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Abstract

The Dirac equation with Coulomb potential is studied in Lemâıtre
Tolman Bondi cosmological model. Angular separated equations are
obtained, by using the Newman-Penrose formalism, that admit of known
solution previously determined. One is left with a pair of coupled first
order partial differential equations in the radial and time coordinates
containing the “curved” Coulomb potential. The equations are further
reduced, under a special assumption on the spatial configuration of the
cosmological model and by considering the cosmological background
essentially fixed under atomic time intervals. The equations are exactly
solved, in a parameter dependent cosmological LTB model, under two
approximated expressions for the “curved” Coulomb potential: a first
one that is essentially the conventional Coulomb potential and a second
one that is its first order approximation form. In both cases, by a
Schrôdinger-like quantization requirement, the energy spectrum of the
H-atom is obtained exactly. The results are similar to those previously
given for the Robertson Walker space time case.
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1 Introduction

The observation of the spectral lines of the Hydrogen atom and their modifica-
tion by gravity are of interest in astrophysics and cosmology. The H-atom can
indeed be used to localize Hydrogen distribution in the universe. It could be
used also as a probe to detect gravitational fields. The theoretical previsions
for that observation are generally based on the study of Dirac equation with
potential in curved space time. This involves the knowledge of the explicit
expression of the Coulomb potential in the considered space time. Such ex-
pression can be obtained perturbatively in a general space time [12, 13, 14, 3, 9]
or explicitly determined by solving the Maxwell equation for the electromag-
netic field of a fixed charged point (e. g., [11, 7, 20]) (From the point if view
of Path integral methods one can see, e. g., [1] and References therein). By
the above considerations it seems of interest to treat the problem directly in
an explicit cosmological model.

In the present paper the study is performed in Lemâitre Tolman Bondi
cosmological model. That model can be exactly integrated, the solution de-
pending on two arbitrary integration functions. This allows to describe a
very wide class of gravitational situations. Moreover in such cosmologies, the
expression of the “curved” Coulomb potential, again depending on the two
arbitrary cosmological integration function, may have an explicit expression
very far from the conventional one (See, e. g., [20]).

The H-atom is here described by the Dirac equation with the “curved”
Coulomb potential. By the Newman Penrose formalism [15] based on a previ-
ously considered null tetrad frame, the angular dependence of the solution of
the Dirac equation with general central potential is first factored out and inte-
grated [19]. One is then left with a pair of coupled first order partial differential
equations in the t, r variables.

The form of the equations is further reduced by assuming the space time
to be static, a reasonable condition during the time intervals the atomic in-
teractions take place, far from the initial time of the cosmological background
evolution. Further simplification of the equations is then obtained by a change
of variables. One is finally left with two coupled first order ODE’s that gener-
alize the analog ones of the Robertson Walker space time [21].

The final equation are exactly solved, in a special parameter dependent
cosmological background, by the method of solution that was employed for
similar equations in Minkowski space time [5]. The energy spectrum of the H-
atom is then explicitly determined by a Schrôdinger like quantization for both
the basic form of the “curved” Coulomb potential as well as for its first order
approximation. In both cases the calculations are performed exactly and not
perturbatively. The spectra obtained differ from those of the Robertson Walker
space time [21] only by the dependence of the electric interacting constant on
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the assumed cosmological parameter.

2 Definitions and assumptions

The object being of studying the Hydrogen atom in Lemâitre-Tolman-Bondi
(LTB) cosmology, the Dirac equation with central potential is first formulated
in the LTB space time. Accordingly the Dirac field is described by a pair
of spinor field (φA, χ

B′
) (e. g., [6]). The study, that is developed by the

Newmnan Penrose formalism, simplifies if the Dirac field is described by the
pair of spinors fields (PA, Q

B) with PA ≡ φA, Q̄
B′ ≡ −χB′

([4]). Accordingly,
the Dirac equation for a particle of mass µ and charge −e0 subjected to the
potential VAX′ , reads :

(∇AX′ + iVAX′)PA + iµ?Q̄X′ = 0 (1)

(∇AX′ − iV̄AX′)QA + iµ?P̄X′ = 0 (µ? = µ/
√

2) (2)

that will be studied in the space time of metric tensor gµν given by [16]:

gµν = diag
{

1; −eΓ(t,r); −Y 2(t, r); −Y 2(t, r)(sin θ)2
}

(3)

The equations (1), (2) can be expanded in terms of the directional derivatives
and spin coefficients . If the null tetrad frame defined in [17] is adopted, they
can be separated under the conditions VAX′ = VAX′(t, r), V01′ = V10′ , by setting

PA ≡ 1

Y

(
H1(t, r)S1(θ), H2(t, r)S2(θ)

)
eimϕ (4)

Q̄A ≡ 1

Y

(
−H1(t, r)S2(θ), H2(t, r)S1(θ)

)
eimϕ, m = 0, 1, 2, .... (5)

This leads to a separate angular eigenvalue problem that can be exactly inte-
grated. There results that S1, S2 are essentially given by Jacobi polynomials
Silm(θ), i = 1, 2; l = 0, 1, 2, .. ([10, 18, 19, 21]).
One is then left with the equations in the D,∆ directional derivatives, spin
coefficients ε and t, r variables:

√
2 (D + ε+ iV00)H1 =

(
iµ+ λ/Y

)
H2 (6)

√
2 (∆ + ε+ iV11)H2 =

(
iµ− λ/Y

)
H1 (7)

√
2D = ∂t + e−Γ/2 ∂r (8)√
2 ∆ = ∂t − e−Γ/2 ∂r (9)

ε = Γ̇/25/2 (10)

where λ2 = l(l + 1), l = 0, 1, 2, .. is the eigenvalue of the separated angular
equations [19]. In the following the spinor VAX′ will be assumed to be of the
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form [20]:

VAA′ = σαAA′Vα =
V

2

(
1 0
0 1

)
,

(
Vα ≡ (V, 0, 0, 0)

)
(11)

V0 = V (t, r) = e2
0

∫ e−Γ/2

Y 2
dr (12)

σ0 the t σ-matrix of the assumed null tetrad frame. V is the “curved” Coulomb
potential energy of the given point of mass µ and charge −e0 interacting with
a point of charged e0 in the origin of the coordinates (e. g., [20]).

It is useful to note that the “curved” Coulomb potential always corresponds
to an attractive force. Indeed −∂V0/∂r = −e2

0e
Γ/2/Y 2 < 0 on account of the

physical interpretation of Γ, Y in terms of real functions.

3 The LTB cosmological model

The equations (6), (7) are now studied for a specific gravitational model,
namely in Lemâitre-Tolman-Bondi cosmological model. As it is well known
(e. g., [8]) the LTB cosmology corresponds to a spherically symmetric space
time filled freely falling dust matter of zero pressure in the coordinate system
(3). The model can be exacly integrated. The cosmological solution depends
on two arbitrary integration function E(r),M(r) that represent the energy and
the mass of a one dimensional gravitational equation to which the model can
be reduced. Here we are interested in the case E 6= 0. The cosmological model
can be equivalently described by the equations

eΓ =
Y ′2

1 + 2E(r)
,

Ẏ 2

2
− M(r)

Y
= E(r) (13)

M(r) = 4πG
∫ r

0
dr Y 2 Y ′d(t, r) (14)

where d(t, r) is the energy density of the dust matter. For the present purposes
it is convenient to give the solutions of the model in parametric form [8]:

t = x(r)ξt(η), Y = y(r)ξ(η) (15)

x(r) = G
M(r)

(2|E|)3/2
, y(r) =

M(r)

2|E|
(E 6= 0) (16)

ξ = cosh η − 1, ξt = sinh η − η, η ≥ 0 (E > 0) (17)

ξ = 1− cos η, ξt = η − sin η, 0 ≤ η ≤ 2π (E < 0) (18)

To further study the equations (6), (7) we now pass from the coordinate (t, r)
to the coordinates (τ, s) defined by

τ =
∫ 2|E|)1/2

Y
dt ≡ η (19)
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s(r) =
∫ √

2|E|
1 + 2E

Y

Y ′
dr (20)

In the new coordinates the equations (6), (7) read then (ξ̇ = dξ/dη,G = 1):

(∂η + ∂s)H1 +
(1

2

ξ̇

ξ
+ i
√

2V
Mξ

(2|E|) 3
2

)
H1 =

( iµMξ

(2|E|) 3
2

− λ

(2|E| 12 )

)
H2 (21)

(∂η − ∂s)H1 +
(1

2

ξ̇

ξ
+ i
√

2V
Mξ

(2|E|) 3
2

)
H1 =

( iµMξ

(2|E|) 3
2

+
λ

(2|E|) 1
2

)
H2 (22)

By further setting

H1 −H2 = r f(η, s), H1 +H2 = r g(η, s) (23)

the last equations become (fs = ∂f/∂s):

gη + fs +
(rs
r
− λ

(2|E|) 1
2

)
f + g

(1

2

ξ̇

ξ
+
i
√

2VMξ

(2|E|) 3
2

)
− iµMξ

(2|E|) 3
2

)
= 0 (24)

gs + fη +
(rs
r

+
λ

(2|E|) 1
2

)
f + g

(1

2

ξ̇

ξ
+
i
√

2VMξ

(2|E|) 3
2

)
+

iµMξ

(2|E|) 3
2

)
= 0 (25)

This is the most general form to which the Dirac equation with spherically
symmetric potential can be reduced in the LTB cosmology. Further progress
can be obtained only by assigning the cosmological integration functions E,M .

4 Approximated H-models

The Dirac equation describing microscopical systems and having here as an
object to study the Hydrogen atom, it seems reasonable to assume as a basic
approximation, the cosmological background to be fixed under time intervals
the atomic interactions take place. Here it is assumed

ξ̇(η)

ξ(η)
≈ 0 (26)

for η = η0 sufficiently large so to have ξ̇(η0) ≈ 0.
Accordingly, the time dependence can be factored out by setting f(η, s) =

exp(ikξ0η)f(s), g(η, s) = exp(ikξ0η)g(s). The equations (24), (25) become
then:

f ′ +
(rs
r
− λ

(2|E|) 1
2

)
f + ig

[
kξ0 −

(
µξ0 −

√
2V ξ0

) M

(2|E|) 3
2

]
= 0 (27)

g′ +
(rs
r
− λ

(2|E|) 1
2

)
g + if

[
kξ0 +

(
µξ0 −

√
2V ξ0

) M

(2|E|) 3
2

]
= 0 (28)
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Under the present assumptions rs follows by reversing the relation (20). The
equations are the analog of eqs. (19) in [19] and of (14), (15) in [21].

The equations (27), (28) are now studied for different choice of the integra-
tion functions E,M . This involves unconventional expression of the Coulomb
field. To simplify the form of the equations one can directly chose

(|2E|)
3
2 = M (G = 1) (29)

Under such condition the density d(t, r) of the dust matter does not depend
on r (it is therefore constant if (26) holds true). Indeed, by (29), t = ξt(η) or
η = (ξt)−1(t) and Y = y(r)ξ(η) ≡ (2|E|)1/2ξ(t) so that

d =
M ′

4πY 2Y ′
=

1

4πξ3(t)
(30)

As an application of the scheme under conditions (26), (29) suppose 2E(r) =
(ar)2. Then:

y(r) = (2|E|)1/2 = ar, a > 0 (31)

M(r) = (ar)3 (32)

s(r) = χ
∫ d(ar)√

1 + a2r2
= χ sinh−1 ar (33)

r =
1

a
sinh s ∼=

1

a
s, s2 << 1 (34)

V =
χ

a2

[
−
√

1 + a2r2

ar
+ log(ar +

√
1 + a2r2)

]
(35)

∼=
χ

a2

[
− 1

s
+ s

]
, χ =

e2
0

ξ3
0

(36)

∼= −
χ

a2

1

s
, r2 ≈ 0, s2 ≈ 0 (37)

Under these assumptions and by using the approximation (37) for the Coulomb
potential energy, the equations (27), (28) read then

f ′(s) +
1− λ
s

f(s) + ig(s)
(
k0 − µ0 +

V ξ0

a2

)
= 0 (38)

g′(s) +
1 + λ

s
g(s) + if(s)

(
k0 + µ0 +

V ξ0

a2

)
= 0 (39)

where k0 = kξ0, µ0 = µξ0.
With the choice (37) of V these equations are of the same form, in the vari-

able s, of those in the variable r discussed in [19], relatively to the Robertson
Walker metric, after the substitution χ −→ χ/a2. A Schrodinger like interpre-
tation of the solutions [2, 21] allows then again to determine a discrete energy
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spectrum of the H-atom of the form

k

µ
=
[
1 +

(χ/a2)2

(n+
√
λ2 − (χ/a2)2)2

]− 1
2

, n = 1, 2, ... (40)

By increasing a the energy levels increasingly shift towards the limit value 1.
If instead one considers the eqs. (38), (39) with the expression (36) of V

then they coincide with the equations (14), (15) of Ref. [21] where it has been
performed the substitution χ −→ χ/a2. In that paper the equations have been
solved by a cumbersome approximation method. It consists in a suitable trans-
formation of the functions f, g by which the equation can be disentangled and
finally reduced, for large s, to confluent hypergeometric equations. The energy
spectrum is then obtained by truncating the hypergeometric series solution by
a Schrodinger like quantization requirement. Therefore, in the present case,
the energy spectrum of the H-atom with the “curved” Coulomb potential ap-
proximation (36), follows from the substitution χ −→ χ/a2 in equation (40)
of Ref. [21]:

k

µ
=

[
1 +

(
2 χ
a2

+
√

4χ
2

a4
+ [(1 + 2n+ 2γ)2 − 1][4 χ

a2
2 + (1 + 2n+ 2γ)2]

(1 + 2n+ 2γ)2 − 1

)2]− 1
2

(41)

It has been set γ =
√
λ2 − (χ/a2)2 that simplifies the mentioned calculations

procedure
The above are two cases that have been approximately solved under the

special condition (29). It seems however, on account of the arbitrariness of
the functions E,M , that the “curved Coulomb” potential could assume very
unusual expressions to make questionable the existence of solutions of the Dirac
equation admitting an H-atom interpretation.

5 Remarks and comments

In previous calculations the H-atom has been approximately described by the
Dirac equation with curved Coulomb potential in a class of LemâitreTolman
Bondi cosmological models. On account of the approximations done, the cos-
mological model corresponds to a space time filled with spatially uniform dis-
tribution of dust matter so slowly varying to be considered constant in atomic
time intervals.

The calculations are developed in a parameter dependent cosmological
model satisfying conditions (26), (29). They are developed for two different
approximations of the “curved” Coulomb potential.

The first is the basic one, namely the usual conventional Coulomb potential.
The energy spectrum of the H-atom is explicitly determined. It coincides with
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that of the Minkowski space time having the Coulomb interacting constant
that depends on the cosmological parameter.

The second approximation amounts to the basic Coulomb potential plus a
linear term. The study is performed, in the same cosmological context of the
previous one, and the energy levels are determined. In both cases the energy
levels of the spectrum are determined exactly and have the form of those
previously calculated for the Robertson Walker space time apart a dependence
of the interacting constant by the cosmological parameter. The results have
been obtained exactly, and not perturbatively.
In the special cosmological context assumed, it remains open the problem
whether, under assumptions (26), (29), the H-atom exists also for the complete
analytical expression of the Coulomb potential.

More generally, there is a wide class of LTB cosmologies, the functions
E,M being arbitrary. The question arises then when the H-atoms do indeed
exist. Even if the “curved” Coulomb potential is always attractive, the expan-
sion of the Universe could be dominant.
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