
Advanced Studies in Theoretical Physics
Vol. 16, 2022, no. 4, 273 - 280

HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/astp.2022.91937

Cosmological Exact Solutions of Petrov Type D.

A Mixture of Fluids of Dark Energy and a

Nonlinear Element that Emerges as a Zeldovich

Fluid and that Transforms into a Dust Type Fluid

R. Alvarado

CINESPA, Escuela de Fisica
Universidad de Costa Rica, Costa Rica

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2022 Hikari Ltd.

Abstract
In this article, cosmological exact solutions to Einstein’s equations

are obtained for an anisotropic symmetry of Petrov type D from a non-
linear fluid that responds to the equation of state of type µ1 − P1 =
B
a

√
P1
µ1

where µ1 = µ− Λ, P1 = P + Λ, µ, P and Λ are the volumetric

energy density, the pressure, and a constant linked to the concept of
dark energy; B and a are constants. That equation of state and what
it represents in terms of time limits (when t → 0 and when t → ∞)
are analyzed. Two general solutions different from each other because
of the initial expansion degree that a coordinate can have in relation
to a perpendicular plane to this one are obtained. The solution, as
time increases, transforms asymptotically into an isotropic space-time
of FRWL type with a dark energy fluid. Temperature, Hubble parame-
ters, and deceleration are also obtained and studied in relation to time
transformations.

Keywords: cosmology, exact solution, Einstein, temperature, non-lineal,
Kretschmann, singularity, Hubble, deceleration

1 Introduction

Discoveries since the late 20th century until the start of 21st century related to
cosmological observations mainly due to the observation of Ia supernovae and



274 R. Alvarado

gathered data by COBE, WMAP, and still active Planck satellites, as well as
its analysis, have allowed significant advancement and interest in cosmology.
In this regard, other aspects and its respective literature have been discussed
in other articles; for example [1].
One aspect of great theoretical interest is the type of transition that the uni-
verse could have had since its beginning until now and that could have in the
future. Research regarding this topic is being developed around hypotheses
related to the kind of matter that the universe has had. One possible hy-
pothesis is to consider that the universe matter is a mixture of fluids, some
of which could have been more relevant than others in different historical pe-
riods; accordingly, a fluid of dark energy type prevails nowadays, and thus,
the universe accelerates. Another possible hypothesis is the existence of a
nonlinear fluid that has transitioned continuously through time from a fluid
with an equation type of linear state (between pressure and energy density)
to another one or other linear fluids. What was above-mentioned is equivalent
to studying a universe model that has gone through several possible mixtures
of different linear fluids in different times within a continuously process, so all
different scenarios from the universe history unify into a unique fluid. Previ-
ous hypotheses are used altogether in this work to consider a mixture of dark
energy with a nonlinear fluid; that represents a universe where the pressure
of the production of particles that are created Pc is due to the nonlinear fluid
since the dark energy fluid does not produce changes in this one [2]. On the
other hand, from general discussions [3] about particle formation specially in
close proximity with a cosmological singularity, it has been established that
particles with null inertial mass do not come from nondisrupted solutions of
FRWL type (conformally flat models) either with nonnull inertial mass with
the exception of disrupted and nonhomogeneous cases [4], but in anisotropic
and homogeneous models both can emerge.
The nonlinear fluid resulting from the solution in this work behaves closely to
a Zeldovich fluid (stiff matter) in proximity with the beginnings (t → 0) and
continuously as time increases, it becomes into a dust type fluid P1 = 0. It un-
dergoes this transformation through time as a similar fluid to a hard Universe
1/3 < P1/µ1 < 1, radiation P1/µ1 = 1/3 and ordinary fluids 0 < P1/µ1 < 1/3.

2 Symmetry, Einstein’s Equations and Solu-

tions

The symmetry used in this work is anisotropic and homogeneous of Petrov
type D and has the form [1]

ds2 = Fdt2 − t2/3K(dx2 + dy2)− t2/3

K2
dz2, (1)
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where F and K are functions of t. Einstein’s tensor components (Gβ
α = Rβ

α −
1
2
δβαR) different from zero, of (1), are

G0
0 =

4K2 − 9 t2K̇2

12t2K2F
, (2)

G1
1 = −

3KtK̇
(

2F − Ḟ t
)

+ 3Ft2
(

2KK̈ − 5K̇2
)

+ 4K2
(
Ḟ t+ F

)
12t2K2F 2

, (3)

G2
2 = G1

1 = −G
3
3

2
+

9Ft2K̇2 − 4K2Ḟ t− 4K2F

8t2K2F 2
, (4)

where the points over the functions represent derivatives by time.
The perfect-fluid model used in cosmology represents a fluid without vis-

cosities, isentropic (P = P (µ)) and shear stress which could be written as

Tαβ = (µ+ P )uαuβ − gαβP, (5)

where Tαβ is the energy momentum tensor of the perfect fluid, uα the tetradi-
mensional speed, gαβ the metric tensor, µ and P the energy density and the
fluid pressure respectively.

The equation of state for the analyzed fluid is taken from the form

µ1 − P1 =
B

a

√
P1

µ1

, (6)

where µ1 = µ− Λ, P1 = P + Λ and Λ is the constant linked to the concept of
dark energy.
Considering a fluid with a tetradimensional speed uα = (u0, 0, 0, 0), the com-
ponents of the energy momentum tensor (22) different from zero are

T 0
0 = µ, (7)

T 1
1 = T 2

2 = T 3
3 = −P, (8)

so it implies that Einstein’s equations Gβ
α = κT βα , must meet that G1

1 = G3
3, so

from (3) and (4); it is obtained

K̇K
(

2F − Ḟ t
)
− 2Ft

(
−KK̈ + K̇2

)
= 0. (9)

Consequently,

K = K0e
C1

∫
F1/2

t
dt, (10)
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without loss of generalities, the constant K0 in (10) will be considered equiv-
alent to 1 and C1 = ±2/3; for each possible value of C1, a different model is
obtained.

From Einstein’s equations Gβ
α = κT βα , the equality T µν ;µ = 0 (see [5]).

From (10) and (6), it is obtained, for any C1, that the solution of F is

F =
(

3 Λ t2 + 3B
√
a2 + t2 + 1

)−1

, (11)

Considering Einstein’s equations, the solution (11), (10), G0
0 and G1

1 (see [5]),
it is obtained that pressure P is

P = P1 − Λ, where P1 =
Ba2

t2
√
a2 + t2

(12)

and density µ is

µ = µ1 + Λ, where µ1 =
B
√
a2 + t2

t2
. (13)

in (11), (12) and (13), a > 0 a constant with a temporal characteristic (like
time) that substantiates the nonlinearity of the fluid µ1 suppressing the possi-
bility of this one to be isobaric for all times. B > 0 represents the constant of
the energy density of a dust type fluid where µ1 transforms as time increases.
Moreover, the nonlinear fluid µ1 initially (t → 0) is of Zeldovich type and its
constant is the product of Ba.

The function K in (10) can be written as

K = e±2σ/3, (14)

where σ is determined differently, as shall be shown below, in dependence on
the existent relation between the fluid constants (Λ, a, B). For values of t→ 0,

σ can be considered as σ = ln(t)√
1+3Ba

where σ0 is a constant of integration that
does not play an important role in the solution and that can be equivalent to
zero redefining coordinates x, y and z. If 3Ba 6= 1, so

σ = − 1

2s−
arctan

(
Q1

2
√
As−

)
− 1

2s+

ln

(
Q2 + 2 s+

√
A√

a2 + t2 − a

)
− σ0, where

σ0 = − 1

2s−
arctan

(
(2 aΛ−B)

√
3

2
√

Λs−

)
−

ln
(

3B + 2 s+

√
3
√

Λ + 6 aΛ
)

2s+

,

(15)

and functions A, Q1, Q2 and s± are

A = 1+3B
√
a2 + t2+3 Λ t2, Q1 = −2+3 a (2 aΛ +B)+3

√
a2 + t2 (2 aΛ−B) ,
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Q2 = 2− 3 a (2 aΛ−B) + 3
√
a2 + t2 (2 aΛ +B) and s± =

√
3Ba± 1,

if s− = 0 y 6Λa2 6= 1, function σ has the form

σ =
D1 − a

√
3Λ

6 Λ a2 − 1
− 1√

2

(
arctanh

(
1√
2D1

)
− arctanh

(
1

a
√

6Λ

))
, (16)

where D1 =

√
(1−3 Λ a2+3 Λ a

√
a2+t2)a√

a2+t2+a
.

If s− = 0 y 6Λa2 = 1, function σ is

σ =
1√
2

ln

(
|t|√

a2 + t2 + a

)
− a√

2(
√
a2 + t2 + a)

. (17)

3 Analysis of Solutions

Two possible solutions for the metric (1) exist, in dependence on the sign used
in (14), the solution with a positive sign represents the universe which near its
beginning expands, so the plane xy expands with less intensity than the axis
z. If the considered sign is negative, the contrary happens. The function K,
for any possible solution, tends to K → 1 when t→∞, so solutions tend to a
transition to an isotropic space-time of FRWL type. The metric tends to

ds2 → 1

3Λt2
dt2 − t2/3(dx2 + dy2 + dz2), (18)

and makes a change of coordinates, so t = e
√

3Λη can be written as

ds2 → dη2 − e2η
√

Λ/3(dx2 + dy2 + dz2) (19)

which is the usual form of the solution of a dark energy fluid in the isotropic
and homogeneous FRWL symmetry.
When solutions t→ 0 are in proximity to the ones found for Zeldovich model
are only for short times within the interval t ∈ [5.4·10−44, 0.25·10−23]s (see [1]),
and in the case of the studied fluid, this one does not present that restriction
despite having a close behavior to the Zeldovich one in proximity to t = 0. The
nonlinear nature of the fluid allows it to move states of linear fluids through
time (P = λµ) from Zeldovich type (λ = 1) until the dust one (λ = 0), so
P1 = λ1(t)µ1, where λ1(t) = a2

a2+t2
. For example, the nonlinear fluid is similar

to the one of radiation when t → a
√

2. The total fluid is the sum of a dark
energy fluid and a nonlinear fluid.

4 Singularities and Kretschmann’s Invariant

In the study of possible singularities of a given space-time, the Kretschmann’s
invariant is used (Krets = RµναβRµναβ), and its importance has been discussed
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in [1]. For the found solutions (with C1 = ±2/3), the invariant has the form

Krets± = W± + U, (20)

where

U =
8

3Λ2 +
32

27t4
+
B
(

(60 a4 + 15 t4 + 48 t2a2)B + 16 (a2 + t2)
3/2
)

9t4 (a2 + t2)

and

W± =

(
12 (t2 − 2 a2)B + 16

√
a2 + t2

)
Λ

9t2
√
a2 + t2

± 32
√

1 + 3B
√
a2 + t2 + 3 Λ t2

27t4

and the positive sign is taken when C1 = 2/3 and the negative if C1 = −2/3.
From Kretschmann’s invariant (20), it is determined that a singularity exists
in t = 0 for any value of C1 and of B 6= 0. When C1 = 2/3, Krestchmann’s
invariant presents a singularity of t = 0 equivalent to Kasner’s one ED1 (with
a depth of the order of t−4) discussed in [1]. When C1 = −2/3 and B = 0,
Kretschmann’s invariant is not singular in t = 0.

5 Temperature, Hubble Parameter H and De-

celeration q

The temperature for the studied fluid type is obtained as in [5], so

dP

µ+ P
=
dT

T
, (21)

where T is the fluid temperature. From the solution (13), (12) and (21), it is
known that the temperature for a 6= 0 depends on the time of the form

T =
T0 (2a2 + t2)

t (t2 + a2)
, (22)

where T0 > 0 is a constant of integration. From (22), when t → ∞, the
temperature tends to zero for any value of a, which is in agreement with the
temperature of a fluid made up of a mixture of dark energy and dust and
that tends to high values when t→ 0; in which case, it behaves similarly to a
Zeldovich fluid which temperature is TZ = T0/t.
Hubble Parameter H and deceleration q are obtained as [5]

H =

(
(g11g22g33)1/6

).
√
g00(g11g22g33)1/6

=

√
1 + 3B

√
a2 + t2 + 3 Λ t2

3t
, (23)
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where the components of the metric tensor have been considered gµν of (1) and

q = −(1 +
Ḣ

√
g00H2

) = 2−
9t2
(
2
√
a2 + t2Λ +B

)
2
(
1 + 3B

√
a2 + t2 + 3 Λ t2

)√
a2 + t2

. (24)

From (23) and (24), when t → 0, H → ∞, and when t → ∞, H →√
Λ/3. The deceleration parameter q tends to q → 2; when t → 0, it is

equal to zero in t = t1 where t1 is the positive real solution of the equation
2
√
a2 + t1

2 (3 Λ t1
2 − 2) − 12Ba2 − 3 t1

2B = 0 and when t → ∞, q → −1.
Thus in this model, the universe expands initially decelerating and then, it
transforms continuously in a universe in accelerating expansion.

6 Conclusions

Two cosmological exact solutions to Einstein’s equations were obtained and
found different from each other due to the initial expansion degree considering a
mixture of two fluids, one of dark energy and other of nonlinear. The nonlinear
fluid has the characteristic that for times t ≈ 0 it is similar to a fluid of
Zeldovich type and for large times t→∞, it is similar to a fluid of dust type.
That fluid allows models to have a continuously transition through time by
characteristic models of mixtures of linear fluids where the dark energy fluid
is always present. It was established that both solutions present singularities
in t = 0 and that as time increases, when t → ∞, they become isotropic
and equivalent to the solution of a dark energy fluid for the FRWL symmetry.
The temperature of the mixture of fluids was studied and it was determined
that T → ∞, when t → 0, and T → 0, when t → ∞. By studying the
Hubble parameter, and the deceleration, it was found that for times t → 0,
the Hubble parameter tends to H →∞ and the deceleration parameter tends
to q → 2. As time increases, the Hubble parameter decreases its value in an
asymptotic form to H →

√
Λ/3, and the deceleration parameter decreases its

value passing through a null value in time t = t1 which is the real positive
solution of the equation 2

√
a2 + t1

2 (3 Λ t1
2 − 2) − 12Ba2 − 3 t1

2B = 0 until
a value of q → −1 when t→∞; consequently, for these solutions, space-time
initially decelerates, and as time increases, it starts to accelerate.
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