turn they allow the calculation of the expression of the instantaneous rate of
particle creation. This is obtained by evaluating the expectation of the particle
operator number. The result is coherent with the previously mentioned ones.

2 Assumptions and preliminary results

The scalar field equation of a (minimally coupled) complex scalar field φ in a
general curved space time of metric tensor gαβ has the form

∇α∇αφ(x) + µ2φ(x) = 0 (1)

µ being the mass of the field particle. Its quantization is based on the knowl-
edge of a complete set of solution of the equation (1) orthonormal in the scalar
product defined by [1]:

(φ1, φ2) =
∫
Jν(φ1, φ2)nν |g|1/2 dΣ (2)

=
∫
t0
Jt(φ1, φ2)|g|1/2d3x (3)

where Jν = −i(φ1∇νφ
∗
2− φ∗2∇νφ1) is a conserved four vector (the four current

if φ1 = φ2), Σ a space like hyper surface and nν a future directed unit vector
orthogonal to Σ and g the determinant of gαβ. The expression (3) gives an
easier way to select a complete set of ortho-normal solutions of equation (1)
satisfying

(φα, φβ) = δαβ, (φ∗α, φ
∗
β) = −δαβ, (φα, φ

∗
β) = 0 (4)

in order to proceed to the co-variant quantization in analogy to the Minkowski
space time case.

The object is now of first providing a set of normal modes of the scalar
field in the context of a suitable class of LTB cosmological models.

As well known the LTB cosmology corresponds to a Universe filled of with
freely falling dust like matter of metric tensor (e.g. [6]):

gµν = diag
{

1; −eΓ(t,r); −Y 2(t, r); −Y 2(t, r)(sin θ)2
}

(5)

The corresponding Einstein field equation can be partially integrated so that
one is left with the equations

eΓ =
Y ′2

1 + 2E(r)
,

Ẏ 2

2
− M(r)

Y
= E(r) (6)

M(r) = 4πG
∫ r

0
dr Y 2 Y ′ρ(t, r) (7)
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ρ(t, r) is the energy density of the dust matter and M(r), E(r) arbitrary in-
tegration functions. The Kepler like equation can be exactly integrated in
parametric form (e.g. [6]). For the following consideration it is now chosen:

(|2E|)
3
2 = M, E 6= 0 (G = 1) (8)

By such condition the cosmological model depends on one only arbitrary func-
tion, say E. The advantage is that it ensures the separability not only of the
scalar field equation but also the separability of the arbitrary spin field equa-
tion in LTB cosmology (see e. g., [11, 12, 16, 18, 23]). Under condition (8) the
solution of the Kepler like equation reduces, by also assuming the initial time
t0(r) = 0, to:

t = f(η), Y =
√

2|E| ξ(η), ξ(η) = f ′(η) (9)

f(η) = sinh η − η, η > 0, E > 0 (10)

f(η) = η − sin η, 0 < η ≤ 2π, E < 0 (11)

In turn this implies that the density of the cosmological model results to be
spatially uniform:

ρ(t, r) =
M ′(r)

Y 2(t, r)Y ′(t, r)
≡ 3

ξ3)η)
(12)

This loss of generality on the cosmological model, is however balanced from
the fact that condition (8) is a sufficient condition to finally prove the existence
of a complete set of normal modes.

Based on the fact that

τ = (2|E|)1/2
∫ 1

Y (r, t)
dt ≡ η, (13)

that follows from (9), in the following it will be useful to pass from the coor-
dinates (r, t) to the coordinates (r, τ)

3 Normal modes

On account of the spherical symmetry of the space-time metric the angular
dependence of the scalar field solution can be separated and integrated in the
general metric (5). By setting φ = χ(θ, ϕ)ψ(r, t), from (1), (5) one gets

χ = Ylm(θ, ϕ), l = 0, 1, 2, ...,m = −l,−l + 1, ..., 0, 1, .., l (14)

ψtt −
ψrr
eΓ

+
1

eΓ

(Γ′

2
− 2

Y ′

Y

)
ψr +

( Γ̇

2
+ 2

Y ′

Ẏ

)
ψt +

( λ
Y 2

+ µ2
)
ψ = 0 (15)

where λ = l(l+1) corresponds to the angular separation constant that plays the
role of eigen value of the eigenvalue equation to which the separated angular
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equation can be reported; Ylm the usual spherical harmonics [12] and Γ̇ =
∂tΓ,Γ

′ = ∂rΓ.
Further separation follows by restricting to the LTB cosmology satisfying

condition (8). By first passing to the variables r, τ and then by setting ψ(r, τ) =
T (τ)R)(r) one obtains from (15) ([12]):

T̈ +
2 sinh τ

cosh τ − 1
Ṫ + [µ2(cosh τ − 1)2 + σ]T = 0 (16)

R′′ −
[E ′′
E ′
− E ′(3 + 8E)

2E(1 + 2E)

]
R′ − E ′2

2E(1 + 2E)

( λ2

2E
− σ

)
R = 0 (17)

σ the separating constant (Ṫ = dT/dτ)
We denote now φα = Tσ(τ)Ylm(θ, ϕ)Rlσ(r), α ≡ (l,m, σ), the solution of

the scalar field in the LTB model under condition (8). The product of these
solution according to (3) gives:

(φα, φα′) =
∫
Jt(φ1, φ2)|g|1/2d3x (18)

= δll′δmm′(TσṪ
∗
σ′ − T ∗σ′Ṫσ)

ξ(η)3

i

∫
I
dr

[
(2|E|) 1

2

]′
2|E|

√
1 + 2E

RlσRlσ′ (19)

= δll′δmm′δσσ′ (20)

because, by a suitable choice of the integration constant of the wronskian
equation of (16), and then by passing to the variable t, one has then (here
Ṫ = dT/dt):

Tσ(t)Ṫ ∗σ (t)− T ∗σ (t)Ṫσ(t) = i[ξ(η)]−3 (21)

and by assuming, as it will be presently seen to be possible,

∫
I
dr

[
(2|E|)1/2

]′
2|E|

√
1 + 2E

RlσRlσ′ = δσσ′ (22)

It has been denoted I = (0,∞) if E > 0 or I = (0, r0) determined by the
condition 1 + 2E ≥ 0; δσσ′ is the Kronecker (possibly the Dirac) delta.

The eq. (17) can be recast into the eigen value-problem:

ÂR ≡ 1

k(r)

[
− (p(r)R′(r))′ + q(r)R(r)

]
= σR(r) (23)

k =
E

1
2E ′

2(1 + 2E)
1
2

, p =
(E3(1 + 2E))

1
2

E ′
, q =

λE ′

(E(1 + 2E))
1
2

(24)

According to a suitable choice of E > 0 and hence of k(r), p(r), q(r), the Weyl-
Stone operator Â results to be essential selfadjoint in the Weyl subspace U of
L2((0,∞); k(r)dr) ([5] Ch. 14, Th. 1). The set of the positive E functions for



304 Antonio Zecca

which this is indeed possible is not void, as shown in [12]). The condition (22)
is then realized by the complete set of the eigen vector of Â.

In turn the corresponding set of solution {φα = Tσ(τ)Ylm(θ, ϕ)Rlσ(r)} fur-
nishes a complete set of normal modes of the scalar field equation (1) satisfying
the product conditions (4).

4 Scalar field quantization

The scalar field quantization can be implemented by expanding the wave
scalar field operator φ(x) in terms of creation and annihilation operators a+

i , aj
([ai, a

+
k ] = δik, [a+

i , a
+
k ] = [ai, ak] = 0) that is:

φ(x) =
∑
j

[ajφj(x) + a+
j φ

?
j(x)] (25)

(here e., g.
∑
j =

∑
lm

∫
dσ ) where {φj(x)} is a set of normal modes solutions

of the scalar field equation satisfying condition (4). The corresponding Fock
space F is then constructed from the assumption that there is a state |0 > (the
empty state) such that aj|0 >= 0 ∀j, (a+

k |0 >6= 0 for some k) and repeatedly
applying creation particle mode operators (e., g. [2, 4, 1, 9]).

Suppose φ̂α(x) is a second set of normal modes with associated |0̂ > empty
state (and Fock space F̂ ):

(φ̂α, φ̂α′) = δαα′ (φ̂?α, φ̂
?
α′) = −δαα′ (φ̂α, φ̂

?
α′) = 0 (26)

Being both {φ̂α} and {φβ} complete sets, one has

φ(x) =
∑
j

[âjφ̂j + â+φ̂?] (27)

φ̂j =
∑
i

[αjiφi + βjiφ
?
i ], αji = (φ̂j, φi), (28)

φh =
∑
l

[−α?lhφ̂l − βlhφ̂?l ], βji = −(φ̂j, φ
∗) (29)

aj =
∑
l

[±αlj âl ∓ β?lj â+
i ], âj =

∑
i

[α?ljai + β?jia
+
i ] (30)

αji, βji the Bogolubov coefficients (see e., g., [1]). By setting A = {αji}, B =
{βji}, the Bogolubov coefficients satisfy the constraint AA+−BB+ = 1, BAT−
ABT = 0.

5 Particle creation by Universe expansion

In analogy to what suggested in [14], it is possible to define n the LTB cos-
mological model of Section 3 a new set of normal modes for the scalar field,
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contiguous to those previously determined . By the normal modes {φi(x)}of
Section 3 one can define a new set of normal modes {φ̂i}. Indeed by setting

φ̂(t) =
Y (t+ τ, r, θ, ϕ)

Y (t, r, θ, ϕ))
φ∗(t+ τ, r, θϕ) =

ξ(t+ τ)

ξ(t)
φ∗(t+ τ, r, θϕ), (31)

one has in the product (18) and by using (21),

(φ̂i, φ̂k) = δik(−i)
[
T ∗i (t+τ)Ṫ (t+τ)−Ti(t+τ)Ṫ ∗(t+τ)]ξ3(t+τ)

]
= δik (32)

Similarly one can verify all the other relations (26).
It is possible to apply the quantization scheme of the previous Section to

calculate the Bogolubov coefficients relative the normal modes {φi(x)} and
{φ̂i(x)} determined by the cosmological assumpton (8).

An observable of interest is the number of particle mode operator Nh =
a+
h ah. One has from (30)

< 0̂|Nh|0̂ >= ||ah|0̂ > ||2F̂ =
∣∣∣∣∣∣∑

l

β?lhâ
+
l |0̂ >

∣∣∣∣∣∣2
F̂

=
∑
l

|β∗lh|2 (33)

< 0|N̂h|0 >=
∣∣∣∣∣∣∑

j

β?hja
+
j |0 >

∣∣∣∣∣∣2
F

=
∑
j

|βhj|2 (34)

while < 0|Nh|0 >=< 0̂|N̂h|0̂ >= 0. Therefore there are particle in the h-mode
“present” in |0̂ > that are not present in |0 > and particle in the h-mode
“present” in |0 > that are not present in |0̂ > .

This means that here are h-mode particles that “annihilate” at time t and
there are h-mode particles that are “created” at time t+ τ because the empty
states |0 >, |0̂ > correspond to those times. In terms of Bogolubov coefficients

βik = −i
[
ξ(t+ τ)ξ(t)

]3/2
[T ∗k (t+ τ)Ṫ (t)k − Ṫ ∗k (t+ τ)T (t)k]δik (35)

by using (33) the expectation of created and annihilated particles N+, N−

calculated respectively with g = g(t+ τ), g = g(t), can be expressed by

N−k =
[
ξ(t+ τ)ξ(t)

]3∣∣∣[T ∗k (t+ τ)Ṫk(t)− Ṫ ∗k (t+ τ)Tk(t)]
∣∣∣2, (36)

N+
k =

[ξ(t+ τ)

ξ(t)

]3
ξ6(t+ τ)

∣∣∣[T ∗k (t)Ṫk](t)− Ṫ ∗k (t)Tk(t)
]∣∣∣2 (37)

The expectation of the net production of particles per unit time is then, by
using also eq. (21):

nk(t) = lim
τ→0

N+
k (τ)−N−k (t)

τ
= 6

ξ̇(t)

ξ(t)
= 6

ξ′(η)

ξ2(η)
(38)

Therefore, under assumptipn (8), we obtain explicitly nk(t) ∝ Ẏ /Y . Such
expression was assumed, by abstraction, to furnish also the particle creation
rate in cosmological model for which Y is not necessarily a factorized function
in the r, t dependence [22].
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6 Remarks and comments

The content of the present paper represents both an improvement of previous
ideas and developments contained in [12, 14]. With respect to the paper [12],
a characterization is here given for the class of the positive cosmological E
functions for which there exist a complete set of normal modes of the scalar field
besides the single case there solved. Moreover, the present result represents a
complete discussion of the quantization scheme in LTB cosmology previously
performed in an explicit form in the Robertson Walker space time [14].
There are some comments:

i) From a mathematical point of view, a further improvement would be the
determination of the solutions (and the corresponding normal modes) relative
to the equation (15) without assumption (8). It is expected that this would
give qualitative new aspects.

ii) For what concerns the number of created particle of arbitrary mode
in a volume dV , it results again proportional to Ẏ /Y because the expression
(38) does not depend on the mode nor on r. Hence the density of ρc(t) of
created particle at time t is of the form ρc(t) = αẎ /Y where α a cosmological
parameter to be possbly determined. In view of a formulation of a standard
like cosmological model, the density of the created particles should be added
to the existing density ρ(t) of dust matter. (Such point of view was adopted
in RW space time by formulating an extended standard cosmological model
to include particle creation [19, 20, 21]). In case of the LTB model, a possible
more general point of view could be of assuming the dust matter to have also
non zero pressure and to obey a generalization of the result (38) [16, 17].
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